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Abstract

The Cancer Care Outcomes Research and Surveil-
lance (CanCORS) Consortium is a multisite, multimode
and multiwave study examining the care delivered to
population-based cohorts of newly diagnosed patients
with lung and colorectal cancer and assessing predictors
and outcomes of that care. As is typical in observational
studies, missing data are a serious concern for CanCORS,
following complicated patterns that impose severe chal-
lenges to investigators and data analysts. We use multiple
imputation to deal with block or item nonresponse in the
CanCORS surveys. It would be difficult to formulate a
joint imputation model that characterizes the underlying
relationships among all the variables, especially since the
surveys use multiple response formats including nominal,
ordinal, and semicontinuous data, with many structured
skip patterns. Instead, we applied the sequential condi-
tional regression imputation approach, specifying a col-
lection of models that regress each incomplete outcome
on other covariates. We use posterior predictive checking
to assess the adequacy of the imputation models.
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1. Introduction

Large health services and outcome studies, such as that
conducted by the Cancer Care Outcomes Research and
Surveillance (CanCORS) Consortium (Ayanian et al.
2003), provide numerous measurements that provide vast
research opportunities for research of health care and pol-
icy. However, such studies are subject to the problem
of missing data. Enrolled subjects may not have data
recorded for all variables of interest; data collection and
entry errors can result in missing data values, and sub-
jects can inappropriately skip items from a survey.

The most direct way of dealing with missing data is
to exclude incomplete observations (the complete-case
ananlysis). This method may give biased results, par-
ticularly in models with many variables; even if data
are missing for a small percentage of the observations
for each variable, with many variables too many obser-
vations would become unusable. Other ad-hoc methods,
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such as mean or median imputation, are easy to imple-
ment. But they have well-known disadvantages (Little
and Rubin 2002, Chap. 4): variability is underestimated,
and relationships among variables are not preserved.

Multiple imputation, a Bayesian model-based approach
introduced by Rubin (1987), is a principled method for
analysis with missing data. For each missing value, we
impute several, say M values, creating M completed
datasets. The imputation model, explicit or implicit, is
built to be appropriate to both the true complete-data
distribution and missing data mechanism. For each of the
M completed datasets, standard complete-data methods
are used to estimate the parameters of interest and their
associated variances. The results of those M analyses are
then combined using standard rules (Rubin 1987) to pro-
vide a single inference about the parameters of interest
that incorporates uncertainty due to missing data. Multi-
ply imputed databases can be used by various researchers
with different analytic objectives (Rubin 1996), as in the
CanCORS study, which involves many investigators at
different sites.

Although multiple imputation has good statistical
properties in principle, it is challenging to implement
the method for large datasets with complex study de-
signs, due to the difficulty of specifying a joint imputa-
tion model that characterizes the underlying relationships
among all the variables with different types and struc-
tured skip patterns. A practically appealing strategy in
this setting is sequential regression multiple imputation
(SRMI) (van Buuren et al. 1999, Raghunathan et al.
2001), which specifies a collection of models that regress
incomplete outcomes on other covariates. An additional
challenge is to assess the adequacy of imputation mod-
els. We propose to use posterior predictive checks (PPC)
(Gelman et al. 1996) for this assessment, identifying dis-
crepancies (or lack of) between the original and simulated
completed data under the imputation models.

This paper is organized as follows. Section 2 introduces
the background of CanCORS and describes the missing
data problem. Section 3 presents the SRMI procedures
for the CanCORS baseline and follow-up survey data.
Section 4 briefly reviews PPC and illustrate its applica-
tion to multiple imputation. Section 5 presents a simple
example. Finally, Section 6 concludes with a discussion
and directions for future research.

2. Study Background

2.1 CanCORS

The CanCORS Consortium is funded by the National
Cancer Institute to examine the care delivered to
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population-based cohorts of newly diagnosed patients
with lung and colorectal cancer in multiple regions of the
country and assess outcomes associated with that care,
identifying differences in the delivery of cancer treat-
ment and the reasons for these differences. It consists
of seven Primary Data Collection and Research (PDCR)
sites (UAB, UCLA/RAND, CRN, NCCC, UI, UNC, and
VA) and a Statistical Coordinating Center (SCC). Each
PDCR site identifies appropriate samples to obtain com-
bined population-based cohorts of approximately 5000
patients with each cancer. The SCC assists the PDCR
sites in the collection of standardized data across the indi-
vidual research sites and serves as the central repository
for the pooled data.

