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1. Introduction 
 

This paper compares five methods to estimate a population 
total in a dual-frame survey when one of the two samples is 
not self-weighting. The estimation methods compared are: 
the pseudo maximum-likelihood (PML) method (Skinner and 
Rao, 1996), two classic single frame (SF) methods (Kalton 
and Anderson, 1986; and Bankier, 1986), a pseudo single-
method frame method, and a modified single frame method 
developed for the Third National Incidence Study of Child 
Abuse and Neglect (NIS-3, 1997). 
 
Section 2 describes the NIS and the reasons for adopting a 
modified estimation method. Section 3 defines the estimation 
domains in a dual-frame survey. Section 4 reviews the PML 
and the classic SF methods. Section 5 discusses the 
estimation issues in the NIS: the difficulties with the classic 
methods (5.1), inefficiencies of a pseudo SF method (5.2), 
and the motivation for a modified SF method. Section 6 
describes a simulation study. The results suggest that the 
modified SF method performed reasonably well for the NIS.   

 
2. The National Incidence Study 

 of Child Abuse and Neglect (NIS)  
 
The NIS is a national survey to estimate the number and the 
characteristics of maltreated children in the United States. 
This study uses a multistage and multiple frame design to 
broaden coverage of possible reporting sources for maltreated 
children. The primary sampling units (PSUs) are counties and 
county clusters. Within sampled PSUs, Child Protective 
Services (CPS) agencies are the primary data source for 
maltreated children. However, the coverage of CPS agencies 
is incomplete because some possibly maltreated children may 
not be investigated by the CPS agencies.  
 
This paper presents the NIS as a simple one stage dual-frame 
survey inside a single PSU. Frame A is simply stated as a list 
frame of maltreated children investigated by CPS agencies 
and a self-weighting sample is selected from this frame. 
Frame B is a second frame of maltreated children, those 
observed by professionals in non-CPS agencies as possibly 
maltreated children. The NIS constructs list frames of 
agencies for police, hospitals, schools, shelters, day cares, 
and other agencies for a total of 10 agency categories. 
Agencies were sampled, a roster of professional staff 
constructed, and then staffs were sampled to serve as 
informants (sentinels) for maltreated children. There is not a 

complete list frame B and the number of maltreated children 
in frame B is unknown.  
 
The estimation issues in the NIS are as follows: (1) the 
intersection domain is not fully defined, (2) the sample in 
frame B is not self weighting, and (3) the NIS study design 
requires eliminating overlapping observations such that each 
maltreated child will be counted once for incidence 
estimation.  
 

3. Estimation Domains in Dual-frame Surveys 
 
The basic assumption in dual-frame estimation is that the 
union of the frames covers the population of interest. With 
two frames, there are three estimation domains: those units 
common to both frames; those unique to one frame; and those 
unique to the second frame. The key to unbiased estimation is 
that one can correctly identify the domain membership for 
each sample observation and account for the selection 
probabilities of every member in both frames (not only the 
frame from which the observation is sampled). Lohr and Rao 
(2000, 2006) describe methods of inference from dual-frame 
surveys and estimation methods in multiple-frame surveys. 
 

Consider a dual-frame survey where the population sizes of 
frames A and B are known and both frames are incomplete. 
Let AU  and BU  denote the two frames A and B with 
population size AN  and BN , and abU denote the frame 
intersection with size abN , then the frames can be expressed 
as the union of two distinct sets abaA UUU ∪=  
and abbB UUU ∪= where abaA NNN +=  and 

abaB NNN += . (Note that c
abAa UUU ∩= , =bU  

c
abB UU ∩= , where c

abU is the complement of abU ). 
 
