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Abstract.  The interval estimation of a binomial 
proportion is difficult, especially when the proportion 
is extreme (very small or very large).  Most of the 
methods discussed in the literature implicitly assume 
simple random sampling.  These interval-estimation 
methods are not immediately applicable to data derived 
from a complex sample design.  Some recent papers 
have addressed this problem, proposing modifications 
for complex samples.  Matters are further complicated 
when a one-sided coverage interval is desired.  This 
paper provides an extensive review of existing methods 
for constructing coverage intervals for a binomial 
proportion under both simple random and complex 
sample designs.  It also evaluates the empirical 
performances of different one-sided coverage intervals 
under both a simple random and a stratified random 
sample design.   
 
Key words: coverage probability, effective sample 
size, stratified random sample. 
 
 

1. Introduction 
 
Because of the poor performance of the standard Wald 
method for constructing coverage (confidence) 
intervals of a binomial proportion, the literature 
contains a series of modifications, alternative methods, 
and comparisons for a two-sided coverage interval 
under a simple random sample design (Brown et al. 
2001, Agresti and Coull 1998, Vollset 1993, Clopper 
and Pearson 1934).   Some recent papers have 
addressed this problem under more complex sample 
designs (Feng 2006, Sukasih and Jang 2006, Kott et al. 
2001, Korn and Graubard 1998).   
 
Constructing empirically effective one-sided coverage 
intervals can be even more difficult than two-sided 
intervals.  Cai (2004) and Hall (1981) used Edgeworth 
expansion to develop one-sided coverage intervals 
under a simple a random sample. Kott and Liu (2007) 
modified Hall’s method and extended it to handle data 
from a complex sample design with a particular 
emphasis on stratified (simple) random sampling.    
 
We are interested here in constructing one-sided 
coverage intervals for proportions that are either very 
small (less than 20%) or very large (more than 80%).  
Section 2 provides an extensive list of coverage-

interval methods under simple random sampling and 
then compares them.  Section 3 looks at interval 
methods modified to handle complex sample data and 
evaluates their performances under stratified random 
sampling.  Section 4 contains a brief discussion or our 
results.       
   
 

2. Interval Estimation Methods Under a  
Simple Random Sample 

 
Let X follow a binomial distribution with parameters n 
and p.  The parameter p is also called the binomial 
proportion.  In the survey sampling setting, n is the 
sample size of a simple random sample.  Let k a 
sampled element and kx  be either 0 or 1. Assuming 
that kx  follows the Bernoulli distribution with 
parameter p, the estimator for p from the sample is 
ˆ ,p x n= where .n

kx x= ∑  
 
This section contains a summary of many of the 
interval-construction methods under simple random 
sampling that have appeared in the literature.   All the 
methods assume that the population size is large 
enough to ignore finite population correction.  The 
symbol z  is used to denote the z-score of a standard 
normal distribution associated with the one-sided 
coverage intervals of interest.  For 95% coverage 
intervals, the z-score is 1.645. 
 
 
2.1 The Methods 
 
 Standard Wald interval 
This is the best known and most commonly used 
interval.  It is based on the limiting distribution (as n 
grows arbitrarily large): )1,0()ˆ()ˆ( Npvpp →− ,                  
where  ˆ( )v p = ˆ ˆ(1 ) ( 1)p p n− − .  The lower and upper 
bounds are  
 

( ) ( )ˆ ˆ ˆ1 1SL p z p p n= − − − ,    

( ) ( )ˆ ˆ ˆ1 1SU p z p p n= + − − .                                  (1) 
 
That is to say, the two one-sided Wald intervals for  p 
are  p ≥ LS, and  p ≤ US. 
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Wilson (Score) Interval 
Instead of using the variance estimator for p̂ , this 
interval employs the true variance npppV )1()ˆ( −= .  

