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Abstract 
 
Bayesian multiple imputation and maximum likelihood 
provide useful strategy for dealing with dataset including 
missing values. Imputation methods affect the 
significance of test results and the quality of estimates. In 
this paper, the general procedures of multiple imputation 
and maximum likelihood described which include the 
normal-based analysis of a multiple imputed dataset. A 
Monte Carlo simulation is conducted to compare the 
performances of the methods. 
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1. Introduction 
 
In sample surveys, the problem of nonresponse is very 
important and is difficult to handle. Little and Rubin 
(1987) gave an explication of various missing data 
patterns, which has been helpfully abstracted by Roth 
(1994) and Schafer and Graham (2002). According to 
Rubin (1976), there are even more possible missing data 
patterns when considering two or more variables at once. 
 
1.1. Types of missing data 
 
Schafer and Graham (2002) described that missing data 
can informally be thought of as being caused in some 
combination of three ways: random processes, processes 
which are measured, and processes which are not 
measured. Modern missing data methods generally work 
well for the first two causes, but not for the last. More 
formally, missing data mechanisms are commonly 
described as falling into one of three categories, described 
by Little and Rubin (1987). 
 
The first type of missing data can be “Missing completely 
at Random”, or MCAR. Suppose there are missing data 
on a particular variable Y. The data on Y are said to be 
missing completely at random (MCAR) if the probability 
of missing data on Y is unrelated to the value of Y itself or 
to the values of any other variables in the data set. When 
this assumption is satisfied for all variables, the set of 
individuals with complete data can be regarded as a 

simple random subsample from the original set of 
observations. Note that MCAR does allow for the 
possibility that "missingness" on Y is related to 
"missingness" on some other variable X. 

Second, data can be “Missing at Random”, or MAR. In 
this case, missing data depends on known values and thus 
is described fully by variables observed in the data set. 
Accounting for the values which “cause” the missing data 
will produce unbiased results in an analysis. Supposing 
there are only two variables X and Y, where X always is 
observed and Y sometimes is missing. MAR can be 
expressed as  

P (Ymissing |Y; X ) = P (Ymissing | X).  
 
It means that given both Y and X, the conditional 
probability of missing data on Y is equal to the probability 
of missing data on Y given X alone. In general, data are 
not missing at random if those individuals with missing 
data on a particular variable tend to have lower (or higher) 
values on that variable than those with data present, 
controlling for other observed variables. 
 
The third type of missing data can be missing in an 
unmeasured fashion, termed “nonignorable” (also called 
“Missing Not at Random” (MNAR) and “Not Missing at 
Random” (NMAR)). The missing data mechanism is said 
to be ignorable if (a) the data are MAR and (b) the 
parameters that govern the missing data process are 
unrelated to the parameters to be estimated. Ignorability 
basically means that there is no need to model the missing 
data mechanism as part of the estimation process.  

If the data are not MAR, we say that the missing data 
mechanism is nonignorable. In that case, usually the 
missing data mechanism must be modeled to get good 
estimates of the parameters of interest. One widely used 
method for nonignorable missing data is Heckman's 
(1976) two-stage estimator for regression models with 
selection bias on the dependent variable. Unfortunately, 
for effective estimation with nonignorable missing data, 
very good prior knowledge about the nature of the 
missing data process usually is needed, because the data 
contain no information about what models would be 
appropriate and the results typically will be very sensitive 
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to the choice of model. Since the missing data depends on 
events or items which the researcher has not measured, 
this is a damaging situation described by Sinharay  et al. 
(2001).  
 
In a summary of the three types of missing data patterns, 
Schafer and Graham (2002) mentioned that MCAR, MAR 
and NMAR can be distinguished by delineating the 
antecedents of the missing data on variable Y. That is, the 
probability that data are missing on Y can depend on (a) 
neither X nor Y ( MCAR ), (b) X but not Y when X is 
controlled ( MAR ), or (c) Y itself (NMAR). 
 
1.2 Methods to treat missing data 

 
The intent of any analysis is to make valid inferences 
regarding a population of interest. Missing data threatens 
this goal if it is missing in a manner which makes the 
sample different than the population from which it was 
drawn, that is, if the missing data creates a biased sample. 
Therefore, it is important to respond to a missing data 
problem in a manner which reflects the population of 
inference. 
 
It is important to understand that once data are missing, it 
is impossible not to treat them – once data are missing, 
any subsequent procedure with that data set represents a 
response in some form to the missing data problem. As a 
result, there are many different methods of managing 
missing data.  The two most commonly used techniques 
are complete-case analysis and available case analysis. 

The first is “complete-case analysis”, also known as 
listwise deletion, and is accomplished by deleting from 
the sample any observations that have missing data on 
any variables in the model of interest and then applying 
conventional methods of analysis for complete data sets. 
The other technique is “available case analysis”, also 
commonly known as pairwise deletion, which is a simple 
alternative that can be used for many linear models. The 
technique of single imputation is to substitute some 
reasonable imputation for each missing value and then 
proceed to do the analysis as if there were no missing 
data. There are lots of ways to impute missing values such 
as hot-deck imputation, mean substitution and regression 
imputation. 
 
