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Abstract

Energy expenditure (EE) data obtained from 24-
hour physical activity (PA) recalls and objective ac-
tivity sensing devices are often subject to consider-
able measurement error, but limited information is
available about the sources and form of the mea-
surement errors. We consider the problem of devel-
oping a sample design for a PA survey that includes
24-hour recalls and measurements from an objective
sensing device. Our goal is to investigate measure-
ment error models for EE. We propose models for
recall-based and objective measures of EE, derive
method of moments estimators of model parameters,
and use data from a pilot study to calculate prelim-
inary estimates. Finally, we consider the variance
estimates for parameters in determining appropriate
sample designs.

KEY WORDS: Measurement Error, Physical Ac-
tivity, Energy Expenditure.

1. Introduction

Physical activity (PA) data are important for study-
ing health-related problems such as cancer, heart
disease, and obesity. In PA studies, energy expen-
diture (EE) estimates measured in calories per day
are obtained using a variety of measurement tools,
including 24-hour physical activity recalls (24PAR)
and objective sensing devices such as the SenseWear
Pro2 (SP2) Armband. Recalls estimate a subject’s
EE on a given day based on information about types
of PA completed in the recent past. Sensing devices
are worn by subjects and estimate daily EE by mon-
itoring levels of PA over a specified period of time.
Unfortunately the data acquired by these measure-
ment tools are subject to considerable measurement
error, and the sources and forms of the measurement
error are not well understood.

Appropriate measurement error models need to
be developed. These models must identify the error
structure in PA data, provide useful calibration func-
tions to accurately determine daily EE in study sub-
jects, and aid in sample size determination for large-

scale PA studies. In this paper we develop such mod-
els to evaluate sample sizes for a proposed PA sur-
vey. First we review relevant PA and dietary intake
literature and properties of the 24PAR, SP2, and pi-
lot study data from Calabro et al. (2007). Second
we present measurement error models for two mea-
surement tools: the 24PAR and the SP2. Third we
discuss our design objectives, obtain method of mo-
ments estimators for the model parameters, calcu-
late parameter estimates and variances using the pi-
lot study data, and investigate suitable sample sizes
for a large-scale PA survey.

2. Background and Significance

Before presenting our measurement error models, we
provide some background information on relevant
PA and dietary intake literature, the 24PAR and
SP2 measurement tools and the pilot study data.

2.1 PA and Dietary Intake Literature

In most PA and dietary intake studies, one of the
main goals is to determine the distribution of usual
EE or usual dietary intake for a specified group. The
usual level of EE or dietary intake for a specific in-
dividual in a group is his or her long-run average
daily amount of EE or dietary intake (e.g. the av-
erage daily EE over a year-long period). Directly
observing usual daily EE or dietary intake is diffi-
cult. Instead, estimates of usual daily EE or dietary
intake from a variety of instruments are considered.
In general, estimates come from three types of in-
struments: inexpensive, reference, and gold stan-
dard instruments. Inexpensive instruments estimate
usual daily EE or dietary intake on a number of sub-
jects at a relatively low cost, but are subject to large
measurement error. Reference instruments are more
expensive to use, but offer more accurate estimates
than the inexpensive instruments. Gold standard
instruments are usually very expensive to use, but
provide the most accurate estimates possible.

For PA studies, recalls, objective sensing devices,
and doubly-labeled water are often considered to
be the inexpensive, reference, and gold standard in-
struments, respectively. For dietary intake studies,
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food frequency questionnaires (FFQs), food records,
and doubly-labeled water are usually the inexpen-
sive, reference, and gold standard instruments, re-
spectively. The reference and gold standard instru-
ments are used to calibrate the inexpensive instru-
ments that are subject to considerable measurement
error. Only a few papers deal with measurement er-
ror properties in PA data (Spiegelman et al. 1997,
Wong et al. 2004) while many more investigate mea-
surment error models for dietary intake data (Kip-
nis et al. 2001, Rosner et al. 1989, Freedman et al.
1991, Kipnis et al. 1999, Kipnis et al. 2003).

