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Abstract 
 
When a Hierarchical Bayes area level model is used 
to produce estimates of proportions of units with a 
given characteristic for small areas, it is commonly 
assumed that the survey weighted proportion for each 
sampled small area has a normal distribution and that 
the sampling variance of this proportion is known. 
However, these assumptions are problematic when 
the small area sample size is small or when the true 
proportion is near 0 or 1. In an effort to overcome 
these problems, we test two alternative models for the 
survey weighted proportion using a Monte Carlo 
simulation study in which stratified simple random 
samples are generated from a fixed finite population. 
We compare the results obtained from these 
alternative models with those obtained from two 
commonly used models. 
 
Keywords: Weighted proportions, Hierarchical 
Bayes modeling, beta distribution 
 

1. Introduction 
 
Small area estimation methods are often used to 
estimate the proportions of units with a given 
characteristic for small areas. For example, small area 
estimation methods are used: in the Census Bureau’s 
Small Area Income and Poverty Estimates (SAIPE) 
program to estimate poverty rates for states, counties, 
and school districts (Citro and Kalton, 2000; Maples 
and Bell, 2005); with data from the National Survey 
on Drug Use and Health (NSDUH) to estimate 
substance rates for states (Wright et al., 2007); and 
with data from the National Assessment of Adult 
Literacy (NAAL) to estimate proportions at the 
lowest level of literacy for states and counties 
(Mohadjer et al., 2007). In each case, the survey’s 
sample sizes in the small areas are not large enough 
to support direct estimates of adequate precision. A 
wide variety of methods has been developed to 
address such small area estimation problems. See 
Rao (2003) and Jiang and Lahiri (2006a) for reviews, 
and Chattopadhyay et al. (1999), Farrell et al. (1997), 
and Malec et al. (1997, 1999) for methods 
specifically for estimating small area proportions. 
The range of methods includes both empirical best 

prediction (EBP) and Hierarchical Bayes (HB) 
approaches and models developed at both the area 
and unit levels. The approach used here is restricted 
to HB area level models. 
 
When a Hierarchical Bayes area level model is used 
to produce estimates of proportions of units with a 
given characteristic for small areas, it is commonly 
assumed that the survey-weighted proportion for each 
sampled small area has a normal distribution and that 
the sampling variance of this proportion is known. 
However, these assumptions are problematic when 
the small area sample size is small or when the true 
proportion is near 0 or 1. In an effort to overcome 
these problems, we propose two alternative models 
for small area proportions and compare them with 
two commonly used models. The models are 
described in Section 3. The four models are 
compared by means of a Monte Carlo simulation 
study in which stratified simple random samples are 
generated from a fixed finite population. The 
simulation study is described in Section 4 and the 
results are presented in Section 5. The paper finishes 
with some concluding remarks in Section 6. First, 
however, we introduce the notation for a stratified 
simple random sample design in Section 2. 
 

2. Notation 
 
Let  denote the population size in stratum in 
area i  of a finite population (

ihN h

iHh mi ,...,1;,...,1 == ). 
Let  be the binary response for the characteristic 
of interest for unit k  in stratum  in area  

ihky
h i

),...,1( ihNk = . The parameters to be estimated are 
the small area proportions . hkihkkhi NyΣP /Σ=
 
With the stratified simple random sample design 
under study,  units are selected from the  
units in stratum (ih). The standard direct survey 
estimator is: 
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where  denotes the sampling weight given by ihw
.ihihih nNw =  

 
The variance of  can be expressed as iwp
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where  is the design effect reflecting the 
effect of the complex sample design (Kish, 1965). 
For a stratified simple random sample with a 
negligible sampling fraction in all strata, the design 
effect is given approximately by: 
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where , , = /W N Nih ih i ihNhiN Σ= ihhi nn Σ= , 

and  is the population proportion in stratum h  in 
area i . 

ihP

 
The design effect  is a function of the , 
which are unknown. If , can be 

approximated by . This 
approximation is known and can be easily computed 
from the data. 

iDEFF ihP

iih PP ≈ iDEFF

ihn2
ihWhiniwdeff /Σ=

 
The problem with  is that it is very imprecise 
when the sample size  is small. Small area 
estimation procedures can be used to address this 
problem. Section 3 describes the HB area level 
models investigated in this study. 

iwp

in

 
3. Models Studied 

 
A general area level model consists of two models. 
One—the sampling model—is a model for the 
sampling error of the direct survey estimates. The 
other—the linking model—relates the population 
value for an area-to-area specific auxiliary 
variables . '

1,..., )xx(x ipii =

 
Section 3.1 describes two area models that are often 
used for estimating small area proportions and  
Section 3.2 outlines some problems associated with 
these models. Section 3.3 describes two alternative 
models that may serve to address these problems. 
 