CanCORS collects data from multiple sources includ-
ing patient surveys, medical records, and surveys of
health care providers. Baseline patient data were col-
lected in a patient interview administered approximately
4 months after diagnosis; follow-up data were collected in
a second interview 11-13 months after diagnosis. Medical
records were reviewed 15 months after diagnosis. The in-
terviews and medical records reviews collected data about
the care received during different stages of illness (includ-
ing diagnosis, treatment, surveillance for recurrent dis-
ease, and palliation), as well as data on various clinical
and patient-reported outcomes and patient preferences
and behaviors. The health care provider survey asked
physicians about their knowledge and beliefs about care
and their practice characteristics. Data from these pri-
mary sources are supplemented with cancer registry data
and other publicly available datasets such as Medicare
claims.

Multiple imputation is applied to both the patient and
provider surveys, following similar scheme that will be
presented in detail in later sections. This paper focuses
on the patient survey data because the former has larger
sample size, more variables, and more complicated sur-
vey design than the latter. The baseline survey obtains
information from participants regarding their cancer di-
agnosis and treatment, quality of life, experience of care,
health habits, and other medical conditions, as well as
demographic information. Most items for the survey are
either copied verbatim or adapted from existing survey
instruments that have been used extensively in previous
studies. The baseline survey uses five forms, including
the full survey for the patient, two brief versions (MD
and belief) for patients who cannot complete the full in-
terview, a survey form filled out by a surrogate when
the patient is alive but unable to complete the interview,
and a survey of surrogates of dead patients. When the
respondent drops out before completing the survey, the
response is called a partial survey.

The brief survey contains a subset of the items from
the full survey. The surrogate surveys also contain sub-
sets of the items of the full survey, and a few additional
items that pertain specifically to the surrogate’s experi-
ences of the patient’s cancer care. The brief MD and
belief surveys are very similar, but the former includes

the items from the full survey needed to identify physi-
cians and hospitals providing care to the patient, and the
latter has fewer questions about treating physicians, but
includes additional items on patient beliefs and prefer-
ences regarding treatment options.

The follow-up survey was attempted for all participants
who were alive at the time of the baseline survey, but not
those who had already died before being contacted. The
follow-up surveys include a survivor survey to patients
who were alive at the time of scheduled follow-up, and a
decedent surrogate survey for survivors of patients who
had died since the baseline interview. The purpose of
the former is to collect details of treatment received after
the baseline survey, cancer recurrence or progression, and
changes in quality of life, functional status, symptoms,
experiences of care, and changes in financial sources. The
purpose of the decedent surrogate follow-up survey is to
collect data on the quality of end-of-life care, especially
symptom management and hospice care.

2.2 Missing data

The term “missing data” refers to the difference between
a dataset with all desired items completed for all desired
subjects, and the data that are actually obtained. Thus it
is only meaningful in relation to some definition of what
constitutes “complete data”. The ideal CanCORS survey
dataset would have the baseline and follow-up surveys in-
cluding different subtypes as described in Section 2.1. On
the other hand, for any particular analysis, only a subset
of the variables are needed and the definitions of complete
and missing data would be adjusted accordingly.

Due to the multiformat and multiwave structure of the
survey data, the patterns of nonresponse are complicated.
In general, however, we can identify the following broad
categories of missing data:

(1) Unit nonresponse: cases sampled for the survey but
not participating in interview, such as noncontacts
and refusers.

(2) Block nonresponse: interviewed cases for whom
blocks of items are missing due to early drop out
from the survey (partial surveys) or use one of the
short survey forms (e.g. the brief baseline survey).

(3) Item nonresponse: (a) items that are missing for a
case because structured skip patterns do not call for
collecting it; (b) residual item nonresponse including
survey items that were refused or answered as “don’t
know”.

The estimated unit nonresponse rate for the current re-
lease of the CanCORS survey data is around 53%. Table
1 lists the crude estimates of block and item nonresponse
rates in which both block missingness and skip patterns
are coded as “not applicable” in the database.
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Table 1: Block and item nonresponse rates for items in
the CanCORS patient surveys

Survey Not Applicable Don’t know/Refused
Range Mean Range Mean

Full Baseline 0-99% 49% 0-36% 1.23%
Brief Baseline 0-99% 57% 0-17% 0.65%
Surrogate Live 0-99% 49% 0-27% 1.58%

Surrogate Death 0-99% 61% 0-27% 1.27%
Follow-up 0-99% 61% 0-32% 0.53%

Note: The range and mean are across the variables.