The samples AS and BS  are selected independently from 
frames A and B with sample sizes An  and Bn . Using abS  to 
denote the sample selected from the frame intersection with 
size abn ; the samples can again be described as two distinct 
sets abaA SSS ∪= and abbB SSS ∪=  where 

c
abAa SSS ∩=  and c

abBb SSS ∩=  with sample sizes 

abaA nnn +=  and abaB nnn += . Following the notation in 
Skinner and Rao (1996), let abS ′  denote the overlap sample 
from frame A and abS ′′  denote the overlap sample from frame 
B, then AS  and BS can be expressed as abaA SSS ′∪=  and 

babB SSS ∪′′= with sizes abaA nnn ′+= and babB nnn +′′= .  
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Figure 1 is a pictorial representation of a dual-frame design 
with two incomplete frames. The domains are: 1S  if an 

observation aSk ∈ ; 2S  if C
abab SSk ′′∩′∈ ; 3S  if 

abab SSk ′′∩′∈ ; 4S if C
abab SSk ′∩′′∈ , and 5S  if bSk ∈ . The 

intersection domain comprises of 32 SSSab ∪=′ , 

43 SSSab ∪=′′ , and 3S  contains the sample observations 
selected from both frames A and B. The domains for 
estimation are: 1SSa = for units unique to frame A, 

432 SSSSab ∪∪=  for those units common to both frames, 
and 5SSb = for those units unique to frame B. The domain 
sizes are 1nna = , 432 nnnnab ++=  , and 5nnb = . 
 

aU

1S
abU

bU

2S

3S
4S

5S

 
 

Figure 1. A Dual-Frame Design with Two Incomplete Frames  
 

4. Dual-frame Estimation Methods 
 

For an observation k , let Akπ  be the selection probability of 
the observation in frame A  according to specified 
probability sampling design )( ASp′ . Likewise, let Bkπ be 
the selection probability in frame B with probability sample 
design )( BSp ′′ . The sample weights for the two samples are 

1−= AkAkw π  and 1−= BkBkw π . An unbiased estimator of the 
population size for each frame is 

∑= ′∪ aba SS AkpA wN ',
ˆ and ∑= ∪′′′′ bab SS BkpB wN ,

ˆ .  
 
The issue in dual-frame estimation is how best to derive the 
sample weights for observations in the intersection domain 
such that the sample weights for observations in the three 
estimation domains can be used to provide unbiased 
estimates of the union of the two frames: 
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4.1 PML Estimation  
 
The pseudo maximum-likelihood (PML) method adopts the 
maximum likelihood principles for estimation with simple 
random samples (Skinner, 1991) and applies them for 

samples with complex survey designs (Skinner and Rao, 
1996). The PML weighting scheme for observations in the 
two samples can be summarized as follows:  
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where ∑=′

aS Aka wN~ , ∑=′′
bS Bkb wN~ , ∑=′ ′abS Akab wN~ , 

∑=′′ ′′abS Bkab wN~ , ∑=
BS BkB wN~ , AabAab NNnn /~~ ′=′ , 

BabBab NNnn ~/~~ ′′=′′ , PMLabN ,
~  is the smallest root of 

02 =+− rqxpx , with BA nnp += , += BA Nnq ~  

abBabAAB NnNnNn ′′+′++
~~  and +′= BabA NNnr ~~  

AabB NNn ′′+
~ and ( ) ( ) ⎥⎦

⎤
⎢⎣
⎡ −−= − 5.021

, 42~ prqqpN PMLab . For 

a complex sample design, the sample sizes An and Bn are 
replaced by their effective sample sizes that account for the 
design effects of the domain sizes. Lohr and Rao (2006) 
further extended the method to multi-frame situations, and 
suggested the use of a compromise value of the design effect 
that works well for the most important variables. 
 
