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Abstract

The National Resources Inventory (NRI) is a longitudinal
survey of non-federal lands in the U.S. A new protocol for
measuring the extent of developed land was implemented
in 2003. In 2005, an experiment was conducted to esti-
mate the relation between measurements obtained from
the new and former procedures. We propose a model for
the data from the calibration experiment and evaluate
estimators of model parameters through simulation.

The estimation procedure requires an estimator of the
unknown covariance matrix of a vector of moments. One
way to estimate this covariance matrix is to use the mo-
ments of the normal distribution. The delete-one jack-
knife provides a non-parametric alternative. The results
of the simulation study indicate that both estimators of
model parameters are approximately unbiased and that
the estimator based on the jackknife covariance matrix
is more variable than the estimator based on the normal
moment covariance matrix.

We construct two estimators of the variance of the es-
timator based on the normal moment covariance matrix.
The first continues to use the moments of the normal
distribution to estimate the unknown covariance matrix.
The second variance estimator uses the jackknife estima-
tor in conjunction with the normal moment estimator.
Both estimators are approximately unbiased for variances
of estimators of the slope and intercept in the linear cal-
ibration equation. Skewness leads to a downward bias in
the normal-based variance estimator for variance compo-
nents.

KEY WORDS: Measurement Error, Calibration, Sand-
wich Variance Estimator

1. Introduction

We consider the problem of calibrating a new instrument
for measuring developed land in the National Resources
Inventory (NRI) against a standard procedure. The NRI
is a large-scale longitudinal survey of nonfederal lands
in the U.S. The NRI provides estimates of land cover,
land use, and conservation practices from 1982 through
the present. A new protocol for measuring the extent of
developed land – urbanized areas and transportation in-
frastructure – was implemented in 2003. It is important
that measurements under the new protocol are consis-
tent with measurements from the old protocol because a
primary objective of the NRI is to estimate change. To
retain the interpretability of NRI’s trend estimates, it is

essential that physical changes are not confounded with
the impacts of new procedures. In 2005, a special study
was conducted to obtain data that can be used to esti-
mate the relation between measurements from the new
and former procedures. We propose a linear calibration
equation for the data from the 2005 calibration experi-
ment.

To estimate model parameters, we apply generalized
least squares to a vector of first and second sample mo-
ments. We consider two ways to estimate the covariance
matrix of the vector of sample moments. The first uses
the moments of the normal distribution and the second is
the delete-one jackknife. The normal moment estimator
is inconsistent if the observations are not normal, while
the jackknife estimator is consistent in the absence of
parametric assumptions (Shao, 2003).

We compare two estimators of the variance of the es-
timator based on the normal moment covariance matrix.
The first variance estimator continues to use the nor-
mal moments to estimate the unknown covariance matrix.
The second variance estimator is akin to the “sandwich”
or “heteroscedasticity-consistent” variance estimator of
generalized estimating equations (Carroll and Kauer-
mann, 2001).

In Section 2, we describe the protocol used in the NRI
and the structure of the 2005 calibration experiment. A
model is presented in Section 3 for the data collection
procedure. In Section 4, we describe the estimators of
model parameters and the variance estimators. In Section
5, we discuss the simulation study used to evaluate the
effects of skewness and sample size on properties of the
estimators.

2. The Calibration Experiment

2.1 Recent Protocol Changes in the NRI

Sampling units in the NRI are sections of land called
“segments.” Approximate areas of segments range from
40 to 640 acres, with a typical size of 160 acres. Much of
the NRI data are based on aerial photographs of sampled
segments. Before 2000, photo interpretation was recorded
on a transparent overlay placed over the segment photo.
Now, all of the photographs are digitized, which enables
computer-assisted data collection.

In 2003, an additional change to the procedure for mea-
suring developed land was implemented. Developed land
includes residential and urban areas as well as trans-
portation infrastructure. Under the original procedure,
data collectors manually outlined the developed area on
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a transparent overlay placed on the segment photo. Data
gatherers needed to make some difficult judgments with
respect to boundaries of residential areas when imple-
menting this method. The new procedure involves a com-
bination of manual and computerized delineation in an
effort to eliminate some of the variability due to inher-
ent differences between data collectors. Under the new
procedure, the data collector clicks on the roof of a res-
idence with a mouse on the digitized segment photo. A
computer program then uses these locations to define the
developed area. Each residence defines the center of a
hexagon. Hexagons are linked if the distance between
centers is below a certain threshold. A region is deemed
“built-up” if it is composed of hexagons of a pre-specified
total area.

2.2 Measurement of Developed Land

Under both the new and old protocols, measurement of
developed land involves several steps. In a given year,
the data collector first reexamines the photograph of the
segment from the previous year to determine the devel-
oped land features for that year. He/she then measures
changes that have occurred. Consequently, a determina-
tion of level in any given year requires imagery from the
current year and from the previous or “base” year.