It is based on the limit: )1,0()ˆ()ˆ( NpVpp →− .  
The lower and upper bounds are 
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Logit Interval                                
A logistic transformation, ( )ˆ ˆ ˆlog 1p pλ = −⎡ ⎤⎣ ⎦  

stabilizes the variance of p̂ .  The logit interval is based 

on the limit: )1,0()ˆ(/)ˆ( Nv →− λλλ , where   ˆ( )v λ =  

[ ]ˆ ˆ1/ (1 )np p− .  The lower and upper bounds are 
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,  where Uλ = )ˆ(ˆ λλ vz+ .                 (3) 

 
Arcsine(root)  Interval 
Another transformation-stabilizing variance is the 
arcsine(root) transformation, )arcsin( p=δ . The 
interval for δ  is based on the limit: 

)1,0()ˆ(/)ˆ( Nv →− δδδ , where )ˆarcsin(ˆ p=δ  and 

)4(1)ˆ( nv =δ .  This results in these lower and upper 
bounds for p : 
 

[ ])2()ˆarcsin(sin)(sin 22 nzL LA −== δδ ,     

[ ])2()ˆarcsin(sin)(sin 22 nzU LA +== δδ .             (4) 
  
 
Jeffrey’s Interval                                                            
The Bayesian Posterior interval under a Jeffrey’s prior 
of the Beta distribution )2/1,2/1(Beta is 
 

)2/1,2/1;2( +−+= xnxBetaLJ α , 
)2/1,2/1;21( +−+−= xnxBetaU J α .                   (5) 

 
Clopper-Pearson Exact Interval 

This interval is based on inverting the equal-tailed 
binomial tests of the null hypothesis 00 : ppH =  
against the alternative hypothesis 01 : ppH ≠ .  The 
lower and upper bounds can be obtained by solving the 
polynomial equations: 
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They can be expressed in terms of Beta distribution as 
 

)1,;2αBeta( +−= xnxLCP , 
),1;2α-1Beta( xnxU CP −+= .                                 (7) 

 
Mid-P Clopper-Pearson Interval 
One way to reduce the perceived over-conservativeness 
of the Clopper-Pearson method obtains by solving the 
polynomial equations: 
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The interval can be expressed in terms of Beta 
distribution as 
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Poisson Interval 
When n  is large and p  is close to 0, the binomial 
distribution Bin( n , p ) can be approximated by Poisson 

distribution ( ) !xP X x e x−λ= = λ , where np=λ .  
The lower and upper bounds for p  are 
 

)2(2
2/,2 nL xP αχ= , 

)2(2
2/1),1(2 nU xP αχ −+= .                                             (9) 

The nine methods described above can be used to 
construct both two-sided and one-sided intervals.  
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Unfortunately, an effective two-sided-interval method 
may not work as well in constructing a one-sided 
interval.  This is because a two-sided interval can have 
compensating one-sided errors due to p̂  being 
asymmetric.  The following methods are based on an 
Edgeworth expansion that explicitly adjusts for the 
skewness in p̂ .   
 
Hall Interval  
The bounds for this interval translate the Wald bounds 
in equation (1) towards ½.  They are  

 
ˆ ˆ( )KLL p z v p= + δ −  

ˆ ˆ( )KLU p z v p= + δ + ,                                            (10) 
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The translation term, δ, is OP(1/n).  Terms of smaller 
asymptotic order have been dropped.  Hall (1982) has n 
in the denominator of ˆ( )v p  rather than n−1.  This 
difference has no practical consequence when n ≥ 30.   
 
Cai Interval 
Cai (2004) went further than Hall in correcting for the 
skewness in p̂  by keeping OP(1/n2) terms producing 
the bounds:  
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Kott-Liu Interval 
Under simple random sampling, Kott and Liu proposed 
a slight modification of the Hall interval that better 
handles samples with small ˆ ˆ(1 )p p−  values: 
 

22 )ˆ(ˆ δδ +−+= pvzpLKL

22 )ˆ(ˆ δδ +++= pvzpU KL ,                                  (12) 
                             
where ˆ( )v p and δ are unchanged.  This method will be 
described further in the following section.  
 
Other Intervals 

There are also various continuity-correction approaches 
that are not included in this paper.  Two other methods 
not treated here are the Wilson-logit and likelihood-
ratio interval. These methods employ an iteration 
algorithm to obtain the interval end-points.  
  
 
2.2 Comparison of One-Sided Intervals Under 
Simple Random Sampling 
 
In this subsection, the methods defined in equations (1) 
through (12) are used to construct one-sided 95% 
coverage intervals.  They are then compared in terms 
of their coverage probabilities and the average 
distances from their endpoints to the true value of p.   
    