None of these methods adjusts for the fact that the 
imputation process involves uncertainty about the missing 
values. The better methods are maximum likelihood (ML) 
and multiple imputations (MI) (Allison, 2000). This paper 
tries to display and compare these two methods. In the 
next section, we describe maximum likelihood (ML) 
method. In section 3, Bayesian multiple imputation is 
considered. The comparisons of the two methods are 

showed in section 4 and the conclusion is given in section 
5. 
 
2. Maximum likelihood   

Maximum likelihood (ML) is a very general approach to 
statistically estimate a set of parameters that maximize the 
probability of getting the data that was observed. It is 
particularly adept at handling missing data problems. 
Under MAR, the maximum likelihood can be obtained by 
summing the usual likelihood over all possible values of 
the missing data. Consider a two variable sample of n 
independent observations. Let )|,( θyxf  represent the 
likelihood, where θ  is a set of unknown parameters that 
govern the distribution of X and Y. Assuming that X is 
discrete ( When X is continuous, use an integral to replace 
the summation), the marginal distribution of Y provides 
the correct likelihood forθ , 

∑=
x

yxfyg )|,()|( θθ   

For the n observations, we obtain all values for Y, but 
only the first m observations for X, 

The likelihood for the entire sample can be expressed as,  
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ML is to find values of θ  to maximize this likelihood.  
There is a variety of methods to solve this optimization 
problem. A general method was described by Dempster et 
al. (1977) in their article on the expectation-maximization 
(EM) algorithm. EM consists of two steps, an expectation 
step and a maximization step. These two steps are 
repeated multiple times in an iterative process that 
eventually converges to the ML estimates.  
 

3. Bayesian multiple imputation  
 
3.1 Introduction 
 
Single imputation treats the missing values as if they were 
known, thereby resulting in unreliable inferences, because 
the variability from not knowing the missing values is 
ignored. However, multiple imputations provide a useful 
strategy for dealing with data sets with missing values 
(Little & Rubin, 1987). Instead of filling in a single value 
for each missing value, Rubin’s (1987) multiple 
imputations procedure replaces each missing value with a 
set of plausible values that represent the uncertainty about 
the right value to impute. Multiple imputations (MI) 
construct a distribution for the missing observations. A 
complete data set is then formed by using this distribution 
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to impute values for all the missing observations. Then 
these multiply imputed data sets are analyzed using 
standard procedures just as if the imputed data were the 
real data obtained from the nonrespondents (Davey et al., 
2001). This process is repeated several times, and in each 
repetition a new set of imputed values is chosen for the 
missing observations. This collection of complete-data 
inferences can be combined to form one inference. The 
inference reflects the uncertainty due to nonresponse 
more properly than that if just one set of imputed values is 
considered (Rubin, 1987; Rubin & Wang, 2000). This 
results in valid statistical inferences that properly reflect 
the uncertainty due to missing values. 
 
The performance of several multiple imputation methods 
have been studied by Rubin and Schenker (1986), which 
include Single random (SR) imputation, Bayesian 
bootstrap (BB) imputation, Approximate Bayesian 
bootstrap (ABB) imputation, designed for discrete data, 
and Fully normal (FN) imputation, Imputation adjusted 
for uncertainty in the mean and variance (MV), designed 
for continuous data . The certain general result is that the 
FN and the MV methods are superior to all of the other 
methods.  
 
3.2 Multiple imputation procedure  
 
In multiple imputations, the missing values are drawn 
from an appropriate distribution that characterizes the 
conditional relation of the imputed variables to other 
variables. Of course, the imputed values for any subject 
are not real values and have no interpretation. They are 
utilized simply as statistical tools to effectively use other 
nonmissing variables from that subject to make an 
inference about the quantity of interest. The procedure of 
drawing missing values from the distribution is repeated 
M times. Because the missing values are drawn from a 
distribution, there will be a range of values imputed for 
each missing value, with this variation appropriately 
reflecting the uncertainty about that value. After 
imputation, each of the m completed data sets is analyzed 
separately, and the results are combined (Sinharay et al., 
2001). The Bayesian theoretical underpinnings of the 
method require a statistical model for the joint probability 
distribution of all of the variables. On the basis of this 
model, each missing value is drawn from an appropriate 
distribution (Little & Rubin, 1987).  