2.3 The 2005 Calibration Study

Since it was no longer possible to implement the old pro-
tocol in 2005, the data collection component of the cal-
ibration study applied new methods to photo images of
segments from 2001 and 2003 for which measurements
from the old procedure already existed. The 2002 data
were not used because the available NRI sample size for
2002 is smaller than those of 2001 and 2003. Three Re-
mote Sensing Laboratories (RSL), the East, Central, and
West, oversee data collection in the NRI. Due to differ-
ences in the character of land use in the three regions,
we analyze the data from each RSL separately. In the
2005 calibration experiment, the East RSL had 1036 seg-
ments, the Central RSL had 1055 segments, and the West
RSL had 608 segments. Images from 2001 serve as the
“base year” and those from 2003 function as the “current
year”. Therefore, measurements of interest are 2003 level
and change for the 2001 to 2003 interval.

Two independent determinations are made on each seg-
ment using the new protocol. (Without this replication,
we would not be able to identify important sources of
variability). To ensure that the calibration experiment
provides a valid representation of the real data collec-
tion process, each of these replicates requires two data
collectors. The first data collector measures 2001 level
using the photo image from 1997. The second data col-
lector uses this first data collector’s determination as the
starting point for measurements of 2003 level and 2001
to 2003 change. The first data collector’s determination
of 2001 level is not used in the statistical analysis be-

cause it is directly influenced by the 1997 measurement,
which is based on the old protocol. The four data collec-
tors involved in this process (two for each replicate) are
randomly assigned to segments and to tasks.

The data of interest consist of the following variables
for each segment:

• one measurement of 2003 level from the old proce-
dure

• one measurement of 2001-2003 change from the old
procedure

• two independent measurements of 2003 level from
the new procedure

• two independent measurements of 2001-2003 change
from the new procedure.

3. Model Specification

The model that we propose for the data from the cali-
bration study reflects the data collection process. In this
section, we first specify a model for the individual ob-
servations on each segment. We then define the vector
of first and second sample moments of the observations,
which serves as the response variable in the estimation
procedure. We conclude this section with a discussion of
some of the properties of the theoretical covariance ma-
trix of this vector of sample means and covariances.

3.1 A Model for Individual Measurements of
Acres of Developed Land

Let i be the index for the segment, where i = 1, . . . , n,
and let t be the index for the two time points. Here t = 1
stands for 2001 and t = 2 denotes 2003. For each segment
i, two sets of data collectors make independent measure-
ments of both 2003 level and 2001 to 2003 change using
the new protocol. Let j = 1, 2 represent these replicates.

The statistical conceptualization consists of three main
parts: 1) a model for the population of true segment
values, 2) a model for the measurements from the old
protocol, and 3) a model for the measurements from the
new procedure.

Let xti denote the true, unobserved, acres of developed
land on segment i in year t. We treat these true values
as a random sample from a population:

xti = µt + γti, where E[γti] = 0, and V ar(γti) = σ2
x. (1)

We also assume that the true values on a given segment
at the two time points are correlated:

x2i − x1i = di, (2)

where E[di] = µ2 − µ1, and V ar(di) = σ2
d.

Second, we specify a model for the measurements of
both 2003 level and 2001 to 2003 change based on the old
protocol. Let Xti be the measurement of developed land
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on segment i in year t obtained from the old procedure,
and let uti be the associated measurement error. We
assume E[uti] = 0 and V ar(uti) = σ2

ui. Then, 2003 level
is

X2i = x2i + u2i, (3)

and 2001 to 2003 change is

∆Xi := X2i −X1i = di + bi, (4)

where E[bi] = 0 and V ar(bi) = σ2
bi.

Third, we specify a linear relation between the true
values associated with the new protocol and the unob-
served measurands. Let Ytij denote the measured acres
of developed land using the new protocol. Let etij be the
random measurement error in the new procedure. As-
sume E[etij ] = 0, and V ar(etij) = σ2

ei. The model for
2003 level is

Y2ij = δ + αx2i + e2ij . (5)

For 2001 to 2003 change, we specify

∆Yij = Y2ij − Y1ij = αdi + aij , (6)

where aij have E[aij ] = 0 and V ar(aij) = σ2
ai. Ideally,

δ = 0 and α = 1. Because Ytij is generated by a computer
program, adjustments will be made to the program until
these target values are attained.

We make two assumptions regarding independence re-
lationships. First, because the four data collectors work
independently, we assume eti1 and eti2 are independent
for all t and i. Likewise, we assume ai1 and ai2 are
independent for all i. Second, we assume (uti, bi) and
(etij , aij) are independent for all i, t, and j.