2.3 Multiple Imputation

Multiple imputation, originally proposed by Rubin (1987)
for handling nonresponse problems in public-use survey
datasets, is becoming a popular approach to incomplete-
data problems across different research fields. In gen-
eral, the use of multiple imputation approach fall within
two classes, the “outside” and the “in-house” applications
(Barnard and Meng 1999). In the former case, the pur-
pose is to produce imputations for public-use data files
to fit for the “many-analysts-many-goals”; the imputer is
typically different from the analysts. In the latter case,
the typical and smaller “one-analyst-one-goal” studies,
the imputer is the same party as the analyst with a specif-
ical analysis goal. Example literature for “outside” ap-
plications include imputation projects for census industry
and occupation codes (Schenker et al. 1993), key survey
variables in NHANES III (Schafer 1997; Chap. 6), in-
come data in NHIS (Schenker et al. 2006). Much more
literature can be found for “in-house” applications, such
as Tu et al. (1993), Raghunathan et al. (1996), Gelman
et al. (1998).

Within the CanCORS consortium, various substantive
research topics have been proposed by different involved
investigators and these involve using different parts of
databases. In addition, an important goal of the consor-
tium is to construct a feasible study cohort not only for
insider users, but possibly also for outside/public users.
Clearly, the use of multiple imputation in this work be-
longs to the “outside” applications. The CanCORS SCC
takes the role of the “imputer” while investigators from
PDCR sites are the “analysts”.

Our survey of the multiple imputation literature also
show that in most of the applications, the number of tar-
geted variables for imputation is relatively small. This
allows finer tailoring of imputation models. In most of
the “in-house” applications, the concerned variables are
usually the main outcome or predictors in a specific anal-
ysis. For examples of “outside” applications, the targeted
variables are often some key variables that are impor-
tant to many analyses but suffer sizeable proportions of
missingness. In our work, however, the general goal is
to construct a database that ideally has all incomplete
data being “filled-in” without any specific prioritization

of variables. Therefore, the challenge of the modeling
task lies in the large scale of datasets as well as the com-
plexity of survey structure. Our strategy is to construct
a sensible imputation model that incorporates as much
as possible the available data and our knowledge about
the missing-data mechanism, but at the same time keeps
the model building and fitting feasible. As describe in the
following sections, we use SRMI to tackle this problem.

3. SRMI for CanCORS Patient Survey Data

3.1 Background

A brief description of SRMI follows; see Raghunathan et
al. (2001) for details. Let X denote the fully-observed
variables; let Y1, Y2, . . . , Yp denote p variables with miss-
ing values, ordered by the amount of missingness, from
least to most. The imputation process for Y1, Y2, . . . , Yp

proceeds as follows. In the first round, Y1 is regressed on
X, and the missing values of Y1 are imputed; then Y2 is
regressed on X and Y1 (including the imputed values of
Y1), and the missing values of Y2 are imputed, then Y3 is
regressed on X, Y1, and Y2, and the missing values of Y3

are imputed; and so on, until Yp is regressed on X, Y1,
Y2, . . . , Yp−1, and the missing values of Yp are imputed.
Starting from the second round, the imputation process
carried out in round 1 is repeated, except that now, in
each regression, all variables except for the variables to be
imputed are included as predictors. Thus, Y1 is regressed
on X, Y2, Y3, . . . , Yp, and the missing values of Y1 are re-
imputed; then Y2 is regressed on X, Y1, Y3, . . . , Yp, and
the missing values of Y2 are re-imputed; and so on. The
parameters drawn from each of the regression models over
the whole process constitute iterations from a Gibbs-like
chain for SRMI. To obtain multiple imputations, we can
either collect final draws of missing values from several
independently produced chains or collect multiple draws
spaced out within a single chain to avoid serial correla-
tions.

Raghunathan et al. (2001) developed an imputa-
tion software, IVEware, for implementing the SRMI.
This software is a free SAS-callable routine, which pro-
vides some features for model selection with options
including the number of predictors used in each pre-
diction equation and the criteria for stepwise regres-
sion selection. A detailed manual can be found at
http://www.isr.umich.edu/src/smp/ive.

For the regressions in the SRMI procedure, the follow-
ing models are implemented in IVEware:

(1) A normal linear regression model, if the Y -variable
is continuous.

(2) A logistic regression model, if the Y -variable is bi-
nary.

(3) A polytomous or generalized logit regression model,
if the Y -variable is categorical with more than two
categories.
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(4) A Poisson loglinear model, if the Y -variable is a
count.

(5) A two-part model, if the Y -variable is mixed (i.e.,
semi-continuous), where logistic regression is used
to model the zero/non-zero status for Y , and nor-
mal linear regression is used to model the value of Y
conditional upon its being non-zero.