Let Q denote the quantity of interest, Yo denote observed 
data and Ym the missing data. If there were no missing 
values, let Q  be an estimate of Q and the estimated 

variance is  and assume that Q -Q is normally 

distributed with mean 0 and variance . Now 

suppose that due to nonresponse, only n1 of the total data 
values n are observed, that is, 

ˆ

V̂ )ˆ(Q ˆ

)(ˆ QV

Observed values, Yoi,     i= 1,…, n1 

Missing values, Yml,  l = 1,…, n0  

                        n = n1+n0 

For each missing value give m imputations created under 
a single nonresponse model, there are m completed data 
sets yielding m values of Q  and , say  ˆ )ˆ(ˆ QV

            l = 1, ..., m.  )),ˆ(ˆ,ˆ( ** ll QVQ

Then,   is  lQQ *
ˆ− ),0( *TN

We have the estimated value after inserting the imputed 
values, 
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Note that the first term is the within-imputation va
and the second is between-imputation variance. The factor 
of (m + 1) / m are an improvement for modest m because 

it reflects the extra variability of *Q̂  based on a finite 
rather than an infinite number of i utations (Rubin & 
Schenker, 1986).  
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and estimated variance of )ˆ( * μ−y , Of 1000 observations, we generated  15%, 25%, 33.5% 
and 50% missing data at random. The methods of 
Maximum likelihood (ML) and Multiple imputations (MI) 
are used to estimate and to analyze the data.  
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  Maximum likelihood estimations are provided by Amos, a 
software package designed for estimating structural 
equation models with latent variables.  Amos assumes 
that data values that are missing are missing at random 
(MAR). It is not always easy to know whether this 
assumption is valid or what it means in practice (Rubin 
1976). But if the MAR condition is satisfied, Amos 
provides maximum likelihood estimates efficiently and 
consistently even in the presence of missing data. 
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The confidence interval is given by 
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when m is small use , where v is given by  2/,αvtk = The SAS procedures, PROC MI and PROC 

MIANALYZE, are used to give Multiple imputations. 
The MI procedure is a multiple imputation procedure that 
creates multiply imputed data sets for incomplete p-
dimensional multivariate data. Then it uses methods that 
incorporate appropriate variability across multiple 
imputations. Once the multiple complete data sets are 
analyzed using standard SAS/STAT procedures, PROC 
MIANALYZE is used to generate valid statistical 
inferences about these parameters by combining the 
results.  
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4.  Comparisons 
 
We simulated dataset consist of 1,000 students for six 
courses: Math, Science, Biology, Art, English and  
History. 

 
Table 1 and Figure 1 show the comparison of the 
estimated means for ML and MI and Table 2 and Figure 2 
presents the comparison of their standard errors. From the 
results, several trends can be observed. 

 
 
  
  
  
  
  
 

Mean 

  ML MI 
Variable 

 No 
Missing  

15% 25% 33% 50% 15% 25% 33% 50% 

Math 74.709  74.687 74.677 74.872 74.729 74.704 74.708  74.798  74.896 

Science 74.816  74.835 74.813 74.907 75.109 74.826 74.802  74.848  75.185 

Biology 75.096  75.184 74.951 74.87 75.107 75.080 75.077  75.216  75.027 

Art 75.046  75.055 75.071 75.045 75.17 75.044 75.066  75.017  75.134 

English 74.600  74.591 74.622 74.484 74.82 74.588 74.580  74.446  74.824 

History 71.764  71.626 72.91 70.182 71.555 71.509 72.760  70.321  71.567 
                                                
                                                            Table 1. Means of ML and MI estimations  
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                                        Figure 1. Means Comparison of ML and MI estimations.  
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Standard Error 

  ML MI 
Variable 

No 
Missing  

15% 25% 33% 50% 15% 25% 33% 50% 

Math 0.324  0.389 0.398 0.379 0.389 0.324  0.341  0.334  0.355  

Science 0.319  0.42 0.405 0.384 0.358 0.320  0.326  0.332  0.339  

Biology 0.308  0.326 0.35 0.387 0.43 0.309  0.323  0.330  0.384  

Art 0.321  0.329 0.327 0.326 0.346 0.322  0.323  0.325  0.329  

English 0.497  0.509 0.505 0.509 0.544 0.501  0.502  0.508  0.524  

History 0.748  0.769 0.881 0.961 1.095 0.772  0.991  0.880  1.188  
 
                                            Table 2. Standard errors of ML and MI estimations.  
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       c.                                                                      d. 
                                     Figure 2. Standard errors comparison of ML and MI estimations. 

Section on Survey Research Methods

3179



 
1. For each of the percentages of missing data the 

means for both ML and MI produce similar results 
compare with the means of the completed data.  For 
15% and 50% missing data, both the ML and the MI  
methods produce similar estimations. However, for 
25% and 33.5% data are missing, the MI’s results are 
closer to the means of the completed data than that of 
the ML’s estimations.  

 
2. The MI’s standard errors are almost the same with 

the standard errors of the completed data for 15% and 
25% data are missing. They become quite different 
when  more data are missed as  shown in the figure 
2.c. and 2.d except for the last variable.  

 
3. The ML’s standard errors are bigger than both 

standard errors of the completed data and the MI’s 
estimations at all data sets except the last variables in 
the 25% and 50% missing data. 

 
5. Conclusions 
 
In summary, maximum likelihood (ML) and Bayesian 
multiple imputation (MI) are highly useful paradigms for 
handing missing values in many settings. Bayesian 
multiple imputation (MI) separates the imputation phase 
from the analysis phase which has some advantageous 
when the models are different under different conditions. 
 
It has been noted that the different data missingness can 
influence the performance of ML and MI estimations. The 
difference of the ML and the MI methods will need future 
comparisons for the MCAR and the MNAR with different 
missing percentages.   
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