3.2 Summary Statistics Used in Estimation

We summarize the information in the data from each seg-
ment through a vector of statistics. For each segment i,
let

Zi = (
1

2
(∆Yi1 + ∆Yi2), ∆Xi,

1

2
(Y2i1 + Y2i2), (7)

X2i, Y2i2 − Y2i1, ∆Yi2 −∆Yi1)
′
.

Let Z̄ and mZZ be the sample mean and covariance ma-
trix of the vectors Zi, respectively. Let Z̄i denote the ith

entry of Z̄, and let mij denote the entry in row i and col-
umn j of mZZ (where i, j = 1, . . . , 6). Let σij = E[mij ]
denote the corresponding population moments. By the
model assumptions in (1)− (6), there are seventeen first
and second order sample moments with non-zero expec-
tations. Let W denote the vector of seventeen sample
moments, and let β denote the vector of ten model pa-
rameters. Then,

W = (Z̄1, Z̄2, Z̄3, Z̄4, m11, m12, m13, m14, m22, (8)

m23, m33, m34, m44, m55, m56, m66),

and

β = (δ, α, µ1, µ2, σ2
x, σ2

d, σ2
u, σ2

b , σ2
e , σ2

a). (9)

The variances in β are average variances. The mean of
W is a nonlinear function of the ten model parameters.
Specifically,

E[W] := g(β) (10)

= [α(µ2 − µ2), µ2 − µ1, δ + αµ2, µ2, (11)

α2σ2
d +

σ2
a

2
, ασ2

d,

α2σ2
d

2
+

σ2
a

4
,
ασ2

d

2
, σ2

d + σ2
b ,

ασ2
d

2
,
σ2

d

2
+

σ2
b

2
, α2σ2

x +
σ2

e

2
,

ασ2
x, σ2

x + σ2
u, 2σ2

e , σ2
a, 2σ2

a].

We assume that W has a finite variance, Vww.
Observe that some of the entries of W provide direct

unbiased estimators of certain model parameters. For
example, the 15th, 16th and 17th components of W are
unbiased estimators of 2σ2

e , σ2
a and 2σ2

a respectively. Sim-
ilarly, the second and fourth elements of W are unbiased
for µ2 and µ2 − µ1 respectively. Because the method of
moments produces several consistent estimators of the el-
ements β, we use generalized least squares with W as the
response in estimating β.

We write Vww in partitioned form to clarify the struc-
ture of this covariance matrix:

Vww =

0
@ Ω11 Ω12 Ω13

Ω
′
12 Ω22 Ω23

Ω
′
13 Ω

′
23 Ω33

1
A. (12)

With no distributional assumptions, Vww has 153 un-
constrained parameters. The entries of the 4x4 matrix
Ω11 are covariances of sample means. The 14x14 matrix
Ω22 has covariances of sample second moments of the
four elements of Zi with nonzero expectations. The 3x3
matrix Ω33 contains covariances of second moments of
measurement errors from the new protocol.

4. Estimation

To apply generalized least squares to the vector of sample
moments W to estimate β requires a working covariance
value for Vww. We compare estimators of β arising from
two choices for the working matrix. To construct the first
estimator β̂1, we employ the moments of the normal dis-
tribution to obtain the working covariance matrix for W.
We refer to β̂1 as the “estimator based on the normal-
moments.” We denote the elements of β̂1 by α̂1, δ̂1, etc.
For the second estimator β̂2, we use the delete-one jack-
knife to estimate Vww. We refer to β̂2 as the “estimator
based on the jackknife” and denote the elements of β̂2 by
α̂2, δ̂2, etc. In both procedures, we alter extreme obser-
vations in an attempt to stabilize the covariance matrices
used in estimation.

We compare two estimators of the variance of β̂1. We
adopt the terminology and notation of Carroll and Kauer-
mann (2001) to label these two estimators. The first
variance estimator continues to use the moments of the
normal distribution for the covariance of W. We call this
variance estimator the model based estimator. We denote
the model based estimator by V̂M(β̂1). We incorporate
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the jackknife estimator of the covariance of W into the
second estimator of the variance of β̂1 in sandwich form.
We denote this sandwich variance estimator by V̂S(β̂1).

We investigate an estimator for the variance of β̂2 that
uses the same jackknife estimator of Vww used to con-
struct β̂2.

4.1 Estimation of Vww

Normal Moment Estimator of Vww

If the populations of true values and measurement er-
rors have normal distributions, then

Vww = block-diag (Ω11,Ω∗
22) , (13)

where Ω11 is as in (12) and Ω∗
22 is the lower right 13x13

block of Vww:

Ω∗
22 =

�
Ω22 Ω23

Ω
′
23 Ω33

�
. (14)

In (14), the element of Ω∗
22 corresponding to mij and mkl

is
(σikσjl + σilσjk). (15)

Replacing theoretical moments σij with sample moments
mij produces the first estimator of Vww, which we de-
note by V̂ww,1. If the assumption of normality holds,
then V̂ww,1 is a consistent estimator of the covariance of
W. The normal moment estimator is consistent for co-
variances of sample means, Ω11, provided the error vari-
ances are constant.