The PML method provides two weights kw′ˆ  and kw ′′ˆ  for 

observations in the sample overlap segment 3S . For 
estimation of a population total Y , let baba YYY ,,  be the 
population totals in the dual-frame domains a , ab , and b  
(for sets aU , bU  and abU ). Let ky  be the value of 
observation k . Skinner and Rao (1996) showed that the 
PML estimator of the population total baba YYYY ++=  can 
be obtained as follows:  
 

∑ ∑ ∑ ∑ ′′+′′+′+′= ′ ′′a ab ab bS S S S kkkkkkkPML ywywywywY ˆˆˆˆˆ  (3) 

 
4.2 Single frame Estimation (SF) 
 
The classic single frame (SF) methods (Kalton and Anderson, 
1986; Bankier, 1986) estimate the population total by treating 
all observations as though they had been sampled from a 
single frame and the sampling weights of observation in the 
intersection domain are modified according to their inclusion 
probability in each sample (see Lohr and Rao, 2000, 2006). 
Kalton and Anderson (1986) discussed ways to apply this 
approach. One option ( 1SF ) uses the following weighting 
scheme: 
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An estimate of the population total is obtained again by using 
all observations in both samples:  
 

∑+∑= ′′∪∈′∪∈ abbaba SSk kkSSk kkSF ywywY
1

ˆ  (5) 
 
An alternative application, also proposed by Bankier (1986) 
( )2SF , is to first eliminate overlapping observations in the 
sample overlap segment, and the sampling weights for 
distinct units in the sample are derived as follows:  
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An unbiased estimate of the population total under this 
scheme is: 
 

∑+∑+∑= ∈∈∈ baba Sk kkSk kkSk kkSF ywywywY
2

ˆ  (7) 
 
Both implementations are comparable when BkAk ππ * is 
small and when there are relatively few overlapping 
observations in the sample.  
 

5. Estimation in the NIS 
 
The key estimates of interest in the NIS are the total number 
of maltreated children in the union of the two frames N̂ , the 
total number of maltreated children investigated by CPS 
agencies AN̂ , and the number of the maltreated children not 

investigated by the CPS agencies bN̂ . Another subgroup of 
interest is children measurable by the NIS endangerment 
standards ( Ê ). 
 
5.1 Difficulties in Applying the Classic Estimation 
Methods 
 
The SF estimation methods are not easily applicable in the 
NIS because (1) frame B uses a non self-weighting sample, 
and (2) the assignment of domain membership is problematic. 
The single frame method 2SF is the most applicable in the 
NIS. This approach can be applied in small PSUs where all 
maltreated children investigated by CPS agencies were 
sampled with certainty. In this special case, 1=Akπ  
where aba SSk ∪∈ and the sample weights are 1=kw  for all 
children investigated by CPS agencies. It is not necessary to 
know Bkπ . However, in all other PSUs where 1<Akπ , this 
SF method is not possible because Bkπ are unknown.  
 

The PML method can bypass this problem. However, the 
issues are how best to estimate the overall design effects and 
how to derive a composite weight for observations after 
overlapping observations are removed in the NIS.  
 
5.2 Pseudo Single-Frame Estimation 
 
A pseudo single-frame weighting scheme that can circumvent 
the estimation difficulties with the classic methods is the 
following: 
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With this scheme, an estimate of the population total and the 
frame A total are: 
 

∑+∑= ∈∈ bA Sk kkSk kkSF ywywY
3

ˆ  (9) 

∑= ∈ ASk kkSFA ywY
3,

ˆ  
 
This scheme is analogous to the situation where frame 
overlaps are removed through a prescreening process. For 
example, in the National Survey of America’s Families 
(Waksberg et al, 1997), the random digit dialing (RDD) 
survey covering the households that have a telephone can be 
viewed as frame A, and the area probability sample of 
households as frame B. In the area sample, households with 
telephones were screened out. Prescreening, however, is not 
possible for the NIS. Its effect, however, is approximately the 
same as if one ignores observations in 4S and assigns zero 
weight to sampled observations in this segment. An obvious 
disadvantage of this approach is the loss of data.  
 