3.1 Two Commonly Used Models 
 
We study two commonly used models for 
comparison with the new models described in Section 
3.4. The first is the Fay-Herriot model (Fay and 
Herriot, 1979), which assumes known sampling 
variances and normal distributions for both the 
sampling and the linking models. The second is the 
normal-logistic model, which differs from the Fay-
Herriot model only by the replacement of a logit-
normal distribution for the normal distribution in the 
linking model. 
 
Model 1: (Fay-Herriot normal-normal model) 
 
Sampling model: 
 

)  ,(~| iiiiw PNPp ψ  (3.1) 
 
Linking model: 
 

)x(NP vivi
2'2 ,~,| σβσβ  (3.2) 

 
Model 2: (normal-logistic model) 
 
Sampling model: 
 

)  P(NPp iiiiw ψ,~|  (3.3) 
 
Linking model: 
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2
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In both models the sampling variance  is assumed 
to be known. Model 1 is referred as a matched model 
because the sampling and linking models can be 
combined to produce a relatively simple linear mixed 
model. However, a nonlinear linking model is often 
preferred for modeling proportions, leading to 
unmatched sampling and linking models, as in 
Model 2 (see, for example, You and Rao, 2002). The 
link function 

iψ

)(g • can be empirically determined by 
checking the model fit. The and link 
functions have been used. The  linking 
model is chosen here in order to guarantee that the 
estimate of  always fall into the right range of 
(0, 1). 

log logit
)P( itlogi

iP

 
3.2 Issues with Model 1 and 2 
 
There are two main issues associated with  
Models 1 and 2. The first is that both models assume 
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known sampling variances , whereas in practice 
they have to be estimated. A simple approach is to 
use the direct variance estimate but that estimate is 
very imprecise when  is either very small or very 
large and when the sample size  is small. An 
alternative, more complex, approach is to develop an 
approximate estimate of , say , from a simple 
model such as a logistic model for in terms of the 
auxiliary variables, and then use that estimate in the 
following synthetic variance estimator: 

iψ

iP

in
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When there are no auxiliary variables available, the 
overall sample proportion may be used for  in 
the computation of the synthetic variance estimator. 

isynp

 
The second issue concerns the normality assumption 
in the sampling model, which is based on a large 
sample approximation. When the sample size  is 
small and  is near 0 or 1, as is often the case with 
small area estimation, that approximation is 
problematic. 

in

iP

 
3.3 Two Alternative Models 
 
Under Models 1 and 2, the unknown sampling 
variances are estimated in some way, and then the 
resultant estimates are treated as if they were the 
known true values. A possible alternative approach is 
to treat the as unknown parameters in the HB 
model. This approach is adopted in Model 3, as a 
variant of Model 2. 

iψ

iψ

 
A possible approach for addressing the nonnormality 
of the sampling distributions of the survey-weighted 
small area proportions is to replace the normal 
distribution assumption by an alternative distribution. 
That approach is applied in Model 4 with the 
assumption of a beta sampling distribution; a 
distribution that has the desirable property of having 
a (0, 1) range. In other regards Model 4 is the same as 
Model 3, including treating the as unknown 
parameters. Model 4 was initially considered by 
Jiang and Lahiri (2006b) for an EBP approach in one 
of their illustrative examples to estimate finite 
population domain means.  

iψ

 

Model 3 (normal-logistic model with unknown 
sampling variance): 
 
Sampling model: 
 

)  ,(~| iiiiw PNPp ψ  (3.6) 
 
Linking model: 
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Model 4: (beta-logistic model with unknown 
sampling variance) 
 
Sampling model: 
 

) ,(~| iiiiw  babetaPp  (3.8) 
 
Linking model: 
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For both Model 3 and Model 4, the approximate 
variance function iwiiii deffnPP ])/-1([ψ =  is used. 
The parameters  and  in Model 4 are then given 
by: 
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HB small area estimates can be computed from all 
four models using the Metropolis-Hasting algorithm 
within the Gibbs sampler. Details of the algorithm, 
which draws random samples based on the full 
conditional distributions of the unknown parameters 
starting with one or multiple sets of initial values, are 
given by Robert and Casella (1999) and Chen, Shao, 
and Ibraham (2000). 
 