Jackknife Estimator of Vww
An alternative estimator of Vww is the delete-one jack-

knife procedure. For k = 1, . . . , n, we omit segment k
and let W(k) be the vector of seventeen sample moments
based on the n− 1 remaining segments. Then, the jack-
knife estimator of Vww is

V̂ww,2 =
n− 1

n

nX
i=1

(W(i) − W̄jk)(W(i) − W̄jk)′, (16)

where W̄jk = 1
n

∑n
i=1 W(i). The jackknife procedure is

consistent for Vww as long as fourth moments exist.
Modification to Largest Order Statistics
The vector W is essentially a sample mean of n 17x1

vectors

Wi = (Zi1, Zi2, Zi3, Zi4, (Zi1 − Z̄1)
2
, (Zi1 − Z̄1)(Zi2 − Z̄2), (17)

(Zi1 − Z̄1)(Zi3 − Z̄3), (Zi1 − Z̄1)(Zi4 − Z̄4),

(Zi2 − Z̄2)
2
, (Zi2 − Z̄2)(Zi3 − Z̄3),

(Zi2 − Z̄2)(Zi4 − Z̄4), (Zi3 − Z̄3)
2
, (Zi3 − Z̄3)(Zi4 − Z̄4),

(Zi4 − Z̄4)
2
, (Zi5 − Z̄5)

2
, (Zi5 − Z̄5)(Zi6 − Z̄6), (Zi6 − Z̄6)

2
).
′

For j = 1, . . . , 17, let Wij be the jth entry of the vec-
tor Wi. If the upper tail of the distribution of {Wij}n

i=1
is more skewed than the exponential, then the estima-
tor described below is better than the sample mean for
estimation of the population mean (Fuller, 1991).

Let W(k),j be the kth order statistic of the collection
Wij , i = 1, . . . , n. Under the exponential model for the
largest 30 order statistics, the variables

zk,j = (n− k + 1)(W(k),j −W(k−1),j), k = n− 30, . . . , n (18)

have independent, exponential distributions. Then, re-
place the largest three order statistics W(k),j by W ∗

(k),j

for k = n, n− 1, n− 2, where

W
∗
(n−2),j = W(n−3),j + min(

1

3
z̄j,n−3, W(n−2),j − W(n−3),j), (19)

W
∗
(n−1),j = W

∗
(n−2),j + min(

1

2
z̄j,n−3, W(n−1),j − W(n−2),j), (20)

W
∗
(n),j = W

∗
(n−1),j + min(z̄j,n−3, W(n),j − W(n−1),j), (21)

and Z̄n−3 is the sample mean of the smallest n−3 values
of zk,j .

When we use sample moments based on the modified
data set, we denote the normal moment estimator of the
covariance of W by V̂∗

ww,1. The jackknife estimator of
Vww arising from the modified data set is denoted by
V̂∗

ww,2. The intent of the modification is to stabilize esti-
mates of the inverse of Vww when the sample size is small
and the distribution of values skewed. Consequently, we
use the estimates of Vww based on the modified data set
in estimation of β but use the original n observations to
estimate the variance of W in variance estimation when
we do not require an additional estimate of the inverse.

4.2 Definition of β̂1 and β̂2

The estimation procedure selects β̂i to minimize the
quadratic form

(W − g(β))′V̂∗−1
ww,i(W − g(β)), (22)

where V̂∗
ww,i for i = 1, 2 are defined in Section 4.1. In

practice, estimates of Vww can be unstable when n =
100. Therefore, we compute V̂∗−1

ww,i as

V̂∗−1
ww,i = [V̂∗

ww,i + 17n−1diag(V̂∗
ww,i)]

−1, (23)

where diag(V̂∗
ww,i) is a diagonal matrix containing the

diagonal elements of V̂∗
ww,i. The small additions to the

diagonal elements of V̂∗
ww,i help prevent the estimates of

Vww from becoming too close to singular.

