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Abstract 
 

The standard large-sample-based approach to deriving a 
two-sided confidence interval performs poorly for 
proportions that are close to zero or one. Alternative 
methods are suggested in the literature, but no one 
approach appears to be universally superior, and some of 
the approaches are difficult to implement in practice, 
especially when the data are collected via a complex 
sample design. Such problems are even more evident 
when one estimates certain summary measures for two-
way tables, such as the Index of Disparity (Pearcy and 
Keppel, 2002), where the parameter estimated is defined 
to be non-negative, but estimates close to zero are 
common. In this paper we consider the practical 
implementation of some alternatives to deriving 
confidence intervals in these cases using statistical 
software for the analysis of complex survey data 
(WesVar). 
 
Keywords: Asymptotically normal estimators, multi-
stage sampling, log transformation, log(-log) 
transformation, index of disparity, WesVar. 

 
1. Introduction 

 
In this paper, we discuss the practical aspects of obtaining 
confidence intervals for proportions and other summary 
statistics derived from categorical variables, when the 
data are obtained from a complex sample survey. More so 
than is the case with statistics derived from continuous 
variables, the distributions of the estimators in question 
are often sufficiently far from normal, even for moderate 
and large sample sizes. This means that the application of 
the standard, large-sample confidence intervals derived 
from inverting appropriate t-statistics often leads to 
resulting intervals with poor coverage properties. 
 
There are approaches for dealing with such problems. For 
proportions in particular, specialized approaches have 
been proposed. But more generally, the use of 
transformations can be effective in obtaining confidence 
intervals with good coverage properties. However, using 
these transformations on a large scale in practice can be 
tedious, and for this reason, practitioners often do not 
avail themselves of this tool. 
 

The purpose of this paper is to illustrate some practical 
approaches to deriving sound confidence intervals for 
statistics derived from categorical variables in a complex 
survey setting. First, we discuss the literature on 
confidence intervals for proportions estimated from 
survey data, and then elaborate on the use of 
transformations for this purpose. We then introduce two 
specialized summary measures derived from categorical 
data, the Index of Disparity and the Mean Deviation, and 
discuss the use of transformations for obtaining 
confidence intervals for these. We discussed using data 
from the National Health and Nutrition Examination 
Survey (NHANES), for which we describe the relevant 
features. The WesVar software package was used to carry 
out the computations. 
 
2. Confidence Intervals for Proportions from Survey 

Data 
 
The technical and practical difficulties in obtaining valid 
inferences, and in particular confidence intervals with 
stated coverage, for estimates of small proportions are 
well known (Brown et al., 2001; Vollset, 1993). There are 
several alternative solutions available in the general case, 
including those proposed by Clopper and Pearson (1934), 
Wilson (1927), and Jeffreys (see Brown et al., 2001). In 
the case where the data are collected from a complex 
sample survey, the difficulties are exacerbated. 
 
Several authors have addressed the issue of obtaining 
confidence intervals for small proportions from survey 
data. Korn and Graubard (1998) propose a variation on 
the method of Clopper and Pearson, and show via 
simulation that the method has good empirical properties. 
They compared their proposed procedure with the 
standard approach based on the large-sample normality 
assumption of the estimator, a method that applies the 
logit transformation to the proportion, and an approach 
similar to their own, developed by Breeze (1990). The 
standard large-sample approach was clearly the least 
effective method of the four. 
 
Kott and Carr (1997) and Korn and Graubard (1999) 
proposed a modified Wilson procedure. As with the 
modified Clopper-Pearson procedure, the chief 
modification to the original procedure involves replacing 
the actual sample size by the effective sample size for the 
proportion in question. We are not aware of any 

Section on Survey Research Methods

3134



systematic evaluation of the modified Wilson procedure, 
or comparisons of its performance with the modified 
Clopper-Pearson method or any transformations. More 
recently, Gray et al. (2004) have proposed making such a 
modification to the Jeffreys method, and show a case 
study where it produces slightly shorter intervals than the 
modified Clopper-Pearson procedure. 
 
The use of transformations as an approach to deriving 
better confidence intervals for proportions is attractive in 
application. They are straightforward to apply, and do not 
require any modifications that depend upon the nature and 
parameters of the sample design (although of course the 
transformations may be more effective for some designs 
than others). Software can be developed relatively 
straightforwardly for obtaining the confidence intervals 
(and tests of statistical significance) via this approach. As 
will be seen later in the paper, the WesVar software 
(Westat, 2002) is well suited for applying transformations 
to estimators in survey sampling applications. In addition 
to the logit transformation, the arcsine transformation is 
well known for use with estimates of proportions (Wolter, 
2007). 
 