A similar SRMI software package is the “MICE” library
in R (van Buuren et al. 1999). We use IVEware for
multiple imputation in this work because the CanCORS
SCC stores and processes survey data in SAS format.

The advantage of adopting the SRMI strategy in this
work is to meet the requirement of practical objectivity
and generality (Meng 1995), meaning that the imputa-
tion model should not be in serious conflict with com-
mon analytic models used for analyzing the data files.
For example, the imputation scheme for one variable is
conditional upon all other variables in the datasets, as the
associations among variables are of common interest to
analysts. In addition, the above listed regression models
are the typical ones used by analysts.

Because SRMI requires only the specification of indi-
vidual regression models for each of the Y -variables, it
does not necessarily imply a joint model for all of the Y -
variables conditional on X. More discussion about such
incompatibility between the set of conditional regression
models and the joint model can be found in van Buuren et
al. (2007). For simplicity, however, we treat the imputa-
tions produced from these conditional regression models
as if from a single imputation “model” (or procedure).

3.2 Implementation of SRMI

3.2.1 Constructing a working dataset

It would be inefficient to impute different surveys sepa-
rately. Our strategy is to concatenate all of the surveys
to create a combined rectangular dataset and then to
impute all surveyed variables simultaneously. This uses
information about variable associations from surveys in
which not all variables were asked and thus increases the
effective sample size. The imputation is carried out sepa-
rately for the samples of patients with lung and colorectal
cancer since these groups of patients have different char-
acteristics and the survey variables used for each type of
cancer are slightly different.

The concatenation procedure causes structure miss-
ingness in the combined dataset for the variables which
are not used in all surveys, a form of block missingness.
These missing values may be of potential use if the anal-
ysis is targeted to a population that used multiple survey
forms. For example, questions about patients’ income
were omitted from the brief survey but they are mean-
ingful for the survey participants and could be imputed if
the population for an analysis including income includes
the brief survey patients. In this case, the massive impu-
tation of income in the brief survey is largely dependent

on the data and model derived from the full survey. On
the other hand, values for which item nonresponse is due
to skip patterns would generally not be included in anal-
yses, unlike those coded with “don’t know” or “refused”,
since skip patterns are designed to avoid collecting in-
formation that is not meaningful, such as the severity
of chemotherapy side effects for a patient who did not
have chemotherapy. However, IVEware is not able to ex-
clude these complicated skip patterns from the imputa-
tion. Our strategy is first to impute both block and item
nonresponses using IVEware. After imputation, missing-
ness can be restored for the skip patterns, as well as block
missing data, depending on the context of analyses. In
addition, data editing procedures can be easily applied
to the imputed data so that the logical patterns among
survey variables can be retained.

Following IVEware’s syntax, we classify all variables
into four classes: categorical, continuous, mixed, and
“transferred” (carried forward without modification).
The variables involved in the imputation modeling (those
which are imputed and/or act as predictors) fall into
the first three categories, while the ones excluded from
the imputation process, e.g. patient ID, are transferred.
The categorical variables are nominal variables whose re-
sponse levels do not have an obvious ordering. The con-
tinuous variables include both truly continuous variables
and ordinal variables. The reason for treating the latter
as continuous is that IVEware has no option for directly
modeling ordinal variables, and if the data were treated
as categorical (nominal), then the multinomial logistic re-
gression would lose the ordering relationship and would
be difficult to for more than a few response categories.
The distribution of a mixed variable consists of a point
mass at zero and a continuous positive part. For continu-
ous variables, we force the imputations to fall within the
ranges shown from the observed data, using the “bounds”
option in IVEware. We round the fractional imputed
numbers to the nearest integer after imputation to make
their formats consistent with the original survey data.

3.2.2 Building imputation models

In the current implementation, we consider marginal ef-
fects of survey variables but not interactions. We include
the indicators for survey types and PDCR sites as pre-
dictors to model different patients’ characteristics across
those factors.

The combined dataset contains around 5000 observa-
tions and around 800 variables for either cancer type and
hence it is virtually impossible to include all survey vari-
ables in each prediction equation. IVEware has program-
ming options for automatic model selection. First, we
specify the maximum number of imputation predictors
for each variable based on its number of observed val-
ues, as specified in Table 2. Our empirical experience
show that if no limit is imposed on the number of pre-
dictors , IVEware may overfit models for variables with
small numbers of observed cases. In addition, we set the
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minimum marginal R-square increment in the stepwise
selection as 0.001, meaning that a variable will only be
selected if the increase of R-square is greater than 0.001.
Such criteria can be adjusted, depending on the purpose
of analysis. With a smaller R-square criterion, more pre-
dictors will be selected, slowing the imputation compu-
tations.

