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Abstract 
 

Hot-deck imputation schemes are attractive because 
of how well they preserve complex features of 
marginal distributions, such as heaping of income 
reports at round figures, in addition to marginal 
means and variances.  Historically, they have been 
less successful at preserving multivariate structure.  
The authors have previously reported on recent 
imputation methodology for preserving important 
features of the multivariate structure of whole-
questionnaire data, including skip patterns and the 
strongest bivariate associations among ordered 
variables.  This methodology is based on predictive 
mean matching with recursive unsupervised 
modeling of ordered and binary variables to be 
imputed.  They have recently extended its capabilities 
to include preservation of associations among 
unordered variables.  This paper contains a report on 
the methodology, including a simulation study in 
which the new algorithm is tested in a head-to-head 
competition with two other imputation approaches.  
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1. General Considerations for the Design of 
Imputation Software for Data Publishers 

 
The needs of a data publisher are typically different 
than those of a secondary analyst whose research 
may involve a limited number of variables and who 
may therefore be willing to invest substantial time 
and energy on maximum likelihood or optimal 
Bayesian estimation of model parameters.  Typically, 
the publisher must impute all missing data at low 
expense to support a variety of unforeseeable 
analyses.  We assert that the publisher will have done 
a good job if questionnaire skip patterns are respected 
(no pregnant men), other strong bivariate patterns are 
preserved (few Yiddish-speaking Eskimos), and 
essential features of all marginal distributions are 
preserved (first- and second-order moments, ranges, 
and discontinuities).  Another level of achievement 
would be to preserve all first-order linear models 

under ignorable nonresponse, by which we mean that 
an analyst fitting a linear main-effects model for one 
variable in terms of some set of other variables in the 
data set would obtain unbiased estimates of the fixed 
effects in the model. We have developed a semi-
parametric imputation system based on this set of 
performance goals.  In this paper, we report on the 
algorithm, the results of some testing, and some 
comparisons with alternative approaches. 
 
Another important goal is to be able to construct 
frequentist confidence intervals around post-
imputation point estimates of various quantities.  
Although we also considered this goal when 
designing the system, we have not yet tested the 
utility of the algorithm for this purpose.   
 
Possibly the most widely used imputation procedure 
is the simple hot-deck.  In general, it consists of 
random matching observations within cells, reaching 
across soft boundaries when required, and never 
crossing hard boundaries in the search for a donor 
from which to obtain an imputed value.  The 
traditional hot-deck approach imputes all missing 
data, preserves marginal distributions (including 
shapes, ranges, discontinuities, and all order 
moments), and is quick and inexpensive to 
implement if the data contain very simple or no skip 
patterns.  However, simple hot-deck imputation does 
a poor job of preserving multivariate structure, 
strongly attenuates associations between variables, 
and becomes costly when complex skip patterns are 
involved, as discussed in Marker, Judkins, and 
Winglee, 2001.  For these reasons, various 
enhancements to the hot-deck approach have been 
proposed (see, for example: Judkins, Mosher, and 
Botman, 1991; England et al., 1993; Fahimi et al., 
1993; Judkins, 1997). 
 
The use of Bayesian parametric algorithms for data 
imputation, e.g., IVEware (Raghunathan, 
Solenberger, and Hoewyk, 2002), has grown in 
recent years.  The basic idea is to draw imputed 
values from a posterior predictive distribution 
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specified by a regression model, usually with a flat or 
non-informative prior distribution for the parameters 
in the regression model.  While this approach should 
do better than traditional hot-deck imputation at 
preserving multivariate structure, it too has its 
disadvantages.  For example, Bayesian methods are 
often heavily reliant on normality assumptions and 
are not designed to cope well with unusually shaped 
distributions, such as heaping of reported income at 
round thousands.  Their ability to produce imputed 
data that adhere to skip patterns is often limited, 
which can be problematic when working with survey 
data.  Also, despite advances in computing power, 
substantial expense can be involved in monitoring the 
convergence of MCMCs.   
 

2. A Semi-Parametric Algorithm 
 
To address the complex missing patterns in survey 
data, Judkins (1997) proposed an iterative process 
called cyclic n-partition hot-decks.  This semi-
parametric approach cycles through sequences of hot-
deck imputations, in which the most current 
completed data value of each survey item (either 
from the previous or current cycle) is considered for 
imputation models for each item.  It is analogous to 
the Gibbs sampler in that covariance structures are 
preserved through iterations of parametric modeling, 
however it has the additional benefit of preserving 
semi-parametric distributions among survey data. 
The cyclic n-partition hot-deck is the underlying 
algorithm used in the semi-parametric approach that 
is evaluated in this paper. 
 