5.3 Modified Single Frame Estimation Method 
 
A practical weighting scheme used in the Third NIS (NIS-3, 
1997) is the following: 
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With this scheme, an estimate of the population total is 
computed in the same way as the 2SF method.  The frame A 
total is estimated somewhat differently, using all observations 
found in frame A as follows:  
 

∑+∑+∑= ∈∈∈ baba Sk kkSk kkSk kkSF ywywywY
4

ˆ , and 

∑= ∪∈ aba SSk kkSFA ywY
4,

ˆ . (11) 
 
The rationale for this scheme is as follows. By definition, any 
domain estimator of the form kS kkSd dywY ∑=,

ˆ  is unbiased 
for the domain total ∑= U kkd dyY , where BA UUU ∪=  
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and kd  is a domain indicator, that is, 1=kd  if k  is in the 
domain and =0 otherwise.  
 
Consider the expectation of Ŷ taken over all possible 
observations realized in the survey 

is =)ˆ(YE ⎟⎟
⎠
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⎛
∑
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kk
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k dywE . The estimator Ŷ is unbiased for 
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and this condition is satisfied 

when ( ) 1=kwE for all k . 
 
By domain, the estimator Ŷ is unbiased for Y when 
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In domain aU , kw  is the inverse of the probability of 
selection of case k where 
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When ( ) ( ) 10*11*| =−+=∈ Ak
Ak

Akak UkwE π
π

π , the 

unbiased condition is satisfied. Likewise, for domain bU , 

one can define 1−= Bkkw π for bSk ∈ and 0 otherwise. Again 

when ( ) ( ) 10*11*| =−+=∈ Bk
Bk

Bkbk UkwE π
π

π , the 

unbiased condition is satisfied. 
 
 For the intersection domain abU , the same is true that 
expectation ( ) ∑=∑ ∈∈ abab Uk kkUk k yywE is satisfied when 

( ) 1| =∈ abk UkwE .  For the sample segments within this 
domain, the weights are: 
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Then as before,  
 

( ) ( ) ++−=∈Ε kBkAkkBkAkabk wwUkw 321| ππππ  
( ) kBkAk w41 ππ−+  (15) 

 
In the NIS there is no reliable way to classify observations in 
segments 1S and 2S . For children reported by CPS agencies, 
data are available on the informant source that reported the 
maltreated children. One can distinguish those informant 
sources that are surveyed independently in the NIS (e.g., 
police, school, hospitals, etc.) and those informant sources 
that are not surveyed in the NIS (e.g., neighbors, victims, 
etc.) and use this distinction to assign children into segments. 
This option, however, is imperfect because the coverage in 
the NIS is not always captured by the CPS data (e.g., among 
school personnel, the NIS coverage includes only public 
school personnel and not all school personnel). 
 
When observations in segments 1S and 2S are inseparable, the 
default is that members in both segments are assigned a 
sample weight: 1

2
−= Akkw π . Furthermore, even if it is possible 

to distinguish observations in 2S and 1S , Bkπ is unknown for 

units in 2S . In this case also, it is natural to use 1
2

−= Akkw π . 
By applying this constraint, equation (15) becomes: 
 

( ) ( ) ++−=∈ −
kBkAkAkBkAkabk wUkwE 3

11| πππππ  
( ) kBkAk w41 ππ−+  

 
and the unbiased condition ( ) 1| =∈ abk UkwE  means: 
 

( ) ( ) 111 43 =−++− kBkAkkBkAkBk ww πππππ  (16) 
 
There is no unique solution to this equation. To avoid loss of 
data in 4S , it is reasonable to impose the constraint that both 

kk ww 43 , should not be smaller than 1, and this leads to the 
solution 143 == kk ww . Note that if one accepts the loss of 
data in 4S and set 04 =kw , this leads to the solution 

Akk ww =3 , that is the pseudo single-frame method ( 3SF ). 
 