Proportions are not the only statistics that can present 
difficulties for deriving valid confidence intervals in the 
survey sampling context, even for moderate to large 
samples. In general, estimators of parameters which have 
bounded possible values present difficulties. This is 
because, when the true value lies close to the bound, the 
sampling distribution of the estimator is far from normal 
even with large sample sizes, and in particular is generally 
highly skewed. This makes the application of the 
assumption of large-sample normality very ineffective as 
a means of deriving confidence intervals. Examples of 
such statistics include estimates of population variances 
that are close to zero, and estimates of correlation 
coefficients that are close to 1. Typically, for these 
estimators an approach using transformations will be 
considered (such as the Fisher-Z transformation for 
correlation coefficients). 
 

3. The Index of Disparity (ID) and Mean Deviation 
(MD) 

 
In a recent application, we calculated confidence intervals 
for a statistic known as the Index of Disparity (Pearcy and 
Keppel, 2002), for a variety of health measures and a 
range of demographic subgroups. Consider the case where 
there are C disjoint subgroups in the population (e.g., age 
groups or race/ethnic groups), and for each we have an 
estimate of a characteristic, R, which is often, but not 
necessarily, the rate of some health condition in the 
population. Let Ri denote the value of the characteristic 

for subgroup i, while the value for the whole population is 
denoted by R. Then the Index of Disparity, ID, is defined 
as 
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This can also be multiplied by 100 and expressed as a 
percentage. Note that this Index has a lower bound of 
zero, but has no upper bound, as if there is a very small 
category for which the value of R is very different from 
the overall value, the Index can become arbitrarily large. 
 
It is not unlikely in many applications that the true value 
of ID is close to zero. If category membership is unrelated 
to the characteristic involved, this will be the case. Thus, 
two-sided confidence intervals constructed using the 
assumption of large sample normality of the estimator of 
ID will often have a lower endpoint that is negative, and 
at the same time have true coverage that is substantially 
different from the nominal rate. 
 
It thus seems reasonable to consider the use of a 
transformation to address this problem. However, it is not 
obvious what transformation is likely to be successful in 
this case. The logit transformation is not a likely 
contender since the index is not bounded above by 1, and 
so the logit may be undefined. One can consider the 
approach of looking for a variance stabilizing 
transformation, in the hope that it will also lead to an 
estimator with a more symmetric distribution. However, 
obtaining such a transformation is not obvious. If the 
variance of an estimator X is roughly proportional to  
X(1 – X) (as in the case of a proportion), then an arcsin 
(X1/2) transformation is called for. Again, that will not be 
appropriate in this case as it is undefined for values in 
excess of 1. If the variance is roughly proportional to X2 
then a log transformation is suggested. If the variance is a 
function of (Xlog(X))2 then a log(-log) transformation is 
appropriate. However, since ID is a fairly complex 
function of its component R values, it is difficult to see 
how its variance could be approximated as a function of 
its value. In this paper we consider the application of both 
the log and log(-log) transformations to ID. 
 
We also consider the related statistic, Mean Deviation 
(MD), described by Keppel, Pearcy, and Wagener (2002), 
and defined as 
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When the Ri values are bounded above by 1 (for example, 
if they are proportions), then MD is also bounded above 
by 1. This leads to a potential difficulty if the log 
transformation is used. This is because, if MD is close to 
1, its logarithm will be slightly below zero. A large-
sample two-sided confidence interval for the logarithm 
may well have an upper bound that is greater than zero. 
When this is back-transformed, it gives rise to an upper 
bound for the confidence interval for MD that is greater 
than 1. We consider both the log and log(-log) 
transformations in this case, with the use of the latter 
being motivated by this problem with the former. 
 

4. The 1999-2002 National Health and Nutrition 
Examination Survey (NHANES) 

 
The analyses discussed in the remainer of this paper were 
conducted using data from 1999-2002 NHANES. This 
ongoing survey conducted by the National Center for 
Health Statistics (NCHS) uses a stratified, multistage 
probability sample of the noninstitutionalized civilian 
U.S. population. The design oversamples certain 
population groups including Blacks, Mexican Americans 
(but not other Hispanics), persons aged 60 and above, and 
low-income individuals. This is done so that more precise 
estimates can be obtained for these groups than would be 
otherwise possible. 
 