The coverage probability for the given p  and n  is 
defined as the probability of p  falling within the 
coverage interval CI, that is, 
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The average distance for the given p and n is defined 
here as the mean of the absolute distance of lower or 
upper bound from the true value of p, that is, 
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It is well known that the coverage intervals of a 
binomial proportion behave irregularly (Brown, Cai 
and DasGupta, 2001 & 2002). A coverage interval will 
perform differently for different sample sizes and 
different values of p.  We are interested in the setting 
where the sample size n  is reasonably large − at least 
30 − and the value of p is either small or large.  
Therefore, we evaluate sample size of 30, 60 and 120 
and focus on the comparison for the value of p in the 
range of (0, 0.20) and (0.80, 1).  We also modify the 
intervals at x =0, 1.  First, we force the lower bound to 
be 0 at x =0 and 1 at x =1.  Second, when the lower 
bound or upper bound is not defined at x =0, 1 for 
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some methods (Wald, Logit and Mid-P), we replace 
them with the Clopper-Pearson method.   
 
Except for the Poisson, the coverage probabilities and 
average distances for all the methods are symmetric or 
very nearly so in the range 0≤p≤1. Consequently, 
conclusions drawn about lower bounds for p <0.2 also 
apply to upper bounds for p>0.8, and conclusions about 
lower bounds for p>0.8 apply to upper bounds for p 
<0.2.  Because of this, we only calculate coverage 
probabilities and average distances for lower bounds.  
These values are calculated at p = 0.001, 0.002, 0.003, 
…, 0.998, 0.999.   
 
Due to the space limitation, the plots are not displayed 
here.   The following conclusions about the coverage 
probabilities of the methods can be drawn from them:  
  
• Wald and Arcsine are systematically biased, 

sometimes in one direction sometimes in the other. 
•  Poisson is overly conservative, that is, has 

coverages well above the nominal rate (95%).  It 
should not beviewed as a serious competitor to the 
other methods.    

• Clopper-Pearson always has at least the nominal 
coverage, but often over-covers. 

• Wilson and Logit are systematically biased in the 
opposite direction of Wald and to a lesser degree.  
They tend to under-cover for small p and over-
cover for large p.  The overage-coverage for 
Wilson near p =1 is not as pronounced as for 
Clopper-Pearson. 

• Jeffrey and Hall have large downward spikes 
(under-coverages) near the two boundaries. 

• Mid-P has large downward spikes near p =0, but 
performs well for large p. 

• Kott-Liu and Cai provide reasonably coverages 
everywhere with Kott-Liu having slightly smaller 
oscillations near p =1. 

 
These conclusions, which obtain when m =30, 60 or 
120, are summarized in Table 1. 
 
We plot the average distances of lower bounds versus 
the values of p  for the ‘Best Pick’ methods and for the 
conservative Clopper-Pearson.  In general, the average 
distance is longer when the coverage probability is 
larger.  Due to the space limit, the plots are not 
presented here.  Clopper-Pearson has a much longer 
average distance than the other methods, not surprising 
since it tends to be conservative.  For small p, Kott-Liu 
and Cai behave very similarly.  For large p, Kott-Liu 
tends to be slightly longer than Cai.  Wilson is longer 
than both Kott-Liu and Cai.  Mid-P becomes longer 

than Kott-Liu and Cai when p gets near 1 but not 
before. 
 
In summary, Kott-Liu and Cai are the best in terms of 
having coverages always reasonably close to the 
nominal. Clopper-Pearson, never under-covers, which 
some find a desirable characteristic, but has longer 
average distances.    
 
Table 1.  Comparison in terms of Lower-Limit 
               Coverage Probabilities 

Method p<0.2 p>0.8 

Wald 
Arcsine 

Systematic biased   

Poisson Over-conservative  Not applicable 

Clopper-
Pearson Conservative 

Wilson 
Under-coverage,  
Large Downward 
spikes near p=0 

Conservative,  
not as much as 

Clopper-Pearson 

Logit 
Under-coverage,  
Large Downward 
spikes near p=0 

Conservative,  
as much as Clopper-

Pearson 

Jeffrey 

Hall 
Have large 

downward spikes 
Have large 

downward spikes 

Mid-P 
Good coverage, 

 except for p near 0 
(large spikes near 

p=0) 

Good coverage 

Cai Good coverage Good coverage 

Kott-Liu 
Good coverage, 
  slightly smaller 

oscillations than Cai 

Good coverage,  
slightly smaller 

oscillations than Cai 

Best 
Pick 

Kott-Liu,  
Cai 

Kott-Liu,  
Cai,  

Mid-P,  
Wilson 

(conservative) 
 
 

 3. Interval Construction Methods Under  
Stratified Random Sampling 

 
Let s  denote elements of the whole sample, k (again) 
denote an element, and kw  the weight of element k .  

