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1. Introduction 
 
In stratified sampling, a total sample of n 

elements is allocated to each of 1, ,h H= ⋅⋅⋅ design 

strata and independent samples of hn elements are 
selected independently within strata. One of the 
important roles of the survey sampler is to determine 
the sample allocation to strata that will result in the 
greatest precision for sample estimates of population 
characteristics.  

Many studies have focused on sample allocation 
in stratified random sampling. The following 
approaches have been popular in survey sampling 
practice: (i) proportional sample allocation to strata, 
and (ii) Neyman (1934) sample allocation.  

Proportional sample allocation assigns sample 
sizes to strata in proportion to the stratum population 
size.  Proportional allocation can be used when 
information on stratum variability is lacking or 
stratum variances are approximately equal. Since 
proportional allocation results in a self-weighting 
sample, population estimates and their sampling 
variances are easily computed.   

Neyman allocation can be used effectively to 
minimize the variance of an estimator if the survey 
cost per sampling unit is the same in all strata but 

element variances, 2
hS , differ across strata. This 

allocation method requires knowledge of the values 
of the standard deviations, hS , of the variable of 

interest y for each stratum. This information on 
stratum-specific variance is often not available in 
practice. 

  A sample allocation method with practical 
advantages over Neyman allocation is termed 
x − optimal allocation. The x − optimal allocation 
method uses an auxiliary variable x , highly 
correlated with the y and replaces the stratum 

standard deviations of the y  with those of the x  in 
the Neyman allocation formula. Of course, this 
allocation is not strictly optimal if the correlation 
between x and y is not perfect.  

As an alternative, Dayal (1985) showed that a 
linear model with respect to x  and y can be 

appropriately used in the allocation of a stratified 
random sample. This technique is called model-
assisted allocation. 

In fact in many stratified sample designs, 
especially those employed in business surveys, 
simple random sampling without replacement can be 
employed to select elements within strata. But it is 
well-known that sampling strategies with varying 
probabilities such as probability proportional to size 
( )PPS  sampling without replacement are superior to 
simple random sampling with respect to the 
efficiency of estimator of population totals and 
related quantities. PPS sampling without replacement 
is often called inclusion probability proportional to 
size ( )IPPS  sampling or PSπ  sampling. A number 

of  PSπ  sampling schemes have been developed to 
select samples of size equal to or greater than two, 
and most of them are not easily applicable in 
practice. However, some techniques such as 
Sampford�s (1967) method, are not restricted to 
stratum sample size of 2hn =  and may be an 
attractive option for reducing sampling variance 
compared to alternative designs. 

Rao (1968) discusses a sample allocation 
approach that minimizes the expected variance of the 
Horvitz and Thompson (H-T) (1952) estimator under 

PSπ  sampling and a superpopulation regression 
model without the intercept. Rao�s method for 
sample allocation results in the same expected 
sampling variance for any PSπ  sampling design. 

 
Rao�s (1968) discussion raises several questions: 

 
(1) It may be desireable to introduce an intercept term 
into the superpopulation regression model. 
Considering the intercept term, what is the proper 
strategy for sample allocation in PSπ  sampling? 
(2) If we use Sampford�s (1967) PSπ sampling 
method, what sample allocation strategy would be 
appropriate? 

 
In this paper, we attempt to answer these 

questions.  We first review Rao�s (1968) method. We 
show that the presence of the intercept in the model 
produces a more complicated allocation problem, but 
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one that can be easily solved.  In addition, we employ 
optimization theory to show how to optimally 
determine stratum sample sizes for Sampford�s 
selection method. 

 
2. Revisiting Rao’s method 
 
 
 
 

Consider a finite population consisting of 
1, ,h H= ⋅⋅⋅  strata with hN  units in stratum h .  Let 

s  be a sample of size hn drawn from each stratum by 

a given sampling design ( )P ⋅  and let S  be the set of 
all possible samples from each stratum. The total 
sample size n  is :  

1

H

h
h

n n
=

=∑ .                               (2.1) 

Then the probability that the unit i in the stratum 
h  will be in a sample, denoted hiπ , is given by 

 
,

( )hi
i s s S

P sπ
∈ ∈

= ∑ , 1, ,h H= ⋅⋅⋅ , 1, , hi N= ⋅⋅⋅  ,    (2.2) 

which are called the first-order inclusion 
probabilities.  