2.2 24PAR and SP2

The 24PAR and SP2 are both used to measure EE
in Calories per day. The 24PAR is an interviewer-
administered assessment that estimates EE from
a subject’s reported occupational, household, and
leisure activities from the previous day (Calabro et
al. 2007). The frequency and duration of the re-
ported activities are translated into an EE estimate.
This method of measuring EE may provide biased
estimates that stem from systematic reporting of
bias, recall errors, and the ways in which questions
are asked to subjects (Calabro et al. 2007).

The SP2 is a wireless multi-sensor activity moni-
tor worn on a subject’s upper arm that keeps track
of periods of activity and inactivity over the course
of a day (Calabro et al. 2007). Data from a variety
of sensors (e.g. heat flux sensor, skin temperature
sensor) are recorded and translated into an EE es-
timate with internal algorithms. Unlike the 24PAR,
the SP2 measures EE without subject-induced or
interviewer-induced bias because an armband moni-
tor keeps track of and records activity and inactivity
instead of the subject and interviewer. Studies also
contend that, compared to other devices, the SP2
more accurately assesses EE and PA levels in a va-
riety of human subjects (Zhang et al. 2003, Fruin et
al. 2004, King et al. 2004). However, the SP2 and
other sensing devices cannot accurately account for
all types of physical activities that take place during
the course of a day. The SP2 is good at estimat-
ing EE from some types of activities (e.g. playing
tennis) but not from others in which arm activity is
minimal (e.g. biking).

2.3 Pilot Study

In Section 4 we use pilot study data from Calabro et
al. (2007) to obtain parameter estimates and de-
termine appropriate sample sizes for a larger PA
study. The study subjects were 20 healthy young
adults (10 males and 10 females between the ages
of 22 and 41) with at least moderate fitness levels

(based on self-reported fitness ratings). The sub-
jects wore the SP2 on two different days (at least 1
week apart) and completed the 24PAR on the day
following SP2 use. Hence, EE in calories per day was
recorded four times (twice from the SP2 and twice
from the 24PAR) for each subject. Subjects wore the
SP2 during daily activities (excluding swimming and
showering) and were asked to include some moder-
ate to vigorous physical activity (MVPA) into their
daily schedule.

We examine some preliminary statistics and plots
to get a better understanding of the data. Let Yij

be the 24PAR estimate of daily EE for subject i at
time j and Xij be the SP2 estimate of daily EE
for subject i at time j. Also define Ȳi. and X̄i. as
the average daily EE estimates for subject i from
the 24PAR and SP2, respectively, Ȳ.. and X̄.. as the
overall sample means for the 24PAR and SP2, re-
spectively, and SY and SX as the sample standard
deviations for the 24PAR and SP2, respectively. The
sample correlation between the 24PAR and SP2 is
defined as

rXY =
∑

i(Ȳi. − Ȳ..)(X̄i. − X̄..)√∑
i(Ȳi. − Ȳ..)2

∑
i(X̄i. − X̄..)2

.

Values for these descriptive statistics are listed in
Table 1 for all subjects, men only, and women only.
The estimates for mean daily EE from the 24PAR
are larger and more variable than the estimates from
the SP2. The estimates for men are larger and less
variable than the estimates for women. The sam-
ple correlation between the 24PAR and SP2 with
all subjects is fairly high at 0.91. The correlation
for women only is lower (0.81) and the correlation
for men only is slightly higher (0.93). The plot of
within-person means in Figure 1 confirms that the
estimates of daily EE from the SP2 and 24PAR are
similar and highly correlated since the data points
are plotted closely along the 45 degree line. How-
ever, this plot also shows that estimates from the
24PAR are larger than estimates from the SP2 for
the most active subjects. The data points in the top
right corner are plotted to the right of the 45 de-
gree line. Additionally, in this plot there is a larger
range in values for women only, which may explain
why the estimates for women only are more variable
than the estimates for men only.