One of the goals of our semi-parametric approach is 
to impute missing data for the entire questionnaire 
with one push of a button – after some preparatory 
work.  The preparation includes categorizing all 
variables into one of the following types: 
 

 Ordered with range restrictions, including all 
binary (ON); 

 Ordered with a general range (RN); or 

 Unordered categorical (UC). 

Once the variable type is identified for each variable, 
the questionnaire and data values are reviewed to 
identify missing data patterns.  This involves 
specifying the following for each variable: skip 
controllers, values of each skip controller that lead to 
same skip path, special missing values, inapplicable 

values, and special values (exceptions to general 
monotonicity). 
 
The semi-parametric imputation approach is built on 
the hot-deck engine.  The procedure begins by 
initially imputing all target variables (i.e., items 
requiring imputation) with a very simple hot-deck.  
Hard boundaries for each variable are defined by 
specified auxiliary variables and skip controllers, 
after collapsing on unique skip paths.  After the 
initial hot-deck imputation, a model for each target 
variable is fit in terms of those variables without 
inapplicable or special values on the set of 
observations on which the target variable is neither 
inapplicable nor special.  The model is formed on the 
set of observations for which the target variable is not 
inapplicable, not special, and not missing, using 
simple forward stepwise regression selection.  
Predicted outcome values from the final model are 
used to assist imputation through one of the 
following approaches, depending on the type of 
target variable: 
 

 Predictive mean matching (ON variables); 

 Adding of empirical residuals (RN variables); 
or 

 Clustering (UC variables). 

The predictive mean matching procedure for 
imputing ON variables first fits a linear regression 
model, and then uses a hot-deck with the skip 
controllers as hard boundaries and model-based 
predicted values as soft boundaries.  Optionally, 
predicted values are coarsened prior to matching so 
as to facilitate meaningful multiple imputations, if 
desired for variance estimation purposes.  
 
The adding of empirical residuals procedure for RN 
variables initially fits a linear regression model, and 
subsequently adds empirical residuals from hot-deck 
donors from the same skip path.  If the residual 
variance is a function of the target variable, the donor 
pool of empirical residuals can be restricted to a cell 
defined by similar coarsened predicted values of the 
target variable. 
 
The clustering procedure for UC variables fits a 
separate linear regression for each level, and 
subsequently conducts a k-means clustering 
algorithm on the vector of predicted values for each 
level.  The algorithm is run four times, with 2, 5, 10, 
and 25 clusters.  After the clustering algorithm is 

Section on Survey Research Methods

3212



processed, hot-deck imputation is used with the skip 
controllers as hard boundaries and various cluster 
memberships as soft boundaries. 
 
Use of the semi-parametric approach has drastically 
reduced the time and cost to conduct item imputation 
(Piesse, Judkins, and Fan, 2005).  Under simulated 
strongly informative missing data mechanisms, the 
analysis of data imputed using the semi-parametric 
algorithm resulted in smaller biases and variances on 
marginal means and smaller bias in correlations than 
the analysis of complete case data alone (Krenzke, 
Judkins, and Fan, 2005).  Unpublished empirical 
studies have shown that the semi-parametric 
approach preserves the correlation between two 
variables (including both binary and continuous 
variables) when non-monotone missing data patterns 
exist and missingness is completely at random for 
each variable.  Still, the need for further evaluation 
prompted the following simulation study. 
 

3. Simulated Populations 
 
We developed four test scenarios.  Three of these 
were designed to play to the strengths of the semi-
parametric algorithm we developed.  The fourth was 
designed to play to the strengths of one of the best 
known parametric imputation systems currently 
available, IVEware, from the University of Michigan.  
 
In scenario #1, referred to herein as “strange pop”, 
there are two variables with range restrictions and/or 
discontinuities, as well as a very unusual dependency.  
It is easiest to describe the pair by construction and 
by graphs.  Let .  Let .  
Let 

~ U(-1,1)X ~ N(0,1/ 25)Ye
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Figures 1, 2, and 3 show the marginal distributions of 
X and Y, and the conditional distribution of Y given 
X.  The following are some of the essential features 
of this population: X is bounded by cliffs; Y has a 
large concentration near zero, with a substantial gap 
either side of zero in which values are highly 
unlikely; the conditional distribution of Y near the 
center range of X is flat; and the conditional 
distribution of Y near the extremes of X is 
exponential.  Clearly, we would be surprised to find a 
pair of variables like this in the survey setting, but 

this scenario was designed to demonstrate the ability 
of our algorithm to handle the unexpected without 
human intervention.   
 