4.3 Variance Estimation

We consider two estimators of the variance of β̂1 that
are in the spirit of the model-based and sandwich vari-
ance estimators of generalized estimating equations (Car-
roll, 2001). The model-based estimator continues to use
the moments of the normal distribution for estimation of
Vww, as follows:

V̂M(β̂1) = [D(β̂1)′V̂∗−1
ww,1D(β̂1)]−1D(β̂1)′V̂∗−1

ww,1 (24)

V̂ww,1V̂
∗−1
ww,1D(β̂1)[D(β̂1)′V̂∗−1

ww,1D(β̂1)]−1,

where V̂∗−1
ww,1 is defined in (23) and V̂ww,1 is defined in

(13)-(15) in Section 4.1.
Use of a sandwich variance estimator is more appro-

priate if we are willing to employ the normal model for
estimation but are reluctant to believe that the variables
are normally distributed. To construct the sandwich vari-
ance estimator, we replace V̂ww,1 in (24) with V̂ww,2, as
given below:

V̂S(β̂1) = [D(β̂1)′V̂∗−1
ww,1D(β̂1)]−1D(β̂1)′V̂∗−1

ww,1 (25)

V̂ww,2V̂
∗−1
ww,1D(β̂1)[D(β̂1)′V̂∗−1

ww,1D(β̂1)]−1.
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An estimator of the variance of β̂2 is

V̂(β̂2) = [D(β̂2)
′
V̂∗−1

ww,2D(β̂2)]−1D(β̂2)′V̂∗−1
ww,2 (26)

V̂ww,2V̂
∗−1
ww,2D(β̂2)[D(β̂2)

′
V̂∗−1

ww,2D(β̂2)]−1.

5. Simulation Study

We conducted a small simulation study to evaluate the
estimators of β and the variance estimators under a va-
riety of circumstances. In the data from the calibration
experiment, both the true segment values and the mea-
surement errors have skewed distributions. Therefore, we
assess the effects of skewness on properties of estimators
of error variances.

5.1 Conditions in Simulations

The model for simulation is the model defined in Section
3. We generate data sets with n = 100, 500, and 1000
segments. The parameter vector used in the simulations
is

β = (α, δ, σ2
u, σ2

e , σ2
x, σ2

d, σ2
b , σ2

a, µ1, µ2)
= (1, 0, 60, 50, 200, 35, 100, 80, 13, 12).

The Monte Carlo sample size is 1000.
Simulation 1: Normal xti, eti, uti

The first simulation serves as a baseline. We generate
populations of Zi composed of normally distributed true
segment values and measurement errors. Under normal-
ity, Vww is block diagonal. The submatrices Ω12 and
Ω13 in (12), which contain covariances between sample
means and sample second moments, are matrices of ze-
ros. Because the measurement errors and true segment
values are uncorrelated, Ω23 is a matrix of zeros as well.

Simulation 2: Skewed xti

In the second simulation, the xti and di are sums of
multiples of independent χ2

(1) random variables. Specifi-
cally,

x1i =

vuutσ2
d

4
(χ

2
(1)1i − 1) +

vuutσ2
x

2
−

σ2
d

4
(χ

2
(1)2i − 1) + µ1, (27)

x2i =

vuutσ2
d

4
(χ

2
(1)3i − 1) +

vuutσ2
x

2
−

σ2
d

4
(χ

2
(1)2i − 1) + µ2 (28)

and di = x2i − x1i, where χ2
(1)1i, χ2

(1)2i, and χ2
(1)3i are in-

dependent χ2
(1) random variables. Several features of the

population covariance matrix Vww are the same when the
population of true values is skewed as when the true val-
ues are normally distributed. As discussed in Section 3.2,
the last three entries of W correspond to sample variances
and covariances of measurement errors from the new pro-
tocol. Consequently, the submatrix Ω33 defined in (12)
does not change when skewness is introduced into the
population of true values. The submatrices Ω13 and Ω23

in (12) contain population third moments of measure-
ment errors. Because measurement errors are normal,
Ω13 and Ω23 are matrices of zeros under the conditions
of Simulation 2. The covariance matrix of sample means
Ω11 is invariant to changes in the underlying distribution.

The only submatrices in (12) that differ between Simu-
lations 1 and 2 are Ω12 and Ω22. Inspection of the mean
of the jackknife estimates of Vww at n = 1000 suggests
that the most substantial changes to Ω12 occur in the
lower 3x2 block, which is associated with measurements
of level from the new and old protocols. The magnitudes
of the entries of Ω22 are consistently larger when the
population of true segment values is skewed.

Simulation 3: Skewed xti, eti, uti:
The third simulation attempts to represent the data

from the actual calibration experiment more closely than
the other two. The true segment values are as in Simula-
tion 2. The measurement errors are sums of multiples of
independent χ2

(3) random variables. For the old protocol,

u1i = (χ
2
(3)1i − 3)

s
σ2

b

12
+ (χ

2
(3)2i − 3)

s
σ2

u

6
−

σ2
b

12
(29)

u2i = (χ
2
(3)3i − 3)

s
σ2

b

12
+ (χ

2
(3)2i − 3)

s
σ2

u

6
−

σ2
b

12
. (30)

Errors associated with measurements from the new pro-
tocol are generated in the same way with σ2

e in place of
σ2

u and σ2
a in place of σ2

b . The errors in measurements
of change over time are generated as ai = e2i − e1i and
bi = u2i − u1i for the new and old protocols respectively.
In (29)-(30), χ2

(3)1i, χ2
(3)2i, and χ2

(3)3i are independent χ2
(3)

random variables.
Some characteristics of Vww remain unchanged when

the measurement errors are skewed. The upper left 4x4
block of covariances of sample means remains the same.
Because measurement errors from the new and old pro-
tocols are still uncorrelated, covariances between the last
three entries of W and terms involving only the measure-
ments from the old protocol are still zero.