Let kx be either 0 or 1.  The estimated proportion is 

then ∑∑=
s

k
s

kk wwxp̂ . 
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3.1 The Methods 
 
The most common way of extending interval-
construction methods to handle sample data from a 
complex design is by replacing the sample size n  with 
the effective sample size *n  and replacing x  with 

*x = pn ˆ* .  When ˆ( ) 0v p > , where )ˆ( pv  is the 
estimated variance of p̂  under the complex sample 

design, the effective sample size *n  can be defined as  
 

)ˆ(
)ˆ1(ˆ

)ˆ(
*

pv
pp

pDEFF
nn −

==                                       (13) 

 
(alternatively, *n  can be defined as 1 plus the left-hand 
side of equation (13); the distinction is usually trivial 
when n ≥ 30).   
 
This ad hoc procedure was used and discussed in Kott 
and Carr (1997) for modifying the Wilson interval and 
in Korn and Graubard (1998) for modifying the 
Clopper-Pearson interval.  Feng (2006) treated a few 
other intervals with this procedure.   
 
We focus in this section on an empirical evaluation of 
the alternative methods under stratified random 
sampling.  We apply the effective sample size 
procedure to all the methods from Section 2 except the 
Kott-Liu, which was designed especially to handle data 
from stratified random samples.   We follow Korn and 
Graubard and set *n =n when ˆ( ) 0.v p =   
 
Let h hW N N=  for a stratified random sample with H 
strata.  The estimated overall proportion is 
ˆ ˆH

h hp W p= ∑ , where hp̂  is the observed stratum 
proportion of stratum h .   
 
Adapting the Edgeworth expansions in Hall and Cai, 
Kott and Liu (2007) actually discuss three different 
coverage intervals for data from a stratified random 
sample.  
 
 
Basic Kott-Liu Interval 
 

2 2
1 1 1 1ˆ ˆ( )KLL p z v p= + δ − + δ

2 2
1 1 1 1ˆ ˆ( )KLU p z v p= + δ + + δ ,                           (14) 
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The variance of p̂  is not a simple function of the true p 
and n under stratified random sampling as it is under 
simple random sampling.  As a result, V( p̂ ) must be 
estimated from the sample.  This estimation has its own 
random error, which cannot be completely eliminated 
from the Edgeworth expansion (moreover, keeping 
OP(1/n2) terms, like Cai does, becomes impossible).  
The following interval attempts to account for that 
additional source of error.   
 
DF-adjusted Kott-Liu Interval  
Replacing the z -score in equation (14) with a t-score 
from a Student t distribution can reduce the downward   
spikes when p is near 0 or 1.  A t-distribution needs a 
degrees-of-freedom calculation. Kott and Liu discuss a 
number of ways of estimating the effective degree of 
freedom.  When each stratum has at least 10 
observations, a nearly unbiased estimator for this 
quantity is  
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An asymptotically biased, but more stable, effective-
degrees-of-freedom estimator treats the hp  as if they 
were equal: 
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A slightly conservative policy (justified by 
observation) sets the estimated effective degrees of 
freedom at ),( 21 dfdfMindf =  and uses )1,( α−dft  in 
place of  z  in the lower and upper bounds defined in 
equation (13). 
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Kott-Liu iid Interval   
If an independent and identically distributed (iid) 
Bernoulli model is assumed, then a different way to 
generalize equation (12) is with 
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Since both the basic and DF-adusted Kott-Liu intervals 
are undefined when p̂ =0 or 1, Kott and Liu suggest 
using their iid method in equation (15) in this situation.  
In fact, when p̂  is near 0 or 1, it makes sense to use 
the iid method as the proportions cannot vary very 
much across the strata.  
     
 
3.2 Comparison of One-Sided Intervals under       
Stratified Random Sampling 
 
All the methods described in the text are compared 
under a stratified random sampling design using 
simulations. A population of 6,000 is divided into 3 
equal strata, that is, hN =2,000, 3,2,1=h .  The overall 
proportion p takes the values of 0.001, 0.002, 0.003, ..., 
0.998, 0.999.   The settings for the four stratum sample 
size allocations and comparative values for the ph are 
shown in Table 2.   
 