Also, the probability that both of the units i and 
j will be included in a sample, denoted hijπ , is 

obtained by  
 

, ,

( )hij
i j s s S

P sπ
∈ ∈

= ∑ , 1, ,h H= ⋅⋅⋅ , 1, , hi j N≠ = ⋅⋅⋅  .   

(2.3) 

These are termed the joint selection probabilities or 
the second-order inclusion probabilities. 

 
Let hiy  be the value of y for the unit i in the 

stratum h .  As an estimator of the population total 

1 1

hNH

hi
h i

Y y
= =

=∑∑ , consider the H-T  estimator  

�
hnH

hi
HT

h i hi

y
Y

π1 1= =
=∑∑  .                         (2.4) 

If 0hiπ > , this estimator is an unbiased estimator 
of Y , with variance: 

 

( ) ( )�
h hN NH

hjhi
HT hi hj hij

h i j i hi hj

yy
Var Y π π π

π π

2

1 1= = >

⎛ ⎞
= − −⎜ ⎟⎜ ⎟

⎝ ⎠
∑∑∑ . 

(2.5) 
 
Rao (1968) considered the following 

superpopulation regression model without the 
intercept: 

 

hi hi hiy xβ ε= + ,                         (2.6) 
 

where hix  is the value of x  for the unit i in stratum 

h , ( )hi hi hiE y x xξ β= , ( ) 2 g
hi hi hiV y x xξ σ= , 

1 2g≤ ≤ , and ( ), , 0hi hj hi hjCov y y x xξ = . Here Eξ  

denotes the model expectation over all the finite 
populations that can be drawn from the 
superpopulation. 

Then we have the following expected variance 
under the model (2.6): 

 

( )�
hNH

g
HT hi

h i hi

E Var Y xξ σ
π

2

1 1

1
1

= =

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑∑ ,         (2.7) 

where, hi h hi h hi hn p n x Xπ = = , 
1

hN

h hi
i

X x
=

=∑ . 

 
To minimize (2.7) subject to the condition (2.1), 

using the Lagrange multiplier λ , consider 
 

( )�
hNH H

g
HT h hi

h h i h hi

E Var Y n n x
n pξ λ σ 2

1 1 1

1
1

= = =

⎛ ⎞⎛ ⎞+ − = −⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠
∑ ∑∑  

                                                   
H

h
h

n nλ
1=

⎛ ⎞+ −⎜ ⎟
⎝ ⎠
∑ . 

(2.8) 
 
Equating (2.8) to zero and differentiating with 

respect to hn , we have 
 

2

1

1 h gN
hi

h
i hi

x
n

p

σ
λ =

= ∑ .                       (2.9) 

 
Substituting hn  in (2.1), we have 
 

2

1 1

1 hN gH
hi

h i hi

x
n

p

σ
λ = =

= ∑ ∑ .                   (2.10) 

 

Replacing  1 λ  in (2.9) with (2.10), we have the 
following sample allocation in each stratum: 

 

1

1

1

1 1

h

h

N
g

h hi
i

h NH
g

h hi
h i

X x

n n

X x

−

=

−

= =

=
∑

∑ ∑

.                 (2.11) 
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Note that if 2g = , the allocation under the 

superpopulation model and PSπ  sampling reduces 
to: 

1

h
h H

h
h

X
n n

X
=

=
∑

,                         (2.12) 

which is a proportional sample allocation to the 
stratum. 

Also, Rao showed that in terms of expected 
variance, unstratified PSπ  sampling under the same 
superpopulation model is inferior to stratified PSπ  
sampling with the allocation (2.11). 

Looking at the expected variance in (2.7) and the 
sample allocation in (2.11), it does not involve the 
joint probabilities hijπ  in each stratum. It indicates 

that under the model without the intercept (2.6) the 
specific properties of a given PSπ  sampling scheme 
(properties that determine the hijπ ) are not reflected 

in the sample allocation, resulting in the same sample 
allocation for any PSπ sampling. Hence the 
following issues, as mentioned in the Introduction, 
are of interest. 

 
(1) The superpopulation regression model which we 
may wish to employ in many surveys may be :      

 

hi hi hiy xα β ε= + + ,                       (3.1) 
 which is a general form and (2.6) is a special form of 
(3.1) when 0α = .           
Considering the intercept term α , we need to          
reexamine the most appropriate sample allocation 
strategy for PSπ  sampling. 
 
(2) Although it will be shown in the following section 
that using (3.1) gives a sample allocation involving 
the joint probabilities  hijπ , and these differ according 

to the chosen PSπ  sampling, if we focus on 
Sampford�s (1967) method for PSπ  sampling, what 
sample allocation strategy would be appropriate? 