5.2 Simulation Results

Relative Biases of the Estimators of β
Tables 1.a and 1.b give the Monte Carlo relative biases

(the ratio of the Monte Carlo bias to the square root of the
Monte Carlo variance) of β̂1 and β̂2 respectively at the
sample size of n = 500. We note that β̂2, the estimator
based on the jackknife covariance matrix, is unstable and
may not have finite moments. Some extreme observations
were observed at n = 100. As a consequence, the empiri-
cal biases and variances of β̂2 do not necessarily estimate
population quantities. The Monte Carlo relative biases
are consistently smaller for regression parameters than for
variances. Regardless of the estimation procedure, sam-
ple size, or distribution of values, bias accounts for less
than 1% of the mean square errors of the estimators of α
and δ. A relatively larger proportion of the mean square
errors associated with estimation of variance components
are due to bias. A negative bias accounts for 2 − 4% of
the mean square errors of both estimators of σ2

e and σ2
u.

The addition of 17n−1diag(V̂∗
ww,i) to the diagonal ele-

ments of V̂ww,i in expression (23) of Section 4.2 greatly
reduces the bias of the estimators of variance components
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at n = 100. Without the small adjustment to the diago-
nal elements of V̂∗

ww,i, bias explains 10−20% of the mean
square errors associated with estimation of σ2

u and σ2
e at

n = 100. Because the addition of 17n−1diag(V̂∗
ww,i)

has a larger impact at the smaller sample sizes, the mag-
nitudes of the relative biases decrease at a rate slightly
slower than

√
n. Skewness in xti worsens the relative bias

of the estimator based on the jackknife covariance matrix
for σ2

x. At the sample size n = 500, bias explains 5% and
6% of the mean square errors of σ̂2

x,2 under the conditions
of Simulations 2 and 3, respectively.

Variances of the Estimators of β
Both sample size and skewness impact the variances of

the two estimators of β. The relative variances also vary
across the elements of the parameter vector β. Tables
2.a-2.c give the ratios of the empirical variances of β̂2 to
those of β̂1 at the three sample sizes. We used a first-
order Taylor series expansion to compute approximate
standard errors for these ratios. The asterisks in Tables
2.a-2.c indicate which estimated relative variances differ
from 1 by at least two standard errors.

The magnitudes of the relative variances in Tables 2.a-
2.c are largest at n = 100, and the associated standard
errors decrease as the sample size increases. For instance,
at the sample size of n = 100, when the population
of true values is normal, the standard error of the es-
timated relative variance corresponding to α in Table 2.a
is .025. When we increase the sample size to n = 500
and n = 1000, the standard errors of the estimated rel-
ative variances associated with α decrease to .009 and
.006 respectively. Similarly, when xti are skewed, the es-
timated relative variances associated with estimation of
α decrease as the sample size increases. Simultaneously,
our uncertainty associated with these estimated ratios
decreases. The standard errors of the estimated relative
variances for α under the conditions of Simulation 2 are
.141, .026, and .015 for sample sizes of 100, 500, and 1000
respectively.

Skewness in the distribution of true segment values
increases the magnitudes of the estimated relative vari-
ances associated with α, δ, and σ2

u and also heightens
our uncertainty about these estimated relative variances.
Despite the increase in the standard errors of estimated
relative variances in the presence of skewness, the dif-
ferences between columns 1 and 2 of Tables 2.a-2.c are
large compared to their standard errors. For example, an
approximate 95% confidence interval for the ratio of the
variance of α̂2 to that of α̂1 at n = 100 is [1.10, 1.15].
An approximate 95% confidence interval for the variance
of α̂2 relative to that of α̂1 at n = 100 when xti are
skewed is [1.50, 2.06]. Among the simulations at n = 500
and n = 1000 when the xti are normal, only one of the
empirical relative variances exceeds 1 by more than two
estimated standard errors. In contrast, when the xti are
skewed, the empirical relative variances associated with
α, δ, and σ2

u exceed 1 by more than two standard errors.
The discrepancy between the variances of the two es-

timators is greater for α and σ2
u than for δ, σ2

e and σ2
x.