The survey includes a health questionnaire given to all 
sampled participants. Interviews are conducted with study 
participants in their homes to ascertain sociodemographic 
characteristics and self-reported aspects of health status. 
The interview includes a question as to whether the 
respondent has ever been told by a physician that he or 
she has diabetes (excepting when pregnant). Participants 
were also given a physical examination, and had a sample 
of blood drawn. One of the blood values measured was 
the level of glycosylated hemoglobin (HbA1C), a long-
term measure of the body’s ability to metabolize glucose, 
and is the standard for assessing control of diabetes 
among those already diagnosed with the disease. The 
analyses discussed in this paper were of the 843 adults 
(aged 20 years and older) who reported that they had 
diabetes, and for whom a valid HbA1C measure was 
obtained, during the 1999-2002 survey period. 
 
As well as estimating the proportion of the diabetic 
population in various groups, one can use these data to 
estimate the proportion of the diabetic population within 
these groups that are classified as having their diabetes 
not under control. For this purpose, we defined a diabetic 
as being not in control if their HbA1C level exceeds 7.0. 
This is a standard established by the American Diabetes 
Association (American Diabetes Association, 2007). We 

can then calculate the Index of Disparity (ID) and Mean 
(MD) for various deviation sociodemographic subgroups, 
for the proportion of the diabetic population that have 
diabetes under control. 
 

5. Software for Deriving Confidence Intervals for 
Analyses of Complex Survey Data Involving 

Transformations 
 
There are a number of software packages available that 
are well suited to the analysis of data from complex 
survey samples (SUDAAN (RTI International, 2005), 
STATA (StataCorp 2005), SAS (SAS Institute, 2007), 
SPSS (SPSS, 2006)). However, a general limitation of 
these packages is that they can only be used for estimators 
that conform to certain formats. In particular, they are 
generally not able to obtain confidence intervals for 
statistics that have had transformations such as the logit, 
arcsine, log, and log(-log) transformations applied to 
them. A notable exception is that SUDAAN calculates 
confidence intervals for proportions via the logit 
transformation. 
 
The WesVar software (Westat, 2002), however, is well 
suited to this purpose, although the software itself is not 
able to back-transform the confidence interval endpoints, 
which must be performed by the user. WesVar is not able 
to compute the arcsine transformation. However, one can 
obtain an approximation to this transformation as 
 
  )/()arcsin( .. 6p1pp 5050 +=
 
by taking a third-order Taylor series approximation for 
the arcsine function, expanded around 0. This 
approximation is quite close for values of p below 0.1. 
Thus, for example, for p = 0.05,  = 

0.225513, while  = 0.225470. 

)arcsin( .50p

)/(. 6p1p 50 +
 
WesVar is a stand-alone software package that is invoked 
via a set of Windows© ‘point and click’ options from 
menus. Formulae for specialized statistics can either be 
typed directly into a window, or built using point and 
click procedures. The COMPUTE and FUNCTION 
commands are used to do this. Note that it is the formula 
for the statistic of interest (the logit of a proportion, or an 
ID for example) which is programmed in this way, not the 
formulae for the variance estimate or the confidence 
interval limits. Since WesVar uses the replicated variance 
estimation approaches of the jackknife, or Balanced 
Repeated Replication (BRR) to calculate sampling 
variances; there are no special formula needed for specific 
estimators. The same general formula applies to all 
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estimators for which the variance estimation method can 
be validly applied. Thus, for example, for a jackknife 
sampling variance estimator, for a stratified multistage 
sample design with two units selected per stratum 
(provided that the strata can be regarded as being sampled 
with replacement), one form variance estimator for an 
estimator τ∗ takes the form 
 

  2Var /}]*)(*){([  *)( 2*
(-t)

2T

1t

*
(t) τττττ −+−∑=

=
 
where denotes the replicate estimate formed by 

dropping one of the two PSUs from stratum t and 
doubling the contribution of the second PSU from that 
stratum, and  denotes the replicate formed by 

dropping the complementary PSU from the stratum t. For 
more detail about replicated variance estimation 
procedures for complex survey samples, see Rust and Rao 
(1996). 

*
(t)τ

*
(-t)τ

 
For the analyses of the 1999-2002 NHANES data using 
WesVar, we used the jackknife procedure, with 57 
replicates. The replicate weights used for this purpose 
were created in WesVar, utilizing the stratum and PSU 
information available in the NHANES data file. 
 