Section 3 will address these issues of sample 
allocation. 

 
3. Alternative Sample Allocations  

 
We assume two different models involving an 

intercept term: 
 

Model I: 
 hi hi hiy xα β ε= + + ,  1, ,h H= ⋅⋅⋅ , 1, , hi N= ⋅⋅⋅                      

(3.1) 
where hiε  is numerically negligible, that is, x  

explains y well. 

 
 Model II: 

 hi hi hiy xα β ε= + + ,  1, ,h H= ⋅⋅⋅ , 1, , hi N= ⋅⋅⋅     
(3.2)                   

where ( )hi hi hiE y x xξ α β= + , ( ) 2 g
hi hi hiV y x xξ σ= ,  

and ( ), , 0hi hj hi hjCov y y x xξ = . 

 
Instead of (2.5) we consider the following form of 

the variance of the H-T estimator 
 

( ) ( )�
h h hN N NH H

hijhi hi
HT hi hj

h i h i j ihi hi hj

y
Var Y y y

ππ
π π π

2

1 1 1 1

1
2

= = = = >

−
= +∑∑ ∑∑∑

                                     
h hN NH

hi hj
h i j i

y y
1 1

2
= = >

− ∑∑∑             (3.3) 

 
Theorem 3.1.  Under the Model I, the minimization 
of the expected variance of (2.4) under PSπ  
sampling is equivalent to minimizing   
 

H H
h h

h hh h

A B

n n2
1 1= =

+∑ ∑  ,                           (3.4) 

where, 

 
2

2

1

( )
2

h hN N
hi hj

h h hij
i j i hi hj

x x
A X

x x

α αβ
π

= >

+ +
= ∑∑        (3.5) 

and 

 
2

2

1

( )hN
hi

h h h
i hi

x
B X X

x

α β β
=

⎛ ⎞+
= −⎜ ⎟

⎝ ⎠
∑ .           (3.6)  

 
Proof.  For the expected variance of (2.4) under 
Model I the third term in (3.3) is a fixed value that 
does not involve nh, and the other terms are given by: 
 

( )
( )

h hN NH H
h hi

hi
h i h ih hi

X x
x

n x

α β α β
2

2

1 1 1 1= = = =

⎡ ⎤+
− +⎢ ⎥

⎣ ⎦
∑ ∑ ∑∑  

( )h hN NH
hi hjh

hij
h i j i hi hjh

x xX

x xn

α αβ
π

22

2
1 1

2
= = >

⎡ + +
+ ⎢
⎢⎣
∑ ∑∑  

H H
h

h
h h h

X
X

n
β β

2
2 2 2

1 1= =

⎤
+ − ⎥

⎦
∑ ∑ , 

(3.7) 

by noting ( ) /
h hN N

hij h h
i j i

n nπ
1

1 2
= >

= −∑∑  in the second 

term in (3.3). 

Since ( )
hNH

hi
h i

xα β 2

1 1= =

+∑∑ and 
H

h
h

Xβ 2 2

1=
∑ are also fixed, 

the quantity to be minimized in (3.7) is: 
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( )hNH
h hi

h ih hi

X x

n x

α β 2

1 1= =

⎡ ⎤+
⎢ ⎥
⎣ ⎦
∑ ∑  

( )h hN NH H
hi hjh h

hij
h i j i hhi hjh h

x xX X

x xn n

α αβ
π β

22 2
2

2
1 1 1

2
= = > =

⎡ ⎤+ +
+ −⎢ ⎥
⎢ ⎥⎣ ⎦
∑ ∑∑ ∑  

(3.8) 
The proof follows from substitution of   
 

2
2

1

( )
2

h hN N
hi hj

h h hij
i j i hi hj

x x
A X

x x

α αβ
π

= >

+ +
= ∑∑  

and 
 

2
2

1

( )hN
hi

h h h
i hi

x
B X X

x

α β β
=

⎛ ⎞+
= −⎜ ⎟

⎝ ⎠
∑  

in (3.8). 
 
Remark 3.1. Minimization of (3.4) is a simple 
problem in terms of hn  because the hA  and the hB  
are known values. 
 