Table 2: Limits on number of predictors (excluding the
intercept)

No. of Observed Values Maximum No. of Predictors
< 200 1

(200, 300) 2
(300, 400) 3
(400, 500) 4

> 500 5

There is no established rule for assessing the conver-
gence of the Gibbs-like chain from SRMI; see van Buuren
(2007) for more related discussion. With the aforemen-
tioned model selection procedures, most of the regression
coefficient estimates and selection of predictions seem sta-
ble after running the program for several (3 to 5) iter-
ations. This is consistent with empirical findings from
other applications in Raghunathan et al. (2001) and van
Buuren et al. (2006), where they showed that running
the Gibbs-like chain for a few iterations appear to achieve
stable imputations for SRMI.

4. Assessing the Adequacy of Imputation Models

Despite the popularity of multiple imputation in practical
research, the literature on model assessment appears to
be limited. Some studies use Monte Carlo simulation to
evaluate the performance of imputation inferences. These
typically create missing values for the original data (com-
plete or incomplete), and evaluate the performance of im-
putation methods on inferences of some population quan-
tities or pre-specified model parameters, using the before-
deletion results as the yardstick. The evaluation proce-
dures are applied to simulated rather than real datasets.
On the other hand, PPC can be directly used for the
dataset to which the model is applied. In this section, we
outline the strategy of using PPC for imputation model
assessment.

4.1 General concepts

Rubin (1984) proposed use of PPC, as a Bayesianly jus-
tifiable approach that monitors model fit while condi-
tioning on observed data in simulating predictive values.
Meng (1994) and Gelman et al. (1996) formally defined
the posterior predictive P -value and illustrated the proce-
dure through practical applications. Gelman et al. (2004,
Chap. 6) gave more examples.

To evaluate the fit of a Bayesian model, the observed
(complete) data Y can be compared to the posterior pre-
dictive distribution Y rep using a test quantity Q, which
can be a function of the unknown model parameters θ
as well as data because it is evaluated over draws from
the posterior distribution of both θ and Y . The posterior
predictive (Bayesian) P -value is defined as the probabil-
ity that the replicated data could be more extreme than
the observed data, as measured by Q,

PB = P (Q(Y rep, θ) ≥ Q(Y, θ)|Y ) (1)

where the probability is taken over the posterior distri-
bution of θ and the posterior predictive distribution of
Y rep, that is, the joint distribution P (Y rep, θ|Y ):

PB =
∫ ∫

IQ(Y rep,θ)≥Q(Y,θ)P (Y rep|θ)P (θ|Y )dY repdθ,

where I is the indicator function. This formula uses
the property that P (Y rep, θ|Y ) = P (Y rep|θ, Y )P (θ|Y ) =
P (Y rep|θ)P (θ|Y ).

The posterior predictive distribution of Y rep can be
computed by simulation. Given L draws from the poste-
rior distribution of θ, we draw one Y rep from the predic-
tive distribution given each simulated θ; we now have L
draws from the joint posterior distribution P (Y rep, θ|Y ).
The PPC compares the realized test quantities Q(Y, θl)
and the predictive test quantities, Q(Y rep,l, θl). The es-
timated P -value is just the proportion of these L simula-
tions for which the test quantities equals to or exceeds its
realized value; that is, for which Q(Y rep,l, θl) ≥ Q(Y, θl),
l = 1, . . . , L. A P -value that is too big or too small, e.g.
PB > 0.95 or < 0.05, indicates evidence of lack of fit.

4.2 PPC for multiple imputation

4.2.1 General strategy

If data are not fully observed, then the observed data Yobs

are characterized by (Ycom, R), where Ycom is the com-
plete data and R is the missingness pattern matrix. Let
θ denote the parameters involved in the complete-data
model, P (Ycom|θ), and φ denote the parameters involved
in the missingness model, P (R|Ycom, φ). Under the as-
sumption of ignorable missingness (Rubin 1987), one can
simulate replicates of the completed data Ycom without
having to model the missing-data mechanism, since the
inference for θ does not depend on the missingness model.