6. Simulation Study 
 
A simulation study was conducted to compare the five 
estimation methods: the PML method, the two classic SF 
methods, a pseudo single frame method, and a modified 
single frame method for the NIS. The basic methodology 
followed Skinner and Rao (1996). Instead of a 
superpopulation, this study constructed two finite population 
frames, and then drew independent samples from each frame, 
repeating the sample selection 10,000 times. This section 
summarizes the process of frame construction (6.1), sample 
selection, weighting, and estimation (6.2), and the results 
(6.3).  
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6.1 Dual-frame Construction 
 
Frame A was ( ){ }Aak NkNy ,...,1,, =  where ky  was the 
value associated with the kth element, aN  was the number of 
elements belonging to domain a , AN  was the frame A size. 
Frame B was ( ){ }jbjjk NkMjNy ,...,1,,...,1,, == with M  

clusters, bjN elements in domain b  in the jth 

cluster, bjjabj NNN −= elements in domain ab, jky  was 
the value associated with the kth element. The sizes were 

,1∑= =
M
j jB NN  abB

M
j bjb NNNN −=∑= =1 and 

∑= =
M
j abjab NN 1 . The clusters in frame B resembled the 

clusters of informant agencies and informants in the NIS. 
 
To generate the frames, the first step was to specify aγ  and 

bγ  as targeted relative sizes of aU  and bU  where aγ = 
NN a /  and bγ = NNb / . The parameters used to generate 

frame B were ( ){ }MjNNN abjbjj ,...,1,,, = where jN  was 

the cluster size, and within-cluster domain sizes bjN  and 

abjN  of domains b  and ab . Frame B was created in five 
steps: 
 
1. Generate a cluster size ( )21,~ ττGammaN j  for 

specified 1τ  and 2τ . The expected size for frame B is 
( ) 21ττMNE B = .  

2. Generate a probability ( )21,~ ααγ Betabj  for a 

specified ( )bjV γσ γ =2  where ( ) ( )abbjE γγγ −= 1/ . It 

follows that ( )[ ]11122
1 −−= −−

γγγγ μμσμα  and 

( )11
12 −= −

γμαα , where ( )bjE γμγ = . 

3. Generate ( )bjjbj NbinomialN γ,~ within-cluster 

domain size, for given values of jN  and bjγ . 

4. Compute bjjabj NNN −= , for given values of jN  

and bjN . 
5. Repeat Steps 1-4 independently to get 

( ){ }MjNNN abjbjj ,...,1,,, = . 
 

{ }abjabj NjjU ,...1: == , { }jabjbj NNjjU ,...,1: +==  

denote the index sets for the two domains ab  and b  in 
cluster j. Then bj

M
jb UU 1== U  and abj

M
jab UU 1== U  were 

the index sets of the two domains for the entire frame B.  
 
For each cluster j , the jky  values were generated 
independently following the same nested error model used in 
Rao and Skinner (1996): 
 

⎩
⎨
⎧

∈++
∈++

=
,

,

abjjkabjab

bjjkbjb
jk Uk for

Uk for
y

εαμ
εαμ

 

 
where the domain means bμ  and abμ  were specified, jkε ’s 

were independent of ( )bjabjbj N,,αα  with  ~ iidjkε  

( )[ ]ρσ −1,0 2N  for specified 2σ  and ρ , and ),( abjbj αα  
were drawn from a bivariate normal distribution with mean 
vector 0 , common variance 2ρσ  and covariance 2ρδσ  for 
a specified value .δ  This model allows one correlation, ρ , 
within domains ab  and b  and a different correlation, δ , 
across domains.  
 
Given that ( ) ababjjk UyE μ=|  and ( )=abjjk UyV |  

( ) 222 1 σρσρσ =+− , one can view a data value ky  in 

abU  as being generated from the model kabky εμ += . 
Hence, one only needs to create the dataset for domain aU to 
complete frame A. The steps involved first determining aN  
from aγ , bγ , abN  and BN  using abaA NNN +=  and 

( ) ( )abBA NN γγ −−≅ 1/1/ . Then, the dataset 
{ }ak Nky ,...,1, = was generated for aU  from the model 

,'kaky εμ += where aμ  was specified and 

( )2,0~' σε N  iidk . 
 