Consider Sampford�s (1967) PSπ  sampling 
method for selecting hn  elements in each stratum. 
Although we can use (3.4) to decide the stratum 
sample size, we still don�t know the values of the 
joint probabilities. The following approximate 
expression for hijπ  correct to 4( )O N −  may be useful: 

 

( ) 2

1

( 1) 1
hN

hij h h hi hj hi hj hk
k

n n p p p p pπ
=

⎡ ⎧ ⎫
− + + −⎢ ⎨ ⎬

⎩ ⎭⎣
∑�  

( ){ 2 2 3

1

2 2 ( 2)
hN

hi hj hk h hi hj
k

p p p n p p
=

+ + − − −∑  

( )( ) ( )
2

2 2

1 1

3 3
h hN N

h hi hj hk h hk
k k

n p p p n p
= =

⎤⎫⎛ ⎞ ⎪⎥+ − + − − ⎬⎜ ⎟
⎥⎝ ⎠ ⎪⎭⎦

∑ ∑ , 

(3.9) 
which was derived by Asok and Sukhatme (1976). 

 
From (3.4) and (3.9) we obtain the following 

theorem. 
 

Theorem 3.2.  Under the Model I, the sample 
allocation problem to minimize the expected variance 
of (2.4) under Sampford�s method when using the 
joint probabilities, correct to 4( )O N − , given in (3.9) 
is equivalent to minimizing 
 

                 
1 1

H H
h

h h
h h h

D
C n

n= =
+∑ ∑ ,                        (3.10) 

where  

{ }2
1

1

2 ( )
h hN N

h hi hj hij
i j i

C x xα αβ π
= >

= + +∑∑ ,             (3.11) 

( )
2

2 2
1

1 1

h hN N

hij hi hj hk hi hj hk
k k

p p p p p pπ
= =

⎛ ⎞
= + − − ⎜ ⎟

⎝ ⎠
∑ ∑ ,  (3.12) 

{ }2
2

1

2 ( )
h hN N

h h hi hj hij
i j i

D B x xα αβ π
= >

= − + +∑∑ ,     (3.13)           

and                 

( ) 2
2

1

1
hN

hij hi hj hk
k

p p pπ
=

⎧ ⎫
= + + −⎨ ⎬

⎩ ⎭
∑  

( )2 2 3

1

2 2
hN

hi hj hk
k

p p p
=

+ + − ∑  

( )
2

2 2

1 1

2 3 3
h hN N

hi hj hi hj hk hk
k k

p p p p p p
= =

⎛ ⎞
+ − + + ⎜ ⎟

⎝ ⎠
∑ ∑ . (3.14) 

 
Proof.  Substituting hijπ  from (3.9) in (3.5) for the 

first term of (3.4), we get:  
 

{ }( )
h hN NH H

h
hi hj hij

h h i j ihh

A
x x

nn
α αβ π2

02
1 1 1

1
2 1

= = = >

⎛ ⎞
= − + +⎜ ⎟

⎝ ⎠
∑ ∑ ∑∑ , 

(3.15)  
where: 

( )
hN

hij hi hj hk
k

p p pπ 2
0

1

1
=

⎡ ⎧ ⎫
= + + −⎢ ⎨ ⎬
⎢ ⎩ ⎭⎣

∑  

( ){ 2 2 3

1

2 2 ( 2)
hN

hi hj hk h hi hj
k

p p p n p p
=

+ + − − −∑  

( )( ) ( )
2

2 2

1 1

3 3
h hN N

h hi hj hk h hk
k k

n p p p n p
= =

⎤⎫⎛ ⎞ ⎪⎥+ − + − − ⎬⎜ ⎟
⎥⎝ ⎠ ⎪⎭⎦

∑ ∑ . 

(3.16)  
 
Expressing (3.16) in terms of hn ,  we have: 
 

0 1 2hij h hij hijnπ π π= + .                   (3.17) 

 
Substituting (3.17) in (3.15), we obtain  
 

 { }( )
h hN NH H

h
h hi hj hij

h h i j ih

A
n x x

n
α αβ π2

12
1 1 1

2
= = = >

= + +∑ ∑ ∑∑  

{ }( )
h hN NH

hi hj hij
h i j i

x xα αβ π2
2

1 1

2
= = >

+ + +∑∑∑  

{ }( )
h hN NH

hi hj hij
h i j i

x xα αβ π2
1

1 1

2
= = >

− + +∑∑∑  

{ }( )
h hN NH

hi hj hij
h i j ih

x x
n

α αβ π2
2

1 1

1
2

= = >
− + +∑ ∑∑ . 
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(3.18)  
 
Since the second and third terms in (3.18) are the 
known values, the minimization of (3.18) reduces to 
minimizing:  
 

{ }( )
h hN NH

h hi hj hij
h i j i

n x xα αβ π2
1

1 1

2
= = >

+ +∑ ∑∑  

{ }( )
h hN NH

hi hj hij
h i j ih

x x
n

α αβ π2
2

1 1

1
2

= = >
− + +∑ ∑∑ . 