With missing data, the most general form of the test
quantity is Q(Ycom, R, θ, φ), the corresponding posterior
predictive replication being Q(Y rep

com, Rrep, θ, φ). Gelman
et al. (2005) suggested performing PPC for missing data
using test quantities of the completed data, Q(Ycom), be-
cause (1) inferences under the complete-data model are
often of the substantive interest; (2) Y rep

com can be easily
simulated under the ignorability assumption, while sim-
ulating Y rep

obs , a deterministic function of Y rep
com and Rrep,

generally requires knowledge of the missingness mecha-
nism, which is usually unknown or not of main interest.
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4.2.2 PPC targeted to imputation analysis

Gelman et al. (2004, Chap. 6) gave several examples of
PPC for complete data in which choices of Q include (1)
common descriptive statistics for the data, such as means,
variances, quantiles, and correlations; (2) summaries of
model fit, such as χ2 discrepancy; (3) graphs of residuals
measuring discrepancies between the model and the data;
and (4) features of the data not directly addressed by the
probability model. For incomplete data, Gelman et al.
(2005) and Abayomi et al. (2007) used complete-data
graphs to detect lack of fit of complete-data models.

These types of testing functions are focused on the
general fit of the model. To assess the adequacy of
imputation models, however, we propose also including
quantities of interest from the practitioners’ analyses.
The primary interest of analysts centers on completed-
data inferences for such quantities rather than the gen-
eral fit of the underlying imputation model. Hence
the deviation between the inferences from the original
and simulated completed data under the model, that
is, [Q(Y rep

obs , Y rep
mis)−Q(Yobs, Ymis)|Yobs], informs analysts

about the effect of lack of fit of the model on the ana-
lytic inferences. For example, if a proposed analysis is
to regress outcome Y on covariates X, then the analysis-
specific Q’s might include the regression coefficients, as-
sociated standard errors, t-statistics, and corresponding
P -values. The implementation is a straightforward ap-
plication of the analysis code to the simulated completed
datasets.

4.2.3 Simulating predictive values using multiple impu-
tation devices

The posterior predictive P -value for the completed data
is

PB,com = P (Q(Y rep
obs , Y rep

mis) ≥ Q(Yobs, Ymis)|Yobs), (2)

where

P (Y rep
obs , Y rep

mis , Ymis|Yobs) =∫
P (Y rep

obs , Y rep
mis |θ)P (Ymis, θ|Yobs)dθ

Simulating Y rep
com is based on the complete-data model as

in (2). However, the exact algebraic forms of the model
may not be of the primary interest to practitioners. We
suggest using existing imputation packages to simulate
Y rep

com automatically. Suppose Y = (Y1, Y2), where Y1

includes incomplete variables for which the imputation
model is of assessment interest. If Y2 is complete, we can
first create a duplicate dataset in which Y2 is retained
but the incomplete Y1 is totally left out. Then we can
concatenate the original and duplicate sets together as
(Y1,obs, Y1,mis, Y2, Y

rep
1,obs, Y

rep
1,mis, Y2) where Y1,mis, Y rep

1,obs,
and Y rep

1,mis are unobserved. Independent imputations for
the concatenated set produce Y l

1,mis, Y rep,l
1,obs , and Y rep,l

1,mis,
(l = 1, . . . , L), and can be easily implemented using ex-
isting imputation code for the original dataset. If Y2 con-

tains missing data as well, they can be “filled in” by mul-
tiple imputation prior to applying PPC to Y1. Suppose
Y2 consists of Y2,obs and Y2,mis, then

PB,com = P (Q(Y rep
1,obs, Y

rep
1,mis) > Q(Y1,obs, Y1,mis)|Y1,obs, Y2,obs) (3)

=

∫
P (Q(Y rep

1,obs, Y
rep
1,mis) > Q(Y1,obs, Y1,mis)|Y1,obs, Y2,obs, Y2,mis)

P (Y2,mis|Y1,obs, Y2,obs)dY2,mis

≈ 1

L

L∑
l=1

P (Q(Y rep
1,obs, Y

rep
1,mis) > Q(Y1,obs, Y1,mis)|Y1,obs, Y2,obs, Y

l
2,mis)

where Y l
2,mis ∼ P (Y2,mis|Y1,obs, Y2,obs).

The calculation of PB,com in (3) also fits naturally into
the SRMI framework, where the imputation process is
decomposed into conditional imputations of partitions of
the data.

4.2.4 Approximating the Bayesian P -value based on a
modest number of imputations

Typical PPC procedures calculate PB based on a large
number of replicates, perhaps in the scale of thousands;
see the examples of Gelman et al. (2004, Chap. 6). In
principle, this could be done for a multiple imputation
analysis, but it might be computationally intensive and
requires storage of extensive simulated data, especially
a problem for imputation of large-scale survey data. We
propose to approximate PB based on a modest number of
imputations, using the same normal approximation typi-
cally used in multiple imputation (Rubin 1987, Chap. 3,
Sec. 3).