Table 2.  Simulation Settings 

Allocation of Binomial Proportion 
( 1p , 2p , 3p ) 

Stratum Sample 
Size Allocation 
( 1n , 2n , 3n ) (p,  p,  p) (p,  p-pq,  p+pq) 

10, 10, 10 A E 
15, 15, 15 B F 
10, 15, 20 C G 
20, 15, 10 D H 

 
The first sample size allocation, (10, 10, 10), has a total 
sample size of 30, our minimum.  The other three each 
have a total sample size of 45 with the minimum 
stratum sample size being 10.  One setting for the 
comparative stratum values of the ph features 
proportional allocation, (p, p, p).  The other, (p-pq, p, 
p+pq; where q = 1−p), in some sense maximizes the 

spread of the ph while being symmetrical and keeping 
all ph in the 0 to 1 range.  
 
In the simulations, we first generate a finite population 
of 2,000 units in each stratum h, denoted as hix = 1, 2, 
….., 2,000.  We then draw 1,000 stratified random 
samples for each stratum sample size allocation.  For 
each stratum proportion hp , we set 
 

 
1, if 2, 000
0, otherwise

hi h
hi

x p
y

<⎧
= ⎨
⎩

.   

  
The weighted estimate for the proportion of y=1 is 
calculated for each value of p and for each sample.  
The coverage intervals are constructed using the 
methods described earlier in the text with the coverage 
probabilities and the average distances calculated from 
the 1,000 samples for each p.   
 
Analogously with the simple random sample sampling 
case, only the simulation results for a lower bound 
need be considered.  Due to the space limitation, we 
only display figures for the simulation setting A.  
Similar conclusions hold for other settings with larger 
sample sizes and proportional allocation leading to 
better coverage probabilities across virtually all the 
methods.    
 
Figure 1 (on the last page) plots the coverage 
probabilities versus values of p for the sample size 
setting (10, 10, 10) and the ph setting (p, p, p).  As 
shown in Figure 1,  
 
• Wald and Arcsine have large biases and large 

oscillations in the coverage.  
• Poisson has large coverage probabilities, very 

close to 1 when p>0.5.   
• Clopper-Pearson is conservative with coverage 

probabilities almost always above the nominal 
level. 

• When p is in mid-range, say from 0.2 to 0.8,  
There are many good methods such as Jeffrey, 
Mid-P, Cai, Hall and Kott-Liu.  

• When p is near 0, Cai and Kott-Liu methods 
perform reasonable well and better than the others.  

• When p is near 1, Kott-Liu methods work fairly 
well.  The basic and DF-adjusted versions are 
virtually identical.  Estimating the effective 
degrees of freedom has little to no effect.   

• When p is near 1, Cai and Mid-P are also 
reasonable candidates, with the Mid-P getting 
more conservative than the others as p grows 
closer to 1. Like the Kott-Liu, these become 
extremely conservative very near 1.  
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Figure 2 shows the average distances of lower bounds 
for four methods.  For p small, Mid-P, Cai and DF- 
adjusted Kott-Liu methods have similar average 
distances, much shorter than Clopper-Pearson.  For p 
large, but not near 1, Mid-P, Kott-Liu and Cai are 
close, and much shorter than Clopper-Pearson.  When 
p gets near 1, Mid-P gets longer than Cai and Kott-Liu.  
The average distance of the DF-adjusted Kott-Liu is 
slightly longer than Cai, while DF-adjusted Kott-Liu 
has a slightly superior coverage.    
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.  Average Distances of Lower Bounds at 

95% Nominal Level for Simulation Setting A 
 

4.  Discussion 
 
After reviewing much of the literature on constructing 
one-sided coverage intervals under simple random 
sampling, we conducted our own empirical evaluation 
and found that, among the methods considered, the Cai 
and Kott-Liu had coverages closest to nominal.  We 
also confirmed that the Clopper-Pearson method 
always provided at least the nominal coverage, which 
many find reassuring. 
 
When we turned to stratified random sampling. 
Applying the effective-sample-size technique to the 
Clopper-Pearson (Korn-Graubard method) was still 

conservative with coverage probabilities almost always 
over the nominal level except when the sample size 
allocation is disproportional and p is near 1 for lower 
bound and near 0 for upper bound.  The Kott-Liu 
methods appeared slightly superior to the others, with 
the iid version having problems (not shown) when the 
stratum proportions are unequal. Adjusting the basic 
Kott-Liu method by its effective degrees of freedom 
did little in our simulations except under certain 
settings (not shown).  We also looked at more 
simulations for settings not listed in Table 2 and found 
that the proportional allocation of sample size gives a 
much better coverage probability than a disapportional 
allocation.   
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Figure 1.  Coverage Probabilities of Lower Bounds at 95% Nominal Level for Simulation Setting A 
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