(3.19) 
 

Adding 
H

h

h h

B

n1=
∑  in (3.19), we have the following 

equivalent minimization problem to the minimization 
of (3.4): 
 

{ }( )
h hN NH

h hi hj hij
h i j i

n x xα αβ π2
1

1 1

2
= = >

+ +∑ ∑∑  

{ }( )
h hN NH

h hi hj hij
h i j ih

B x x
n

α αβ π2
2

1 1

1
2

= = >

⎡ ⎤+ − + +⎣ ⎦∑ ∑∑ . 

(3.20) 
 
This completes the proof. 
 
Remark 3.2. (3.10) is a simple allocation problem in 
terms of hn  because the hC  and the hD  are the 
known values. 
 
Remark 3.3. We can define the following 
optimization problem with respect to hn : 
 

Minimize 
1 1

H H
h

h h
h h h

D
C n

n= =
+∑ ∑              (3.21) 

subject to, 
 

h hn N≤ , 1, ,h H= ⋅⋅⋅ ,                   (3.22) 

2hn ≥ , 1, ,h H= ⋅⋅⋅ ,                     (3.23) 
and 

1

H

h
h

n n
=

=∑ .                                     (3.24) 

 
This problem may be easily handled by convex 
mathematical programming algorithms and the 
solution provides an efficient sample allocation 
strategy when using Sampford�s method under the 
model assumption of (3.1).  

 
We obtain the following theorem regarding the 

minimization of the variance of the H-T estimator 

(2.4) in PSπ  sampling under the assumption of the 
model (3.2).  

 
Theorem 3.3.  Under Model II, minimizing the 
expected variance of (2.4) under PSπ  sampling 
amounts to minimizing:   
 

* *H H
h h

h hh h

A B

n n2
1 1= =

+∑ ∑  ,                           (3.25) 

where, 

 ( )( )* 2 1 1 1

1

2
h hN N

h h hj hi hi hij
i j i

A X x x xα α β π− − −

= >
= − +∑∑       (3.26) 

and 

 * 2 1

1

hN
g

h h hi
i

B X xσ −

=

= ∑ .                                           (3.27)  

 
Proof.  Consider a different form of (2.5) using 

hi h hin pπ =  : 
 

�( ) h hN NH
hij hjhi

HT hi hj
h i j i hi hjh

yy
Var Y p p

p pn

π
2

2
1 1= = >

⎛ ⎞⎛ ⎞
= − −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑∑∑ .   

(3.28) 
By using   

2 2 2 2 2 2g
hi hi hi hiE y x x xξ σ α β αβ= + + +             (3.29)                    

and  
2 2( ) ( )hi hj hi hj hi hjE y y x x x xξ α αβ β= + + + ,     (3.30) 

 
 we obtain  

hj g ghi
h hi

hi hj

yy
E X p

p pξ σ
2

2 22 −
⎛ ⎞

− =⎜ ⎟⎜ ⎟
⎝ ⎠

 

           ( )hj hi

h hi
hi hj

x x
X x

x x
α α β2 12 −−

+ + . (3.31) 

 
Then we get: 

�( ) h hN NH
hijg g

HT h hi hi hj
h i j i h

E Var Y X p p p
nξ

π
σ 2 2

2
1 1

2 −

= = >

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑ ∑∑     

( )
h hN NH

hij hj hi
h hi hj hi

h i j i h hi hj

x x
X p p x

n x x

π
α α β2 1

2
1 1

2 −

= = >

⎛ ⎞−⎛ ⎞
+ − +⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑ ∑∑

( ) ( )
h hN NH

hj hi hi
h i j i

EV x x xα α β1

1 1

2 −

= = >

⎛ ⎞
= + − +⎜ ⎟

⎝ ⎠
∑ ∑∑    

          ( ) ( )
h hN NH

h
hj hi hi hij

h i j ih

X
x x x

n
α α β π

2
1 1 1

2
1 1

2 − − −

= = >
+ − +∑ ∑∑  

             (3.32) 

with ( )
hN gH

gh
h hi hi

h i h

X
EV n p p

n
σ 2 1

1 1

1 −

= =
= −∑∑  

Section on Survey Research Methods

3065



( )
h

gN gH
h hi

h hi
h i h h hi

X x
n p

n X p
σ 2

1 1

1
1

= =

⎛ ⎞ ⎛ ⎞
= − ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑∑  

hNH
g
hi

h i h hi

x
n p

σ 2

1 1

1
1

= =

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑∑  

h hN g NH H
ghi

h hi
h i h ih

x
X x

n
σ σ

1
2 2

1 1 1 1

−

= = = =
= −∑∑ ∑∑ .      (3.33) 