We believe the sample correlations in Table 1 may
be larger than correlations that would come from the
general population. The study subjects are all young
adults with good PA awareness. Therefore, the sub-
jects’ account of PA used in the 24PAR should be
fairly accurate and should closely match the results
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Table 1: Descriptive Statistics for Pilot Study Data

sample size Ȳ.. SY X̄.. SX rXY

All 20 2092.3 649.9 1928.2 538.5 0.91
Men 10 2385.4 414.2 2110.0 357.8 0.93

Women 10 1799.2 639.9 1746.4 529.6 0.81

Figure 1: Within-Person Means

from the SP2. In addition, the subjects were asked
to include MVPA into their daily routines. This also
may have encouraged good PA awareness and con-
sequently more accurate estimates of EE from the
24PAR.

3. Measurement Error Models

We propose the following measurement error model
equations for EE data using the 24PAR and SP2.
Let

Yij = β0 + β1(xi + rij) + αi + eij (1)

and

Xij = xi + rij + uij , (2)

where subject is indexed by i, day is indexed by j,
Yij is the EE for subject i on day j using the 24PAR,

Xij is the EE for subject i on day j using the SP2, xi

is subject i’s usual or habitual daily EE, and xi ∼
(µx, σ2

x), αi ∼ (0, σ2
α), rij ∼ (0, σ2

r), eij ∼ (0, σ2
e),

uij ∼ (0, σ2
u) for all i and j. The parameters β0 and

β1 are intercept and slope coefficients, respectively,
included in (1) to account for the possible bias in
the measurement of EE from the 24PAR. We do not
include such coefficients in (2) because we assume
the SP2 provides an unbiased estimate of EE. The
error term rij accounts for the day-to-day deviation
in EE for subject i. This term is included in both
model equations because the day-to-day deviation
in EE for a subject is the same regardless of the
instrument used to measure EE. In other words, this
error term has nothing to do with instrument error
in measuring EE. In (1) this term is multiplied by
the slope parameter β1 because we believe the long
run value of EE and the day-to-day deviation in EE
both differ from the 24PAR measurement of EE by
the same factor. The term αi is the subject-specific
bias from measuring EE with the 24PAR. We do
not include a similar term in (2) because the SP2
should provide measurements free of subject-specific
bias as long as the SP2 Armband is worn properly.
The error terms eij and uij account for the random
measurement error from using the 24PAR and SP2,
respectively.

We assume that all error terms are independent
across days within subjects and across instruments
within subjects and days. These assumptions are
reasonable as long as replicate observations are not
taken during consecutive recording periods. We fur-
ther assume that Yij and Xij are independent be-
cause measurements from the 24PAR are subject
to bias from the recall process and other subject-
specific attributes while measurements from the SP2
are only subject to random measurement error.

Our models offer some improvements to the mod-
els presented in Spiegelman et al. (1997) and Kip-
nis et al. (2001). The intercept and slope coeffi-
cients in (1) capture the bias from measuring EE
with the 24PAR. Spiegelman et al. (1997) fail to
account for the potential bias from measuring PA
with the flawed gold standard, which may conse-
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quently produce faulty calibration functions. Our
models track three main sources of error in measur-
ing long term average EE: subject-specific error (αi),
short term deviation in EE (rij), and overall random
measurement error (eij , uij). The models proposed
by Spiegelman et al. (1997) only include overall er-
ror terms and the models proposed by Kipnis et al.
(2001) only include subject-specific error terms and
random measurement error terms.

4. Survey Design

Now that we have developed measurement error
models, we present our survey objectives and con-
sider appropriate sample sizes for a large-scale PA
survey. First we outline our basic survey objectives.
Second we develop estimators for the model parame-
ters using method of moments estimation procedures
and obtain parameter estimates and variances using
the pilot study data and methods from Fuller (1987).
Third we present our results and determine suitable
sample sizes relative to our survey objectives.