We assume the normal approximation holds for
the posterior predictive distribution of scalar Q,
[Q(Y rep)|Y ]∼̇N(µQ, σ2

Q). For example, the nor-
mal assumption might hold well for generalized lin-
ear model regression parameters with large sample
size. In some cases, a transformation of the quan-
tities of interest improves the normality of Q, as
with variances. The key idea is to estimate this
approximation [Q(Y rep)|Y ] from L drawn values of
Q(Y rep,l). If [Q(Y rep,l)|Y ] ∼ iidN(µQ, σ2

Q), then it
is not difficult to show that [Q(Y rep)|{Q(Y rep,l)}] ∼

tL−1(
∑L

l=1
Q(Y rep,l)

L , (1+ 1
L )

∑
(Q(Y rep,l)−

∑L

l=1
Q(Y rep,l)

L )2

L−1 ),
and the P -value can be approximated based on the cu-
mulative distribution function.

In the presence of incomplete data, we can construct
a t distribution with the mean as the average of the
{Q(Y rep,l

com ) − Q(Yobs, Y
l
mis)}, and the variance as 1 + 1

L
times the between-replicate variance of the differences,
with df = L − 1. The corresponding P -value can be ap-
proximated by the probability of being nonnegative under
the t distribution.
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5. Release and Use of Multiply Imputed
Datasets

The CanCORS SCC releases the multiply imputed pa-
tient survey data (5 imputations) as well as the original
ones to the PDCR sites for analysis. The imputations
are updated as raw data are updated periodically. In ad-
dition, analysts pose their questions and inputs regard-
ing imputations via an analytic discussion forum. These
feedback are considered and incorporated into the timely
updates of the imputations.

6. Example

We selected a subset of CanCORS patient survey data to
illustrate our methods. The substantive interest of this
study is to identify patient characteristics and preferences
that are associated with their decision to enroll for hos-
pice care, which in general includes a broad array of pal-
liative and support services for individuals with terminal
illness. The cohort consists of all advanced lung cancer
patients from CanCORS (n = 2261). Study variables are
patients’ hospice decision and variables that might be as-
sociated with it. Table 3 describes the sample. Although
the missingness proportion for each variable is generally
low, the complete-case analysis discards around 16% of
the sample and is certainly suboptimal.

We applied three different multiple imputation (MI)
methods as follows:

(1) MI based on multivariate normality among all vari-
ables, implemented using SAS PROC MI. This
method is obviously inappropriate because it ignores
the discreteness of nominal variables and treats their
codes as ordinal.

(2) MI based on a general location model (Olken and
Tate 1961) for variables of mixed type, implemented
using the “mix” library in R. The general location
model treats pdcr, race, marital status, insurance,
and english as nominal and the remaining variables
as continuous; both the loglinear and conditional
normal models include only the main effects.

(3) SRMI implemented using IVEware; it treats comor-
bidity, income, marital status, agegroup as continu-
ous variables and the others as categorical variables.

In all three methods, we rounded continuous imputed
values to the nearest integer.

In addition to the descriptive statistics of all variables
in the cohort, a major analysis of interest is to identify
potential predictors for doctor’s early discussion (within
4 months of diagnosis) of hospice use with patient (md-
dishsp). We ran a logistic regression for the outcome
mddishsp; the predictors include all other variables in the
cohort except hospice and comorbidity. Multiple imputa-
tion analyses from different methods yielded very similar

Table 4: Number of PB,com < 0.05 or PB,com > 0.95

Methods Mean Std. Logistic Coef. Logistic SE.
Normal 11 14 7 31

Mix 11 13 3 33
SRMI 6 6 1 17

results and they identified the same set of significant pre-
dictors at 0.05 level. This is not surprising because the
proportions of incomplete data are quite low. The regres-
sion results show that early discussion of hospice is more
likely for (1) Whites compared to Hispanics; (2) married
than for divorced/seprated/never married; (3) those aged
81+ years than those 55 and under; (4) those who did not
receive chemotherapy; (5) those who had not had a heart
attack; (6) those who have depression or diabetes; (7)
those who died within 1 year of diagnosis; (8) those at
UCLA compared to those at VA.