For example, the only estimated relative variances for σ2
e

that differ from 1 by more than 2 standard errors occur
in Simulations 1 and 2 at the sample sizes of n = 100 and
n = 500. The estimated relative variances for σ2

x are less
than 1 at the sample sizes of n = 500 and n = 1000 when
the distribution of xti is skewed. Nonetheless, the data
suggest that the estimator based on the normal moment
covariance matrix is still superior.

Bias of V̂S(β̂1)
Table 3.a gives ratios of the means of the sandwich vari-

ance estimators to the empirical variances of β̂1 under
the various simulation conditions. We computed approx-
imate standard errors for these ratios as in the previous
section. The estimator V̂S(β̂1) consistently has a bias of
less than 5%. The figures in Table 3.a do not differ from
1 by more than 2 standard errors. Skewness in the true
values or measurment errors does not systematically in-
crease the bias for any of the parameters of interest. As
the last row of Table 3.a shows, the bias of the sandwich
variance estimator remains negligible for σ2

x, even when
the distribution of true values is skewed. For example,
under the conditions of Simulation 2, at a sample size of
n = 100, the ratio of the mean of the sandwich variance
estimator of the variance of σ̂2

x,1 is 1.03. Similarly, the
third and fourth rows of Table 3.a show that the sand-
wich variance estimator remains unbiased for variances of
estimators of σ2

e and σ2
u when the measurerment errors

have skewed distributions.
Bias of V̂M(β̂1)
Table 3.b gives ratios of the means of the model vari-

ance estimators to the empirical variances of β̂1 un-
der the various simulation conditions. While the sand-
wich variance estimator is little affected by skewness in
the distributions of true values and measurement errors,
non-normality leads to a severe downward bias in the
model estimator of the variance of β̂1 for consideration
of variance components directly related to quantities with
skewed distributions. For example, the last row of Table
3.b shows that when xti are skewed and the measurement
errors are normal (as in Simulation 2), the means of the
model based estimators of the variances of σ̂2

x,1 at the
three sample sizes are only 21 − 25% of the correspond-
ing Monte Carlo variances. The model variance estimator
also exhibits a negative bias for the variance of σ̂2

d,1 under
the conditions of Simulation 2. The means of the model
variance estimators are approximately 60−70% of the em-
pirical variances of σ̂2

d at the three sample sizes. Skewness
in the measurement errors does not further increase the
biases related to σ2

x and σ2
d observed in the second simu-

lation. The last two rows of Table 3.b demonstrate that
skewness in measurement errors (Simulation 3) creates a
negative bias in the model estimator for consideration of
measurement error variances. The model estimator also
consistently underestimates the variances of σ̂2

a,1 and σ̂2
b,1

(variances of the errors in measuring change over time
with the new and old protocols respectively) under the
conditions of Simulation 3.

Despite the bias in the model variance estimator for
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certain variance components, V̂M(β̂1) remains essentially
unbiased for variances of α̂1 and δ̂1, even in the presence
of skewness in xti, eti and uti. A comparison of the first
two rows of Tables 3.a and 3.b reveals that the bias in the
model variance estimator is similar to that of the sand-
wich estimator for variances of regression parameters.

Bias of V̂(β̂2)
The mean of V̂(β̂2) is consistently smaller than the

Monte Carlo variance of β̂2. The bias is typically most
severe at the sample size of n=100. Within each sample
size, the bias is relatively stable across the three simu-
lations. The first three columns of Table 3.c show that
when the true values and measurement errors are nor-
mally distributed, the downward bias decreases as the
sample size increases. There does not appear to be a
consistent relation between bias and sample size when
either the true values or measurement errors are skewed.

6. Summary

The objective in the National Resources Inventory
calibration study is to calibrate a new measurement
procedure against a standard method. The model in
Section 3 permits estimation of the linear calibration
equation and of measurement error variances. Sim-
ulation results indicate that two estimators of model
parameters are nearly unbiased. The estimator based
on the jackknife covariance matrix has a higher variance
than the estimator based on the normal moments. One
explanation for the robustness of the estimator based
on the normal moments to mild skewness is that the
normal-moment covariance matrix preserves much of the
structure of the theoretical covariance matrices under
the simulation conditions considered. We conjecture
that both estimation procedures perform similarly with
respect the variance of measurements from the new
protocol, σ2

e , because both rely heavily on the unbiased
estimator of σ2

e in the last element of the original vector
of sample covariances. The normal-based estimator
of the variance of the estimator based on the normal
moments is biased downward for variances of estimators
of variance components when distributions are skewed.
The consistent downward bias of the estimator of the
variance of the estimator based on the jackknife co-
variance matrix is most severe at the smallest sample size.
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Table 1: Relative Bias at n = 500.
Ratios of Monte Carlo biases to square roots of Monte
Carlo variances.