4.1 Survey Objectives

In general, we want to conduct a survey of adults
in Iowa to collect PA data. This includes collect-
ing daily EE estimates from the 24PAR and SP3
(new version of the SP2) for our models in Section
3. These data will be used to estimate model pa-
rameters and consequently, will help us better un-
derstand measurement error properties in PA data.
We also want to examine PA properties within sub-
populations of individuals based on gender, living
environment (urban or rural), and race (Caucasian,
Hispanic, or African American). In Subsection 4.3
below we present a suitable sample size for subpop-
ulations based on gender and living environment.
Within these subpopulations we will attempt to di-
vide the sample across ethnic groups.

4.2 Parameter Estimation

Using method of moments procedures, we estimate
the parameter vector,

θ =
(
µx, β0, β1, σ

2
x, σ2

r , σ2
α, σ2

e , σ2
u

)T
,

from functions of sample moments that are calcu-
lated using the pilot study data. The components of
θ are defined in the previous section. First we create
a new set of variables, {Zi}, from the EE data, {Yij}
and {Xij}, to produce mean and covariance matrices

that are functions of the model parameters. Let

Zi =


(Yi1+Yi2)

2
(Xi1+Xi2)

2
Yi1 − Yi2

Xi1 −Xi2

 =


Ȳi.

X̄i.

Yi1 − Yi2

Xi1 −Xi2


for all i, where Ȳi. is the average EE estimate from
the 24PAR for subject i and X̄i. is the average EE
estimate from the SP2 for subject i. We define Zi

in this manner because it provides algebraically sim-
pler mean and covariance matrices than the observed
data vector (Yi1, Yi2, Xi1, Xi2)T . Based on the model
assumptions mentioned in the previous section we
have a mean vector

E(Zi) = E


Ȳi.

X̄i.

Yi1 − Yi2

Xi1 −Xi2

 =


β0 + β1µx

µx

0
0


and symmetric covariance matrix

Cov(Zi) = Cov


Ȳi.

X̄i.

Yi1 − Yi2

Xi1 −Xi2


that both simplify to functions of parameters from
θ.

Then for {Zi} we define two sets of sample mo-
ments m1 and m2. Let

m1 =
(

Ȳ..

X̄..

)
,

where Ȳ.. is the average of the sample means for the
24PAR data and X̄.. is the average of the sample
means for the SP2 data. Also let

m2 =


m11 m12 m13 m14

m22 m23 m24

m33 m34

m44


be the symmetric sample covariance matrix of {Zi}.
We focus only on the upper 2x2 and lower 2x2 diag-
onals of this matrix because the off diagonal compo-
nents (m13,m14,m23,m24) are assumed to be zero.
In deriving values for m2 we wish to remove gender
effects. Thus, the sample moments are calculated
from residuals that estimate the error terms, εij and
ηij , in the simple linear regressions

Yij = µ0 + µ1Gi + εij

and

Xij = γ0 + γ1Gi + ηij ,
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where Yij and Xij are still the EE values from the
24PAR and SP2, respectively, for individual i on day
j, and Gi is equal to one if subject i is female and
is zero if subject i is male. From the four sets of
residuals {ε̂i1}, {ε̂i2}, {η̂i1}, and {η̂i2}, we create a
residual vector for {Zi}, ( ˆ̄εi., ˆ̄ηi., ε̂i1− ε̂i2, η̂i1− η̂i2)T ,
where

ˆ̄εi. =
ε̂i1 + ε̂i2

2

and

ˆ̄ηi. =
η̂i1 + η̂i2

2

for all i. Using these sets of values we define m2

more concretely as the sample moments of the resid-
ual vector for {Zi} adjusted for gender effects.