 
Since the second term in (3.32) and the second term 
in (3.33) are fixed in terms of hn , the minimization 
of the model expectation of (3.28) reduces to 
minimizing: 
 

( ) ( )
h hN NH

h
hj hi hi hij

h i j ih

X
x x x

n
α α β π

2
1 1 1
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Since (3.34) equals (3.25), the proof is completed. 
 
Remark 3.4. Minimizing (3.25) is a simple problem 
in terms of hn  because the *

hA  and the *
hB  are the 

known values. 
 
Remark 3.4. (3.33) is a different form of (2.7). The 
model expectation of (3.28) involves (2.7) plus the 
other terms due to Model II with the intercept term, 
as shown in (3.32). 

 
Theorem 3.4.  Under the Model II, the sample 
allocation problem under Sampford�s sampling 
scheme to minimize the expected variance of (2.4), 
when using the joint probabilities correct to 4( )O N −  
given in (3.9), is equivalent to minimizing: 
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where  
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Proof.  Substituting (3.9) in the first term of (3.25) 
and using (3.17) with (3.12) and (3.14), we obtain   
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 (3.38) 
 
Since the second and third terms in (3.38) are equal,  
the minimization of (3.38) reduces to minimizing the 
other terms, that is, 
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(3.39) 
 
Thus, the minimization of (3.25) with (3.26) and 
(3.27) amounts to the one of 
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Accordingly, the following reduced form from (3.39) 
can be obtained. 
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Hence, we have proved the theorem. 
 
Remark 3.5. (3.35) is a simple allocation problem in 
terms of hn  since the *

hC  and the *
hD  are the known 

values. 
 
Remark3.6. In order to find a solution for hn , we 
may define the following optimization problem: 
 

Minimize 
*

*

1 1

H H
h

h h
h h h

D
C n
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subject to 
 

h hn N≤ , 1, ,h H= ⋅⋅⋅                      (3.42) 
and 

2hn ≥ , 1, ,h H= ⋅⋅⋅ .                     (3.43) 
 
It is noted that the condition (2.1) may not be used as 
the constraint, different from Remark 3.3. 
 
Corollary3.1. Under Model II, without the intercept 
the minimization of the expected variance of (2.4) 
under PSπ  sampling is equivalent to minimizing:   
 

*
hNH

h i h

X
n1 1

1

= =
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where  
* g

h hiX X x 1−=                              (3.45) 
 
Proof.  When 0α = , (3.32) in Theorem 3.3  reduces 
to simply EV , which is expressed as (3.33). 2σ  and 
the second term in (3.33) are fixed values with 
respect to hn , and the minimization of (3.33) reduces 
to the one of (3.44).  Hence, we have the corollary. 

 
Remark 3.7. (3.44) is quite a simple allocation 
problem in terms of hn  not depending on the joint 

probabilities hijπ . 

 
 4. Discussion 
 

 We have addressed the topic of efficient sample 
allocation in stratified samples using more general 
superpopulation regression models than those 
investigated by Rao (1968). Under more general 
models that include an intercept term, we have 
developed several theorems to be useful for deciding 
sample allocation in PSπ  sampling designs. Also, 
through the theorems we have showed how to apply 
this sample allocation theory for Sampford�s (1967) 
sampling method, one of the more common PSπ  
sampling designs used in survey practice. 

We determined that the sample allocation 
approaches to mimizing the model expectation of the 
variance of the H-T estimator may depend on the 
expressions of the variance.   

Based on the theorems developed in this paper, 
the optimization problem with respect to the stratum 
sample sizes can be solved by using software 
involving convex mathematical programming 
algorithms. This is a straightforward approach for 
sample allocation when using more efficient PSπ  
sampling methods. 

In addition to Sampford� sampling, the approach 
can be applied to a variety of PSπ  sampling without 
replacement designs.   

In future work it will be important to extend the 
theory and methods described here to allocation 
problems under more complicated superpopulation 
models and situations where the superpopulatin 
model can vary across strata 
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