1.a Estimators Based on Normal Moments.

Normal xti Skewed xti Skewed xti, eti, uti

α = 1 0.02 0.03 0.01
δ = 0 0.06 -0.06 0.00

σ2
u = 60 -0.13 -0.15 -0.10

σ2
e = 50 -0.08 -0.10 -0.24

σ2
x = 200 -0.11 -0.06 -0.08

1.b Estimators Based on Jackknife.

Normal xti Skewed xti Skewed xti, eti, uti

α = 1 0.03 0.02 0.06
δ = 0 0.06 -0.06 -0.04

σ2
u = 60 -0.12 -0.16 -0.10

σ2
e = 50 -0.08 -0.10 -0.15

σ2
x = 200 -0.10 -0.23 -0.26

Table 2: Relative Variances: Ratios of variances of esti-
mators based on the jackknife to variances of estimators
based on the normal moments.

2.a n=100
Parameter Normal xti Skewed xti Skewed xti, eti, uti

α = 1 1.14* 1.73* 2.12*
δ = 0 1.08* 1.33* 1.43*

σ2
u = 60 1.12* 2.20* 1.88*

σ2
e = 50 1.10* 1.07* 1.03

σ2
x = 200 1.10* 0.99 0.97

2.b n=500
Parameter Normal xti Skewed xti Skewed xti, eti, uti

α = 1 1.01 1.21* 1.19*
δ = 0 1.02 1.10* 1.08*

σ2
u = 60 1.02 1.41* 1.34*

σ2
e = 50 1.01 1.03* 1.01

σ2
x = 200 1.02 0.97 0.98

2.c, n=1000
Parameter Normal xti Skewed xti Skewed xti, eti, uti

α = 1 1.01 1.07* 1.11*
δ = 0 1.01 1.03* 1.03*

σ2
u = 60 1.01 1.20* 1.11*

σ2
e = 50 1.00 1.01 1.02

σ2
x = 200 1.01* 1.02 0.98

Entries with asterisks differ from one by more than two

standard errors.
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Table 3: Ratios of means of variance estimators to variances of estimators.

3.a Ratios of means of sandwich variance estimators to variances of estimators based on the
normal moment covariance matrix. (E[V̂2(β̂1)]/V(β̂1))

Normal xti Skewed xti Skewed xti, uti, eti

Parameter n=100 n=500 n=1000 n=100 n=500 n=1000 n=100 n=500 n=1000
α = 1 1.10 0.96 1.02 0.96 0.98 1.00 1.07 0.94 1.01
δ = 0 1.00 1.01 1.00 1.00 0.96 0.99 1.02 0.97 .99

σ2
u = 60 0.99 1.02 0.98 0.97 0.96 1.02 0.99 0.99 1.07

σ2
e = 50 0.99 1.00 1.05 1.02 1.01 0.95 0.99 0.98 0.94

σ2
x = 200 1.06 0.99 1.00 1.03 1.04 1.04 0.96 1.01 1.01

3.b Ratios of means of normal-based variance estimators to variances of estimators based on the
normal moment covariance matrix. (E[V̂1(β̂1)]/V(β̂1))

Normal xti Skewed xti Skewed xti, uti, eti

Parameter n=100 n=500 n=1000 n=100 n=500 n=1000 n=100 n=500 n=1000
α = 1 1.11 0.96 1.02 1.06 0.98 1.01 1.08 0.96 1.01
δ = 0 1.00 1.01 1.00 1.06 0.96 0.99 1.01 0.98 0.99

σ2
u = 60 1.01 1.03 1.04 0.98 0.96 1.02 0.70 0.61 0.65

σ2
e = 50 1.01 1.00 0.98 1.03 1.01 0.95 0.49 0.47 0.44

σ2
x = 200 1.06 0.99 1.00 0.27 0.23 0.23 0.24 0.23 0.21

3.c Ratios of means of estimators of variances of estimators based on the jackknife
covariance matrix to the variances of the estimators. (E[V̂(β̂2)]/V(β̂2))

Normal xti Skewed xti Skewed xti, uti, eti

Parameter n=100 n=500 n=1000 n=100 n=500 n=1000 n=100 n=500 n=1000
α = 1 0.93 0.93 0.99 0.95 0.94 1.00 0.88 0.92 0.97
δ = 0 0.88 0.98 0.99 0.98 0.94 0.99 0.89 0.96 0.98

σ2
u = 60 0.86 1.00 1.02 0.98 0.96 0.98 0.89 0.89 1.04

σ2
e = 50 0.92 0.97 0.96 0.89 0.97 0.93 0.90 0.93 0.90

σ2
x = 200 0.89 0.95 0.98 0.94 0.98 0.98 0.87 0.94 0.97
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