The method of moments estimators are then de-
termined by solving the equations

m1 = E(Zi)

and

m2 = Cov(Zi)

for the parameters in θ in terms of the sample mo-
ments (considering only the 2x2 diagonals of m2).
The method of moments estimators are

µ̂x = X̄.., (3)

β̂0 = Ȳ.. −
(m12 − 0.25m34)

(m22 − 0.25m44)
X̄.., (4)

β̂1 =
m12 − 0.25m34

m22 − 0.25m44
, (5)

σ̂2
x = m22 − 0.25m44, (6)

σ̂2
r =

m34(m22 − 0.25m44)

2(m12 − 0.25m34)
, (7)

σ̂2
α = m11 − 0.25m33 −

(m12 − 0.25m34)2

m22 − 0.25m44
, (8)

σ̂2
e = 0.5m33 −

m34(m12 − 0.25m34)

2(m22 − 0.25m44)
, (9)

and

σ̂2
u = 0.5m44 −

m34(m22 − 0.25m44)

2(m12 − 0.25m34)
. (10)

Numerical estimates for these estimators will be ex-
amined more closely in the next subsection.

Using methods from Fuller (1987) we derive a co-
variance matrix for parameter estimates, V̂ {θ̂} =
D{θ̂}Σ̂D{θ̂}T , for sample size n. D{θ̂} is an
8x8 matrix of derivatives constructed using the
method of moments equations (3)-(10). Σ̂ =block
diag(Σ̂11, Σ̂22, Σ̂33) is the 8x8 covariance matrix
for the sample moments constructed using formulas
from Fuller (1987), where for sample size n,

Σ̂11 =
1
n

(
m11 m12

m12 m22

)
,

Σ̂22 =
1

n− 1

0
@

2m2
11 2m11m12 2m2

12
2m11m12 m11m22 + m2

12 2m12m22

2m2
12 2m12m22 2m2

22

1
A ,

and

Σ̂33 =
1

n− 1

0
@

2m2
33 2m33m34 2m2

34
2m33m34 m33m44 + m2

34 2m34m44

2m2
34 2m34m44 2m2

44

1
A .

Variances of parameter estimates for various sample
sizes will be examined in the next subsection.

4.3 Results

In this subsection we present the parameter esti-
mates and variances and determine a suitable sample
size for our subpopulations of interest. The numeric
values for the sample moments we consider are

m1 =
(

2, 092
1, 928

)
and

m2 =

0
BB@

275, 243 205, 914
193, 506

262, 959 232, 685
246, 461

1
CCA .

We obtain parameter estimates and variances for
various proposed sample sizes using formulas from
the previous subsection. Parameter estimates (in-
cluding Ȳ.. for µY = β0 + β1µx), standard errors for
sample sizes 100, 200, 300, and 600, and correspond-
ing coefficients of variation (CVs) are displayed in
Table 2.

The average EE estimates from the 24PAR (Ȳ.. =
2092) and SP2 (X̄.. = 1928) are similar. The esti-
mate for β1 is close to 1 and the estimate for β0 is
slightly larger than 0 (relative to the size of the av-
erage EE estimates), suggesting that for these study
subjects there is close to a one-to-one relationship
between usual daily EE and EE estimated from the
24PAR. This might be expected with the high PA
awareness of the study subjects. In larger studies
with a less homogeneous group of subjects, the es-
timates for β1 and β0 may be further away from 1
and 0, respectively. It is difficult to directly interpret
the other parameter estimates without any means
of comparison to estimates from other data. We do
however hypothesize that the variance estimates will
be larger using data from more general PA studies
with less homogeneous groups of subjects.

Clearly standard errors decrease as sample size in-
creases because a larger sample provides more in-
formation about the population, and hence more
precise parameter estimates. As expected, we see
smaller and smaller differences in standard errors as
n increases.