 
 
 

Figure 1. Marginal distribution of X in strange pop 
 

 
 
 

Figure 2. Marginal distribution of Y in strange pop 
 

 
 

Figure 3. Conditional distribution of Y given X in 
strange pop 
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In scenario #2, there are three variables, of which one 
is binary (X) and two are unordered multinomials (Y 
with three levels and Z with four levels).  The full 
joint distribution is given in Figure 4.  The log-linear 
model for X, Y, and Z has two-way interactions, but 
no three-way interaction.   
 

X = 1 Y = 1 Y = 2 Y = 3 
Z = 1 0.0201 0.0177 0.0130 
Z = 2 0.0212 0.0216 0.0184 
Z = 3 0.0135 0.0216 0.0288 
Z = 4 0.0191 0.0264 0.0303 

X = 2 Y = 1 Y = 2 Y = 3 
Z = 1 0.0367 0.0356 0.0214 
Z = 2 0.0471 0.0531 0.0370 
Z = 3 0.0448 0.0792 0.0866 
Z = 4 0.0776 0.1181 0.1113 

 
Figure 4. Three-way table with two-way interactions. 
 
Scenario #3 has the same number of cells and three-
way layout as scenario #2, but the cell frequencies 
follow a distinct checkerboard pattern.  The full joint 
distribution for X, Y, and Z is given in Figure 5.  The 
corresponding log-linear model involves both two- 
and three-way interactions.   
 

X = 1 Y = 1 Y = 2 Y = 3 
Z = 1 0.0067 0.0467 0.0067 
Z = 2 0.0467 0.0067 0.0467 
Z = 3 0.0067 0.0467 0.0067 
Z = 4 0.0467 0.0067 0.0467 

X = 2 Y = 1 Y = 2 Y = 3 
Z = 1 0.0367 0.0767 0.0367 
Z = 2 0.0767 0.0367 0.0767 
Z = 3 0.0367 0.0767 0.0367 
Z = 4 0.0767 0.0367 0.0767 

 
Figure 5. Three-way table with checkerboard pattern. 
 
Scenario #4 consists of a pair of bivariate normal 
variables: 
 

~ (60,9)X N  
~ (120 ,1)+Y N X  

 
For all four test scenarios, we generated 100 data sets 
of 2000 observations each.  An item nonresponse rate 
of 30 percent was then applied to each item 
independently across observations.  The missing data 
mechanism was completely at random (MCAR).   

4. Judging the Results 
 
The imputation results are easiest to judge for 
scenario #4.  For the pair of bivariate normal 
variables, we used three measures of success.  One is 
the average value of the Kolmogorov-Smirnov 
statistic for comparing completed X with uncensored 
X over the 100 simulated data sets.1  The second is a 
parallel test for the marginal distribution of Y.  The 
third is the difference between the regression 
coefficient for X in a linear model for Y based on the 
uncensored data and the same coefficient from a 
model based on the completed data after imputation, 
averaged over the 100 simulated data sets.   
 
The results are slightly more difficult to judge for 
scenarios #2 and #3.  The parameters in log-linear 
models could be compared, but there are many of 
these.  As a single measure of structure preservation, 
we thought it most interesting to focus on the 
“difference” between the uncensored and completed 
three-way tables.  This comparison involves two 
tables (uncensored and completed), each with 24 
cells (representing the full joint distribution of X, Y, 
and Z).  As a simple and familiar looking criterion for 
similarity, we computed the chi-square test for 
equality of the two tables.  However, this statistic can 
behave poorly with small cell sample sizes, so we 
also computed the simple  distance between the 
two tables.   

24l

 
Hence, the first measure is  
 

( )
( )

2242

1=

−
= ∑

+
k kc

k k kc

n n
χ

n n
 

 
and the second is  
 

( )
24 224

1
k kc

k
n n

=
−= ∑l  

where  is the number of uncensored observations 

in cell k, and  is the number of completed 
observations in cell k.  Note that both of these 
measures are functions of sufficient statistics for the 
full log-linear model.  Other functions are also 

kn

kcn

possible.  Also note that these criteria are not 
                                                      
1 Throughout this paper, the adjective, “uncensored”, refers to the 

simulated data before setting 30 percent to missing.  The 
adjective, “completed”, refers to the combination of simulated 
data that were not set to missing and imputed data. 
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tantamount to the properly discredited criterion of 
minimum mean-square prediction error at the subject 
level.  Finally, the values of the chi-square and  24l  
distance measures were averaged over the 1  
simulated data sets. 
 