6. Examples of Analyses of Confidence Intervals 
Constructed via the Use of Transformations 

 
Using WesVar, we calculated the following estimates for 
the population of diagnosed diabetics: 
 
1. The proportion of the population, p, with diabetes 

duration of 15 to 20 years, in each of the four racial-
ethnic groups: NonHispanic White, NonHispanic 
Black, Mexican American, and Other; and in each of 
the age groups: 20-44, 45-54, 55-64, 65-74, 75+; 

2. Logit (p), by race/ethnicity, and by age group; 

3. p1/2(1+p/6), by race/ethnicity, and by age group; 

4. The modified Wilson intervals for p, by 
race/ethnicity, and by age group; 

5. The Index of Disparity (ID) for poor Diabetes 
Control (HbA1C>7), for subgroups of age, 
race/ethnicity, gender, poverty income ratio, and 
education; 

6. The Mean Deviation (MD) for poor Diabetes 
Control (HbA1C>7), for subgroups of age, 
race/ethnicity, gender, poverty income ratio, and 
education; 

7. Log (ID) and Log (MD) for the same subgroup 
classes as listed in 5) and 6); and 

8. Log(-log(ID)) and Log(-log(MD)) for the same 
subgroup classes as listed in 5) and 6). 

We used WesVar to derive two-sided 95 percent 
confidence intervals for each of these, and then back-
transformed the endpoints (where appropriate), to derive 
confidence intervals for the proportions (p), Index of 
Disparity (ID), and Mean Deviation (MD). In each case 
we used the large sample approximation to calculate the 
interval. That is, the confidence limits were generated as 
 

 )ˆvar(.ˆ θθ t±  
 
where the t coefficient was taken as the 97.5th percentile 
of a central t-distribution with 29 degrees of freedom. 
This coefficient is selected based on the number of PSUs 
in the NHANES design, and hence the number of 
replicates in the jackknife procedure. For estimates of 
proportion (p) we also used the Wilson procedure, 
modified for use with complex survey samples. This 
procedure replaces the sample size parameter used in the 
standard Wilson confidence interval with the effective 
sample size, neff, defined as: 
 
 )ˆvar(/)ˆ(ˆ pp1pneff −=  

 
That is, the effective sample size is the actual sample size, 
divided by the design effect for , the estimate of p. The 
confidence limits are given as 

p̂
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where again t is the 97.5th percentile point of the central t 
distribution with 29 degrees of freedom. Note that as neff 
increases, these limits approach those of the standard 
Wald approach. 
 
In the case of confidence intervals for proportions 
obtained via the approximate arcsine transformation 
described above, the confidence limits for each proportion 
were obtained by squaring the sines of the upper and 
lower confidence limits of the transformed parameter. 
 
6.1 WesVar Programming 
 
Figure 1 shows a screen shot for WesVar, which 
illustrates how the user labels the cells of a table, for 
subsequent use in defining functions of estimates from 
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within table cells. In this example, using the NHANES 
data, cells for the different categories of race/ethnicity are 
being defined. 
 
F

transformation above. The logit and approximate arcsine 
transformations for proportions are shown in this 
example. Figure 3 shows how the results of the 
programmed function are exhibited in the WesVar output.

igure 2 shows an example where the user programs the 
function statements that implement the desired 
 

 
Figure 1. Cell definition screen 

 

 
Figure 2. Function statistic screen 
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Figure 3. Function statistics in WesVar output 

 
 
6.2 Results 
 
Tables 1 and 2 show the results of the computations listed 
above. In the cases where WesVar was used to transform 
the statistic of interest prior to calculating two-sided 
confidence intervals, the confidence interval endpoints 
have been back-transformed using EXCEL©. 
 
Table 1 shows the results for proportions. When the 
subgroup sample sizes are reasonably large, the methods 
give similar results. When one considers the results for 
Mexican Americans, however, where the sample size is 
69, one can see noticeable differences among the 
methods. 
 
First, one can see that the standard large-sample, or Wald, 
confidence interval has a negative lower bound (-2.78 
percent), for one age group (20-44 years). The other 
methods all avoid this drawback. In doing so, they 
produce substantially higher upper limits than the Wald 
approach. Even for the other age groups, where the Wald 
method has a positive lower bound, each of the 
transformations shifts the interval upwards. The hope is 
that these transformed intervals give closer to 95 percent 
coverage. Presumably, they also have tail percentages that 
are more nearly equal to 2.5 percent than does the Wald-
based method. 

The arcsine intervals are generally closer to the standard 
Wald interval than those derived via the logit 
transformation or the Wilson approach. These latter two 
methods give very similar results, except in the case of 
the 20-44 years age group. The Wilson intervals are 
consistently enclosed within the endpoints resulting from 
the logit procedure, and for the 20-44 year-old group, the 
Wilson interval is substantially shorter. 
 