We are primarily concerned with having small
standard errors for the parameters β1 and β0 since
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Table 2: Parameter Estimates, Standard Errors and Coefficients of Variation

Parameter µY µx β0 β1 σ2
x σ2

r σ2
u σ2

e σ2
α

Estimate 2,092 1928 -67.31 1.12 132,000 104,000 19,400 1,200 44,000
Std. Error 117 98 429 0.191 66,000 67,000 39,700 28,400 19,000
Standard errors for various sample size n
n = 100 52 44 189 0.084 29,000 29,000 17,400 12,400 8,000
n = 200 37 31 133 0.059 20,000 21,000 12,300 8,800 6,000
n = 300 30 25 109 0.048 17,000 17,000 10,000 7,100 5,000
n = 600 21 18 77 0.034 12,000 12,000 7,100 5,000 3,000

Coefficients of variation for parameter estimates for various sample size n
n = 100 0.02 0.02 0.07 0.22 0.28 0.90 10.56 0.18
n = 200 0.02 0.02 0.05 0.15 0.20 0.63 7.45 0.14
n = 300 0.01 0.01 0.04 0.13 0.16 0.52 6.08 0.11
n = 600 0.01 0.01 0.03 0.09 0.11 0.37 4.29 0.07

they are used to calibrate the 24PAR from the SP2.
A sample size of n = 300 seems to provide small
enough standard errors for these parameters, since
doubling the sample size to n = 600 does not reduce
the errors much further. Also, CVs for β1 and µx are
low on the order of 5% for samples of n = 300. CVs
are somewhat larger for parameters σ2

α, σ2
x, and σ2

r

with n = 300, ranging from 11% to 16%. CVs are
quite a bit larger for the variance parameters of the
overall error terms. This suggests that it may be
difficult to precisely estimate some of the variance
components (particularly σ2

e and σ2
u) in large-scale

PA studies even with large sample sizes.
We must be careful about over-interpreting results

from these data because they are calculated using es-
timates from a small, homogeneous group of study
subjects. We expect the standard errors for parame-
ter estimates to be larger when calculated with data
from large-scale PA surveys. Based on the results
we have and other cost factors, we contend that a
sample size of n = 300 for the subpopulations of
interest (based on gender and living environment)
will be large enough to provide suitable parameter
estimates and variances.

5. Discussion

In the sections above we have provided background
information on PA studies and measurement error
models, proposed our own measurement error mod-
els for 24PAR and SP2 data, derived parameter esti-
mates using pilot study data, and determined an ap-
propriate sample size for subpopulations in a large-
scale PA survey. Our models are constructed to cali-
brate the 24PAR from the SP2 and incorporate ran-
dom measurement error, subject-specific error from

the 24PAR, and short term deviation in EE for each
subject. The model parameter estimates for β1 and
β0 suggest a linear relationship between EE esti-
mates from the 24PAR and SP2. The standard er-
rors and CVs in Table 2 help us better understand
variability properties of the estimates across differ-
ent sample sizes. Using these estimates and taking
other cost restrictions into account, we propose a
sample size of 300 subjects for subpopulations based
on gender and living environment for a large-scale
PA survey.

There are several issues that we still need to ad-
dress. First and foremost we must collect data from
a larger PA survey with a more general group of
study subjects and fit our models to the data. This
will provide us with more realistic parameter esti-
mates from a more general sample of subjects with
varying levels of PA. With these data and our mod-
els, we hope to develop reliable calibration methods
for EE measurements from the 24PAR and similar
recall instruments. We may also want to conduct
some model comparisons using PA data to see if our
models perform better than some of the ones men-
tioned in Section 2.1. Of course the models used for
model comparisons in Kipnis et al. (2001) may have
to be modified for PA data before directly compar-
ing them to our models in Section 3. Our models
could also be expanded to include EE data mea-
sured with other types of instruments. The models
in Section 3 are specifically designed for the 24PAR
and SP2 measuring devices. We could include other
measurement error model equations into our model
structure for EE measurements from doubly-labeled
water, other types of recalls and other sensing de-
vices.
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The most important, overall goal is to develop ap-
propriate measurement error models for PA data in
order to more accurately estimate characteristics of
the distribution of usual EE from inexpensive instru-
ments such as the 24PAR. With better parameters
describing the distribution of usual daily EE, we will
be more able to investigate the relationships between
EE and prominence of certain fatal diseases such as
cancer, heart disease, and obesity.
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