00

Scenario #1 poses the greatest challenge in terms of 

e also developed two quantitative criteria, loosely 

5. Competing Approaches 
 

 is often easier to evaluate a new procedure by 

ike our semi-parametric algorithm, IVEware 

ith the nonparametric approach, a dummy variable 

6. Results and Discussion 
 

igure 6 shows the nonparametric regressions of Y on 

developing criteria by which to judge the success of 
an imputation procedure.  We used Kolmogorov-
Smirnov statistics to measure the preservation of the 
marginal distributions of X and Y, but the conditional 
distribution of Y given X is a complex function.  A 
linear approximation would obviously be inadequate.  
The data publisher cannot predict how a secondary 
analyst might choose to summarize the relationship 
of the two variables.  In an attempt to capture the 
general essence of the conditional distribution, we 
chose the invariance of a nonparametric regression of 
Y on X as one criterion of success.  We first fit a 
cubic spline with nine knots to the uncensored data, 
and then to the imputed data; the results of which are 
shown in Figure 6.  Given the graphical nature of this 
criterion, we only applied it to one large population 
with 10000 observations.   
 
W
based on the Hosmer-Lemeshow graphs for the fit of 
logistic regression models, which could be applied to 
each of the 100 simulated data sets.  The general idea 
is to compare uncensored and completed values of Y 
within narrow bands of uncensored and completed 
values of X.  The measures were constructed in 
several steps.  First, the 2000 observations were 
grouped into 100 strata based on uncensored X.  Then 
the mean and standard deviation of uncensored Y was 
computed within each uncensored-X band.  In 
parallel, the 2000 observations were grouped into 100 
strata based on completed X, and the mean and 
standard deviation of completed Y was computed 
within each completed-X band.  Next, we computed 
the correlation between the two sets of conditional Y-
means across the 100 X-bands, and between the two 
sets of conditional Y-standard deviations across the 
100 X-bands.  Finally, both correlations were 
averaged over the 100 simulated data sets. 
 

It
comparing it to similar, existing methods.  For this 
reason, we applied two other imputation approaches 
to each of the four simulated populations described in 
Section 3.  As previously mentioned, one of the best 

known parametric imputation systems currently 
available is IVEware, from the University of 
Michigan.  Thus, it seemed natural to compare the 
performance of this procedure to our semi-parametric 
approach.  To further diversify the imputation 
approaches being compared, we also chose to test a 
completely nonparametric method, using sequential 
hot-decks (as in Fahimi et al., 1993). 
 
L
requires the specification of various parameters.  For 
example, variable types were declared as continuous 
for strange pop and the bivariate Normal pair 
(scenarios #1 and #4) and as categorical for the other 
populations (scenarios #2 and #3).  For strange pop, 
imputed values for X were restricted to the interval (-
1,1).  The COEF option was used to perturb model 
coefficients using a multivariate Normal 
approximation of the posterior distribution, for the 
bivariate Normal variables.  For the other scenarios, 
the SIR (Sampling-Importance-Resampling) option 
was used to generate model coefficients from the 
actual posterior distribution of model parameters.  
For strange pop, 10 iterations were used per 
imputation run; 3 iterations were used for the other 
scenarios.  A different random imputation seed was 
used for each of the 100 simulated data sets. 
 
W
was used as the hard boundary in all hot-deck 
imputations.  For scenarios #1 and #4, the order of 
sequential hot-decks in the nonparametric approach 
first imputed X and Y for observations missing data 
on both variables.  Then observations still missing X 
were imputed conditional on Y, i.e., using Y as a soft 
boundary.  Finally, observations still missing Y were 
imputed conditional on X.  For scenarios #2 and #3, 
the nonparametric approach first imputed X, Y, and Z 
for observations missing data on all three variables.  
Subsequent hot-decks were applied in the following 
order: missing X and Z conditional on Y, missing X 
and Y conditional on Z; missing Y and Z conditional 
on X; missing X conditional on Y and Z; missing Z 
conditional on X and Y; and missing Y conditional on 
X and Z. 
 