For the Index of Disparity and the Mean Deviation, the 
differences among the three approaches used vary with 
subgroup (see Table 2), reflecting the fact that the true 
values for these indexes vary considerably by subgroup. 
In the case of gender, the disparity indexes are relatively 
close to zero. This leads to the result that the Wald 
intervals for both ID and MD have lower bounds that are 
below zero. Both of the transformations avoid this 
problem, as they were designed to do. The log(-log) 
transformation gives higher confidence limits than the 
Wald approach, with the log transformation giving higher 
limits still. With its shorter (but always completely 
positive) confidence intervals, the log(-log) 
transformation is more appealing than the log 
transformation, but of course this analysis says nothing 
about the true coverage properties of either approach. 
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Table 1.  95% confidence intervals for the percentage in each racial-ethnic group and age group for the population 
with diabetes duration of 15 to 20 years (n = 69) 

 
         Confidence intervals 

   Wald 
Modified 
Wilson Logit 

Arcsine 
approx.  

 Estimate DEFF L U L U L U L U 
Race/ethnicity           
NonHispanic White 61.20 1.74 45.39 77.01 45.06 75.21 44.75 75.44 44.48 70.27 
NonHispanic Black 20.13 1.59 7.70 32.57 10.59 34.92 10.38 35.42 9.37 33.43 
Mexican American 3.43 0.35 0.77 6.10 1.60 7.22 1.55 7.44 1.27 6.60 
Other 15.24 2.77 0.50 29.97 5.72 34.76 5.26 36.77 3.76 32.38 
Age           
20-44 years 4.77 2.07 -2.78 12.33 1.09 18.55 0.63 28.31 0.09 15.89 
45-54 years 16.06 1.81 3.89 28.23 7.39 31.45 6.95 32.88 5.87 29.86 
55-64 years 21.23 2.37 5.72 36.74 9.90 39.80 9.52 40.85 8.17 38.01 
65-74 years 33.85 1.59 19.15 48.56 21.16 49.39 20.95 49.71 20.25 47.72 
>=75 years 24.08 0.84 14.44 33.72 15.85 34.82 15.72 35.04 15.16 33.84 

 
Table 2.  95% confidence intervals for the Index of Disparity and the Mean Deviation for Poor Diabetes Control 

(HbA1C > 7), for subgroups of age, race/ethnicity, gender, poverty income ratio, and education (n = 843) 
 

  Confidence intervals 
    Wald Log Log(-log) 

Statistic Estimate L U L U L U 
Age        
ID 10.93 3.58 18.27 5.65 21.14 4.72 18.76 
MD 0.06 0.02 0.10 0.03 0.11 0.03 0.11 
Race/ethnicity        
ID 12.55 3.86 21.25 6.24 25.26 4.72 21.67 
MD 0.07 0.02 0.11 0.03 0.13 0.03 0.12 
Gender        
ID 4.24 -2.63 11.12 0.83 21.76 0.43 13.94 
MD 0.02 -0.01 0.06 0.00 0.11 0.00 0.08 
Poverty income ratio        
ID 4.68 -1.25 10.60 1.30 16.84 0.87 12.52 
MD 0.02 -0.01 0.06 0.01 0.09 0.01 0.07 
Education        
ID 4.62 -3.75 12.99 0.74 29.02 0.30 16.47 
MD 0.02 -0.02 0.07 0.00 0.16 0.00 0.10 
        

7. Conclusions and Future Research 
 
This paper discusses the use of transformations to 
stabilize the calculation of confidence intervals. The 
application in the case of complex survey data has been 
discussed, and we have demonstrated how these 
“nonstandard” statistics can be successfully computed, 
along with their confidence intervals, with relatively little 
effort using WesVar. 

However, it is far from clear which transformations are 
likely to be the most successful in any application, and, in 
the case of ID and MD, it is not even clear whether there 
is a transformation that can be effective in creating two-
sided confidence intervals with adequate coverage 
properties. 
 
We hope to investigate some of these issues via 
simulation studies. This will involve some cases where no 
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complex sampling is involved, since, if no suitable 
transformation can be found in the simple random 
sampling case, it seems unlikely that one could be found 
that will apply to a range of complex survey situations. 
Simulations in the case of complex survey designs are 
also warranted, building on the work of Korn and 
Graubard, Kott, and others in this area. 
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