In addition, a dataset { }UkEk ∈:  of a 0-1 variable 
determined from ky  as [ ]0EyIE kk >= was specified for a 
constant 0E . This was created as a variable to measure 
incidence by the NIS endangerment standard. 

 
6.2 Sampling, Weighting, and Summary Statistics 
 
Sampling involved drawing simple random samples of An  
units from frame A by specifying a constant sampling 
fraction Af . The samples of Bn  units from frame B was 
selected in two-stages using simple random sampling at both 
stages. In the first stage, Bm clusters were selected out of a 
total of M  clusters and then On  sample units were selected 

within each sampled cluster where BBBO mfNn /= (i.e., the 
clusters have equal sample sizes but unequal selection 
probabilities per cluster). The design sampling weights were: 

AAAk nNw =  and ( ) ( )OjBk nNmMw // ×=  for 

jk ∈ cluster.  
 
Sampling weights were constructed for five estimation 
methods. The sampling weights for the PML method were 
computed using equations (2a) and (2b) with the following 
adaptation to the NIS situation. The NIS design is one 
where AN  is known, BN  and ABN  are unknown. The 
sample AS is a self-weighting sample and the sample BS is a 
complex non-self-weighting sample. To simulate this design, 
equation 2(a) used ( ) AkpAAAk wNNw *ˆ/~

, ′= , the ratio-
adjusted weight post-stratified to the known population total. 
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The sample size Bn  in abn′′% , p , q , r  and ,ab PMLN% was 

replace by *
Bn the effective sample size where 

BBB deffnn /* = . Following Lohr and Rao (2006), the design 
effect Bdeff was set to the average design effects of the two 

domain sizes abN ′′%  and b B abN N N ′′= −% % %  coming from frame 
B. This study assumed a design effect Bdeff  = 2.0. 
 
The sampling weights for the 1SF  method used equation (4) 
and those for 2SF  method used equation (6). Note that these 
classic SF methods are not applicable in the NIS because 
members in frame B are selected with unequal probabilities. 
They are included in the simulation for comparative 
purposes. The sampling weights for 3SF  the pseudo single-
frame method used equation (8), and the weights for 4SF the 
modified SF method for the NIS used equation (10). For all 
these four SF related methods, the sampling weights were 
again ratio adjusted to the known population total for frame 
A.  
 
Sampling and weighting were repeated for 000,10=R  times. 
For each dataset )(rS  say, at the rth selection (or iteration), 
an estimate of the total ∑= U kyY  was  
 

∑= )( )()(ˆ
rS kk yrrY ω , 

 
where )(rkω  denotes the sampling weight for the unit k in 
the sample. When estimating the domain total for UD ⊂  
say, )(rS  can be replaced by DrS ∩)(  in the summation 

above. The percent relative bias (RelBias) of the estimator Ŷ  
is computed as follows: 
 

Y
YYlBias −

=
ˆ

(%)Re  *100, where ∑= =
− R

r rYRY 1
1 )(ˆˆ . 

 
The empirical mean squared error (EMSE) and its Monte 
Carlo standard error were computed as  
 

[ ]∑ −= =
R
r YrY

R
EMSE 1

2
)(ˆ1  and 

( ) ( ) ,ˆ)(ˆ
1

1
1

∑ ⎟
⎠
⎞⎜

⎝
⎛ −

−
=

=

R

r
ZrZ

RR
EMSEs where 

[ ]2)(ˆ)(ˆ YrYrZ −=  and ∑= r RrZZ /)(ˆˆ . 