PPCs comparing the parameter estimates between the
original and simulated completed data show evidence of
lack of fit for each method. Table 4 lists the number of
extreme P -values if the test quantities Q are chosen to
be the means and standard deviations of incomplete vari-
ables, as well as regression coefficients and their associ-
ated standard errors in the logistic model. SRMI models
appear to produce a better fit for the data than the other
two methods because it has the fewest extreme P -values.
On the other hand, imputation models that are shown
not to fit, judged by the posterior P -value, might not
lead to practically invalid inferences if the missingness
proportion is low, as suggested by the similarity of the
inferences across three methods in this case.

7. Future Research

In an ongoing imputation project for multimode, multi-
wave survey data from a multisite observational study of
cancer care, we used SRMI to impute missing data with
complicated patterns, and PPC to assess the adequacy of
the imputation model.

Many unsolved methodological and empirical questions
arise from the current work. We classify potential re-
search topics into the following three main categories:

(1) Topics related to SRMI: (a) Enhancing the current
SRMI software to allow more data types, such as
ordinal variables; (b) Developing improved rules for
model selection; (c) Incorporating informative prior
distributions into the model to enhance predictive
power and reduce reliance on variable selection, es-
pecially for variables with sparse observations; (d)
Investigating the effect of model incoherence on im-
putation inferences; (e) Developing formal conver-
gence criteria for the Gibbs-like chain of sequential
imputation.
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Table 3: Cohort sample information

Variable Label and Classification Missingness frequency
comorbidity 0=none, 1=mild, 2=moderate, 3=severe 0
mddishsp 1=hospice discussed, 0=no 0.57%
income 1= <20k, 2= 20-40k, 3=40-60k, 4=>60k 0.62%
gender 0=male, 1=female 0.22%
race 1=white, 2=black, 3=hispanic, 4=asian, 5=other 0.18%
english 1=yes, 0=no 0
education 1= less than high school, 2=high school/some college, 3=college degree or more 1.95%
marital status 1= married/live with partner, 2=widowed, 3=divorced/separated, 4=never married 6.50%
mi 1=heart attack, 0=no 0.62%
chf 1=heart failure, 0=no 0.62%
stroke 1=stroke, 0=no 0.62%
lung disease 1=lung disease, 0=no 0.62%
diabetes 1=diabetes, 0=no 0.62%
depression 1=depression, 0=no 0.62%
chemotherapy 1=chemo, 0=no 0.35%
insurance 1=medicare, 2=medicaid, 3=private, 4=other 7.39%
hospice 1=hospice used, 0=no 1.24%
agegroup 1=21-55 yrs, 2=56-60, 3=61-65, 4=66-70, 5=71-75, 6=76=80, 7=81+ 2.43%
deceased 1=deceased within 1 yr of dx, 0=no 0
pdcr site/code 10=CRN, 20=NCCC, 30=UAB, 40=UCLA, 50=Iowa, 70=VA 0

(2) Topics related to PPC: (a) We note that in addi-
tion to the posterior P -values, PPC results might
also provide other insights into the imputation in-
ferences. For example, denote by β̂obs,mis and
β̂rep

obs,mis as the average estimates from the original
and replicated completed data across simulations,
respectively. Also note that β̂rep

obs,mis is the mul-
tiple imputation estimate under the model. Since
β̂obs,mis is obtained from data produced from a mix-
ture of the true model (for the observed part) and
the imputation model (for the imputed part), we
might conjecture that β̂obs,mis ≈ (1 − fmis)βcom +
fmisβ̂

rep
obs,mis, where fmis stands for the fraction of

missing information of the variable (Rubin 1987).

Hence βcom ≈ β̂obs,mis−fmisβ̂rep
obs,mis

1−fmis
, and the bias of

β̂obs,mis ≈ fmis

1−fmis
(β̂rep

obs,mis − β̂obs,mis). We can also
obtain the approximate credible interval of the bias
based on the posterior simulations.

Others topics include (b) Investigating the effect
of model uncongeniality (Meng 1995) on assess-
ment results; (c) Devising procedures to incorpo-
rate/calibrate imputation model based on assess-
ment results; (d) Exploring the strategy of using test
quantities of observed data, Q(Y rep

obs ); (e) Devising
practical procedures to implement PPC within the
SRMI framework.

(3) Topics specific to CanCORS or similar datasets: (a)
Combining information from multiple sources. Fu-
ture CanCORS datasets will include patient data
collected from medical records and administrative
databases. We will need to adopt an imputation
method that incorporate correlations of information
from different sources; (b) Comparing the perfor-
mance of nonresponse weighting and multiple im-

putation approaches to the block nonresponses; (c)
Developing imputation procedures for missing data
in scale questions (group of items that are commonly
combined into a single scale-score before analysis,
such as the SF-12 physical and mental functioning
scales).
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