4. Simulation Study 
 
4.1 The Study Population and the Sample Design 
 
This section describes the simulation study that was 
conducted to compare the efficiency of the small area 
estimates produced by the four HB models. The 
simulation study was based on the 2002 Natality 
public-use data file. The file included all births 
occurring within the United States in 2002. Data were 
obtained from certificates filed for births occurring in 
each State. Details about the births recorded in the 
National Vital Statistics System are given at the 
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website for the National Center for Health Statistics 
(http://www.cdc.gov/nchs/births.htm). 
 
The finite population studied comprised 4,024,378 
records of live births in the U.S. with birth weights 
reported. The parameter of interest is the state level 
low birth weight rate , , where low birth 
weight is defined as less than 2,500 grams. The value 
of  varied from 5 percent to 11 percent across the 
states. 

iP 51,...,1=i

iP

 
Within each state, a stratified SRS design was used to 
draw samples from the birth records. Mother’s race 
(White, Black, and Others) was used as the 
stratification variable. The national sample size was 
set to be about 1,500 birth records for each race 
group. A uniform sampling fraction was used across 
the states for each race group, subjecting to the 
condition at least two birth records were sampled 
within each race group in each state. The resultant 
national sample size turned out to be birth 
records. The state level sample sizes  ranged from 
7 (for small states such as Vermont) to 690 (for 
California), with a median sample size of 61. This 
sampling procedure was repeated  times, 
creating 1,000 independent sample data sets. The 
sampling weights remained the same over different 
simulation runs. 

5264= ,n
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4.2 Computation of the HB Estimates 
 
For simplicity, the following assumptions were made 
for the HB models: 
 
1. No auxiliary variables were used, so that 

; μβ ='
ix

 
2. For Models 1 and 2, the sampling variances were 

taken to be given by ,))/-(( iwiwwi deffnp1p=ψ  
where  is the national 
estimate of the proportion of low birth weigh live 
births. (A check on the use of the approximate 

 in place of  showed that the 
approximation was reasonable: the two 
quantities were close, with a product moment 
correlation of 0.96 and a ratio of 1.08 for the 
means of the two). 

ihiihkihw wnywp ΣΣΣΣΣ= /
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3. Flat prior for μ , i.e., 1,  ∝)(f μ  and inverse 

gamma for , i.e., . 2
vσ )  (IGv 001.0,001.0~2σ

 

For each sample data set, the first step in the 
computations was to calculate the state direct sample 
estimates. The estimates for each sample data set 
were then used in turn as input to the WinBUGS 
software, which was used to produce the HB 
estimates for all four models. 
 
In a sizable number of the states with small , the 
direct estimates were zero in some sample data sets. 
Since WINBUGS can handle direct estimates of zero 
only for Model 1, the zero direct estimates were 
perturbed to very small positive numbers for the 
other models. 

in

 
For each WinBUGS run, three independent chains 
were used. For each chain, burn-ins of 10,000 
samples were produced, with 10,000 samples after 
burn-in. The samples after burn-in were thinned by a 
factor of two to reduce auto-correlation of the 
MCMC. The resultant 15,000 MCMC samples after 
burn-in were then used to compute the posterior 
mean and percentiles for each HB model based on 
each sample data set. The potential scale reduction 
factor was used as the primary measure for 
convergence (see Gelman and Rubin, 1992). 

R̂

 
5. Simulation Results 

 
Let denote an HB estimator of , the 
percentage of low birth weight live births in state i, 
and let  denote the 

HB
iP iP

HB
qiP , q th percentile of the 

posterior distribution of . Based on results from the 
1,000 simulation data sets, Tables 1 and 2 on the next 
page present for each model: the noncoverage 
probability for the 95 percent credible intervals, i.e., 
the probability that the interval from 

iP

,.025
HB

iP  to  
fails to cover ; the mean width of the credible 

intervals ; and standard deviations of 
the credible interval widths. 

HB
iP 975,.

iP
HB

i,.
HB

i,. P-P 025975

 
To examine the effect of state sample size on the 
simulation results, the 51 states are placed in 3 
groups according to their sample size: small 

);30( ≤in  medium  and large 
 The results presented in the tables are 

overall averages across all states and averages for the 
three groups separately. 

);10030( ≤< in
).100( >in

 
Table 1 reports the average percentage of times that 
the 95 percent credible interval for each  failed to 
cover the true value of  over the 1,000 

iP

iP
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replications. The upper half of Table 2 displays the 
average widths of the 95 percent credible intervals 
and the lower half of the table presents the standard 
deviations of these widths. The Fay-Herriot model 
(M1) credible intervals are very conservative, giving 
nearly zero noncoverage. This result is obtained at 
the cost of the largest average credible interval width 
among the four models. The M1 credible interval 
widths are very stable. A small proportion of the M1 
credible intervals had negative lower bounds. 
 