6.3 Simulation Parameters and Results 
 
The simulation parameters were selected based on the 
experience in one large PSU in the NIS. The relative sizes for 

aU and bU  were set at 32.0/ == NN aaγ  
and 44.0/ == NNbbγ . The parameters for frame B were 

,501 =τ ,502 =τ ,13.141 =α  707.72 =α , 21.0)( =bjrV , 

,647.0)( =bjrE and 20=M  clusters. For each cluster j , 

jky was generated using ,3.11=aμ  ,2.11=abμ  ,7.10=bμ  
,1=σ  1.0=ρ  and 5.0=δ . The parameter for 

endangerment standard was 0E =-0.3, an average proportion 
of 0.473 endangerment children in the survey universe.  
 
Table 1 shows the finite population size N , population total 
Y , and total endangerment children E by estimation 
domains.  Samples were selected from the finite populations 
using the sampling fractions ,022.0/ == AAA Nnf  

011.0/ == BBB Nnf  and .10=Bm  The sample size 
realized over the 10,000 iterations ranged between 1,498 and 
1,512 observations.  Table 2 shows the minimum, maximum, 
and median sample sizes for each sample segment over the 
10,000 iterations.  
 
Using the samples from one simulation cycle, table 3 shows 
the sample size and estimates of the population size for each 
of the five estimation methods by domain. The Kish design 
effect factor was computed as 21 wcv+ . The NIS-3 method 
and the pseudo SF method are similar in that a weight of 1 or 
0 for observations in domain 3S and 4S makes no real 
difference as compared with large weights otherwise. 
However, the cases preserved by the NIS method would have 
an impact when their conditional weights within PSUs are 
multiplied by the PSU selection probability.  
 
For estimates on population size ( N̂ ), table 4 shows the 
percent relative bias (RelBias), empirical mean square error 
(EMSE) and their standard errors S(EMSE) for each of the 
five estimation methods. Tables 5 and 6 show the same 
statistics for estimates of a population total ( Ŷ ) and for a 
subpopulation total on the number of maltreated children by 
endangerment standard ( Ê ). While the PML method is best 
for N̂ and Ŷ , the SF methods performed equally well for Ê , 
the maltreatment standard measurement.  

Section on Survey Research Methods

3200



Table 1. True population size (N), population total (Y) and subpopulation total (E-endangerment)  
 

Domains Frames 
Estimates a  ab  b  A  B  U  

Population Size N 25,446 17,382 34,623 42,828 52,005 77,451 
(percent) (32.9) (22.4) (44.7) (55.3) (67.1) (100.0) 
Population Total Y 287,539 192,284 365,920 479,823 558,204 845,743 
(mean) (11.3) (11.1) (10.6) (11.2) (10.7) (10.9) 
Subpopulation Size E 15,838 9,144 11,662 24,982 20,806 36,644 
(mean) (0.622) (0.526) (0.337) (0.583) (0.400) (0.473) 

 
Table 2. Sample size over 10,000 iterations (minimum, maximum and median)  
 
 Estimation domains 
Distribution 1S  2S  3S  4S  5S  

Minimum 505 321 0 122 311 
Maximum 616 435 14 253 446 
Median 
(%) 

559 
(37.1) 

378 
(25.1) 

4 
(0.3) 

187 
(12.4) 

379 
(25.2) 

 
Table 3. Population size (sum of weights) and Kish’s design effect factor for samples in one simulation cycle 
 

Domains 

Estimation method 
1S  

( 1n =567) 
2S  

( 2n =372) 
3S  

( 3n =3) 
4S  

( 4n =212) 

5S  

( 5n =355) Total 
Kish’s Factor 

( )21 wcv+  

PML *  25,457 13,385 166 3,820 32,101 74,929 1.25 
1SF  25,348 11,101 180 6,199 30,761 73,589 1.22 
2SF  25,325 11,172 91 6,240 30,761 73,589 1.22 
3SF --Pseudo SF 25,779 16,913 136 0 30,761 73,589 1.29 
4SF --Modified SF 25,731 16,882 3 212 30,761 73,589 1.30 

* Effective sample size in frame B was computed assuming a design effect=2.0. 
 