F
X using only the imputed data from each of the three 
imputation approaches applied to strange pop.  As is 
evident, the results of the semi-parametric procedure 
and the nonparametric procedure are similar.  There 
are a very small number of outliers, but the 
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regression lines for the semi-parametric and 
nonparametric procedures both closely resemble that 
for the uncensored data.  The regression line based on 
the data imputed by IVEware is much less 

satisfactory.  Unless specifically told otherwise, 
IVEware expects variables to be linearly related to 
each other, and forces them to look so after 
imputation.

   
 
  

 
 

Figure 6. Four nonparametric regressions of Y on X.  Upper left: uncensored data.  Upper right: data imputed by 

Table 1 shows the results for strange pop averaged very poorly on preserving the marginal distributions 

able 2 shows the results for scenario #3.  Again, it is 

IVEware.  Lower left: data imputed by central algorithm of this paper (AI=AutoImpute).   
Lower right: Data imputed by fully nonparametric procedure (sequential hot-decks). 

over the 100 simulated data sets of 2000 observations 
each.  The semi-parametric procedure is essentially 
tied with the nonparametric procedure on all four 
criteria.  IVEware performs the worst on three of the 
four criteria, but the difference is small with respect 
to preserving the conditional mean structure of the 
data.  IVEware captures the essential feature that Y 
increases monotonically with X, however, it does 

of X and Y.   
 

 

T
a near tie between the semi-parametric and 
nonparametric procedures.  IVEware clearly does not 
perform as well as the other two imputation 
approaches.
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Table 1. Results for strange pop 
 

Criterion 

Semi-
para-

metric (1) 
IVE-ware 

(2) 
Non-para-
metric (3) (1) vs (2) (1) vs (3) (2) vs (3) 

Correlation of uncensored and 
completed Y-means across X-bands 0.998 0.982 0.999 *  * 
Correlation of uncensored and 
completed Y-standard deviations 
across X-bands 0.561 0.319 0.602    
Kolmogorov-Smirnov for X 0.036 0.104 0.037 *  * 
Kolmogorv-Smirnov for Y  0.038 0.192 0.038 *  * 

* Difference is significant at the .05 level 
 
Table 2. Results for scenario #3 (checkerboard) 
 

Criterion 

Semi-
para-

metric (1) 
IVE-ware 

(2) 
Non-para-
metric (3) (1) vs (2) (1) vs (3) (2) vs (3) 

Chi-square distance between 
uncensored and completed tables 30.3 97.1 23.2 *  * 

24l  distance between uncensored 
and completed tables 59.0 110.6 75.6 *   

* Difference is significant at the .05 level 

With respect to scenarios #2 and #4, all three 
imputation procedures performed well and achieved 
similar scores on the judging criteria that had been 
chosen.  For scenario #4, we had anticipated 
IVEware to do better than the other procedures, but 
this was not the case.  However, with a smaller 
sample size IVEware would probably have 
performed the best on the pair of bivariate normal 
variables.  This is because the semi-parametric and 
nonparametric approaches require larger sample sizes 
to detect patterns among the data. 
 
Considering all four test scenarios, the nonparametric 
procedure clearly produces the consistently best 
results.  However, it is not a feasible approach for 
surveys with large numbers of variables due to the 
multitude of unique missing data patterns.  Semi-
parametric and parametric procedures are the only 
practical options for large-scale imputation by data 
publishers.  Of course, there are many parametric 
procedures other than those used by IVEware.  With 
sufficient time and energy, analysts could develop 
appropriate parametric models for “strange pop” and 
a variety of other unusual populations.  An advantage 
of the semi-parametric approach, however, is that the 
level of required human involvement is minimal.  As 
stated earlier, the only information required for 
model selection by the semi-parametric procedure is 

whether each variable is ordered with range 
restrictions, homoscedastic ordered with a general 
range, heteroscedastic ordered with a general range, 
or unordered.  Provided that sample sizes are large 
enough for the important patterns among the data to 
appear strongly, the algorithm will take care of the 
rest.  Of course, as with most imputation procedures, 
our algorithm can be defeated by high order 
interactions of relevant variables.   
 
For future work, we will be focusing on post-
imputation variance estimation.  The semi-parametric 
algorithm can produce multiple imputations.  We 
plan to research whether the use of these multiple 
imputations with Rubin’s formula leads to post-
imputation confidence intervals with nominal or 
better coverage – the standard that Neyman originally 
proposed, that Rubin has forcefully reminded us of, 
and with which we agree. 
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