A possible explanation for the low level of 
noncoverage with M1 is that the sampling variances 
were overestimated, perhaps because was used 
for . To examine this possibility, we used 

in computing the sampling variance and 
found virtually no difference in the noncoverage rate. 
We also ran the model with the true variance as 
defined in (1.2) and again found no appreciable 
difference in the noncoverage rate. The nonnormality 
of the sampling distribution of  could also be a 
source of this problem. 

iwdeff

iDEFF
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At 8.2 percent, the noncoverage rate of the credible 
intervals for the normal-logistic model (M2) is above 
the nominal rate of 5 percent. This model has the 
smallest average interval width. The noncoverage 
rate for the normal-logistic model with unknown 
variance (M3) is closer to the nominal rate, with an 
average interval width that is somewhat larger than 
that for M2.  
 
The noncoverage rate for the beta-logistic model 
(M4) of 4.4 percent overall is closest to the nominal 
noncoverage rate. However, the average width of the 
credible intervals is larger than those for M2 and M3 
and the variability of the interval width is larger than 
that of the other three models. This instability may be 
due to the complexity of the full conditional 
distribution for the beta model. The large proportion 
of the 1,000 direct estimates that were 0 for some of 
the small states may also cause significant problems 
in fitting the beta distribution. 
 
As is to be expected, for all four models the mean 
width of the credible intervals declines with 
increasing state sample size and the variation in the 
widths also declines with increased sample size. 
Despite these declines, however, the noncoverage 
rates also decline with increasing sample size for 
Models 2, 3, and 4. The noncoverage rates are in fact 
very small for the states with large  suggesting 
that the credible intervals are not adequately 

reflecting the effect of the greater precision of the 
direct estimates in the states with large sample sizes. 

,in

 
Table 1. Percentage of times that the 95 percent 

credible intervals fail to cover the state 
parameters based on the 1,000 
simulations 

 
Sample size M1 M2 M3 M4 

Overall 0.4 8.2 6.5 4.4 
Small  in 0.1 10.8 8.0 6.3 
Medium  in 0.5 9.8 7.9 4.4 
Large  in 0.7 1.9 1.9 1.7 

 
Table 2. Mean 95 percent credible interval 

width and mean standard deviation of 
the 95 percent credible interval widths 
based on 1,000 simulations (in 
percentages) 

 
Sample size M1* M2 M3 M4 

Mean width     
    Overall 9.0 5.5 6.2 8.5 
    Small  in 10.2 5.9 6.8 9.2 
    Medium  in 9.1 5.6 6.3 8.7 
    Large  in 7.3 4.8 5.3 6.9 

Mean standard 
deviation     

    Overall 0.8 1.9 2.1 3.1 
    Small  in 1.1 2.4 2.6 4.1 
    Medium  in 0.8 1.9 2.1 3.1 
    Large  in 0.5 1.2 1.4 1.8 

* Note: For Model 1, a small proportion of the credible intervals  
had negative lower bounds. 

 
6. Discussion  

 
In the simulation study, we have compared design-
based coverage properties of credible intervals 
resulting from different hierarchical Bayes models 
for estimating small area proportions from a stratified 
simple random sample design. The hierarchical 
Bayes version of the well-known Fay-Herriot model 
appears to produce overly conservative credible 
intervals. The non-normality of both the sampling 
and the linking models is a possible source of this 
problem. 
 
The credible intervals for the beta-logistic 
hierarchical model achieve almost the nominal 
coverage for the finite population proportions. 
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However, since one of the full conditionals for the 
beta-logistic model involves the survey-weighted 
proportions, there is a problem with the MCMC 
whenever the survey-weighted proportion is zero. 
The credible intervals for this model are also wider 
than those for the other two models with a logistic 
linking model. It may be possible to reduce the width 
of the credible interval for the beta-logistic model by 
modifying the model in some way, such as by 
employing a suitable two-part random effects model 
that will avoid the problem of survey-weighted 
proportions of zero. We plan to undertake this 
research in the future. 
 
The simulation study was restricted to a very simple 
sample design. In addition, for simplicity no auxiliary 
variables were included in the linking models, 
whereas in practice the inclusion of such variables is 
routine and almost essential. We plan to conduct 
further simulation studies to cover different sample 
designs, different sample sizes, and to incorporate 
some auxiliary variables in the linking models. 
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