Table 4. RelBias, EMSE, and S(EMSE) for population size estimates ( )N̂  
 

RelBias (%) EMSE ( )610  S(EMSE) ( )610  
Estimation method U  A  b  U  A  b  U  A  b  
PML * -0.02 0.00 -0.05 2.52 0.00 2.52 0.03 0.00 0.03 

1SF  -0.04 0.00 -0.09 3.43 0.00 3.43 0.05 0.00 0.05 
2SF  -0.04 0.00 -0.09 3.43 0.00 3.43 0.05 0.00 0.05 
3SF --Pseudo SF -0.04 0.00 -0.09 3.43 0.00 3.43 0.05 0.00 0.05 
4SF --Modified SF -0.04 0.00 -0.09 3.43 0.00 3.43 0.05 0.00 0.05 

* Effective sample size in frame B was computed assuming a design effect=2.0. 
   Domains: U = union of the two frames, A = frame A, and b = only frame B . 
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Table 5. RelBias, EMSE, and S(EMSE) for population total estimates ( )Ŷ  
 

RelBias (%) EMSE ( )610  S(EMSE) ( )610  
Estimation Method U  A  b  U  A  b  U  A  b  
PML * -0.02 0.01 -0.04 267.30 1.70 266.33 3.66 0.02 3.65 

1SF  -0.04 0.01 -0.09 352.37 1.74 352.10 4.95 0.02 4.94 
2SF  -0.04 0.01 -0.09 352.36 1.73 352.10 4.95 0.02 4.94 
3SF --Pseudo SF -0.04 0.01 -0.09 353.31 1.85 352.10 4.97 0.03 4.94 
4SF --Modified SF -0.04 0.01 -0.09 353.27 1.85 352.10 4.97 0.03 4.94 

* Effective sample size in frame B was computed assuming a design effect=2.0. 
   Domains: U = union of the two frames, A = frame A, and b = only frame B  
 

Table 6. RelBias, EMSE, and S(EMSE) for subpopulation total estimates on endangerment standards ( )Ê  
 

RelBias (%) EMSE ( )610  S(EMSE) ( )610  
Estimation Method U  A  b  U  A  b  U  A  b  
PML * 0.04 0.03 0.05 2.33 0.41 1.82 0.03 0.01 0.03 

1SF  0.00 0.03 -0.06 2.29 0.41 1.72 0.03 0.01 0.02 
2SF  0.00 0.03 -0.06 2.29 0.41 1.72 0.03 0.01 0.02 
3SF --Pseudo SF 0.00 0.03 -0.06 2.20 0.45 1.72 0.03 0.01 0.02 
4SF --Modified SF 0.00 0.03 -0.06 2.20 0.45 1.72 0.03 0.01 0.02 

* Effective sample size in frame B was computed assuming a design effect=2.0. 
   Domains: U = union of the two frames, A = frame A, and b = only frame B  
 

7. Discussion 
 

This paper compared five estimation options in a dual-frame 
survey where frame A used a simple random sampling design 
and frame B used a complex sample design. The classic 
single frame (SF) estimation methods cannot apply to the 
NIS because for members in frame A their selection 
probability in frame B is unknown. The NIS-3 has developed 
a modified single frame method to accommodate this 
situation and this method compared favorably against the 
PML method and the classic SF method in initial simulation 
evaluations.  
 
The modified SF method for NIS has the advantage that it is 
unbiased, practical, and relatively easy to implement. Further 
simulation evaluations are needed to test the outcomes when 
there are (1) misclassification of domain membership in 
segments 4S and 5S (Clark et al., 2007), (2) larger sample 
overlaps in segment 3S , and (3) different design effects for 
variables in frame B. 
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