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Abstract 
 

In a response-adaptive design (RAD), we review and 
update the trial on the basis of outcomes in order to 
achieve a specific goal. Optimal designs for clinical 
trials are usually constructed under a single objective. 
In this paper, we develop a new adaptive allocation rule 
to improve the current strategies of building response 
adaptive designs to construct multiple-objective 
designs. The purpose of this new rule is to increase both 
estimation precision and treatment benefits by assigning 
more patients to a better treatment. We demonstrate that 
the designs constructed under the new proposed 
allocation rule are more efficient than fixed optimal 
designs in terms of both the mean squared error and 
improved patient care. 
 
Keywords: response-adaptive design (RAD), multiple-
objective designs, self and simple mixed carryover 
effects model, evaluation function, optimality criteria.  
 
 

1. Introduction 
 
There has been a growing interest in developing clinical 
trials that are designed to ensure that the treatment 
allocation strategy is better informed from all available 
sources. This interest has been fueled, in part, by 
evidence that some health interventions are largely 
ineffective and even harmful, and therefore a waste of 
public resources and unethical. In response-adaptive 
designs (RAD), we modify the trial on the basis of 
outcomes in order to achieve a specific goal. Optimal 
designs have traditionally been constructed to satisfy a 
single objective. For example, Kushner (2003) proposed 
an adaptive allocation rule that was developed by 
replacing the classical optimal design strategy with a 
response adaptive allocation method. The purpose was 
to maximize the information matrix for treatment 
effects based on already-observed subjects. In classical 
sequential trials, the decision to terminate the trial 
reflects a concern that sample size will be minimal 
(Armitage, 1975). In play-the-winner designs, the goal 
is to maximize the number of subjects receiving a better 
treatment (Zelen, 1969). However, such single-
objective designs leave something to be desired since 
investigators often need to deal with more than one 
objective when designing an experiment (Moerbeek and 
Wong, 2002).  
 
In this paper, we aim to construct efficient multiple-
objective designs that will both increase estimation 
precision and improve patient care by maximizing the 
proportion of patients receiving a better treatment. 
Since constructing a design is highly sensitive to the 
model employed, we use a model that accommodates 

several types of carryover effects and random subject 
effects to discuss the robustness of designs using other 
models. We also discuss applications to experiments 
using continuous responses.  
 
Section 2 describes the general model we consider in 
this paper. Section 3 defines an evaluation function and 
the optimal design selection criteria for measuring the 
performance of a treatment sequence and incorporating 
multiple objectives. We then present the new allocation 
rule in Section 4. Adaptive designs are constructed in 
Section 5, followed by conclusions and suggestions for 
further work.  
 

2. The Model 
 
Traditionally, models for RMD have accommodated 
simple first-order carryover effects (for example 
Hedayat and Afsarinejad, 1978). Carriere (1994b) 
considered some alternate models, limiting the study to 
three period designs. Afsarinejad and Hedayat (2002) 
proposed a model that allows for two different types of 
carryover effects from each treatment—the self and 
mixed carryover effects. They also studied optimal two-
period repeated measurements designs with two or 
more treatments using a model with fixed subject 
effects.  
 
In this paper, we consider a model that accommodates 
random subject effects along with self and mixed 
carryover effects as  
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where ijky  denotes the response variable for the thj  

subject given that treatment sequence k  in period i , 
μ  is an overall mean, iπ  and jkξ  are the period and 

subject effects, respectively, [ ]kd i j,  denotes the 
treatment used for subject j  given treatment sequence 

k  in period i , 1 2 ...i p= , , , , 1 2 ... kj N= , , , , 

1 2 ...k s= , , , , kN  is the number of subjects in 

sequence k , s  is the total number of treatment 
sequences, and kk

N N=∑  is the total number of 

subjects in the study. Both [ 1 ]kd i jγ − ,  and [ 1 ]kd i jϕ − ,  

represent carryover effects, while ijkδ  is an indicator 

variable, taking 1 if [ ] [ 1 ]k kd i j d i j, = − ,  and 0 

otherwise. Thus [ 1 ]kd i jγ − ,  is the carryover effect of one 
treatment followed by a different treatment, called the 
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mixed carryover effect, while [ 1 ]kd i jϕ − ,  is the carryover 
effect from a treatment onto itself, called self carryover 
effect, with [0 ] [0 ] 0

k kd j d jγ ϕ, ,= = . jkξ  and ijkε  are 
mutually independent random effects with mean 0 and 
variance 2

ξσ  and 2
εσ , respectively.  

 
3. Evaluation Function and the Selection Criteria 

 
3.1 Evaluation Function 
 
Performance-driven and multi-objective designs are 
commonly used in engineering research. For example, 
one may need to simultaneously optimize various 
performance measures when designing a vehicle 
suspension. These performance measures capture 
desirable properties such as ride comfort and handling. 
Here, we introduce the concept of performance 
evaluation to repeated measurement designs. In order to 
assign more patients to better-performing treatment 
sequences, we need a mechanism to quantitatively 
evaluate the performance of each treatment sequence. 
Therefore, we will define an evaluation function for a 
treatment sequence.  
 
Properties of an Evaluation Function: An evaluation 
function, ( )kg ⋅ , for treatment sequence k  based on the 
existing data satisfies the following properties:  
1) It is non-negative;  
2) It is monotonic.  
 
Obviously, defining an evaluation function for a given 
treatment sequence is not unique. As long as the above 
two properties are satisfied, one can define various 
types of evaluation functions. Based on a pre-defined 
evaluation function, when two treatment sequences 
have the same values, we say that the performance of 
these two treatment sequences is indistinguishable.  
 
The criterion issue, that is, the explicit definition of 
treatment success, is a pervasive problem. In the context 
of clinical trials for medicinal products, we can define 
an evaluation function on the basis of the desirable 
characteristics of the primary outcome. Following are 
two examples.  
 
Example 1: Venipuncture and intravenous (IV) line 
placement is a procedure that is commonly performed 
in pediatric emergency departments. The first attempt at 
line placement is often unsuccessful, and further 
attempts follow. To investigate whether using 
ultrasound instead of the traditional landmark technique 
can improve the success rate of peripheral IV 
placement, one can consider a synthetic, two-treatment 
two-period repeated measurement design, where 10 
patients are randomly assigned to the ultrasound 
technique (A) or the conventional landmark technique 
(B), and dichotomous responses, first attempt success 
rate (1 if success, 0 if failure) are collected. The binary 
data are given in Table 1.  
 
We advocate the idea from the play-the-winner rule and 

evaluate the performance of a treatment sequence by 
calculating the probability of success over all subjects, 
given that particular treatment sequence. Thus, an 
evaluation function for treatment sequence k can be 
defined as /k Kg S K= , where KS  denotes the 
total number of successes for patients given treatment 
sequence k  in all periods, and K  denotes the total 

number of patients given treatment sequence k . 
 
In our example, the corresponding value for each 
possible treatment sequence, based on the above 
evaluation function becomes: 5 / 3 1 67AAg = = . ;  

2 / 2 1ABg = = ; 2 / 3 0 67BAg = = . ;  and 2 / 2 1BBg = = .  
Therefore, the observed data indicates that treatment 
sequence AA  is the best of these four possible 
treatment sequences. Also, the performance of 
treatment sequences AB  and BB  is currently 
indistinguishable.  
 
Example 2: Let us consider another two-treatment two-
period repeated measurement design for a study of the 
treatment effect of reducing body temperature when a 
patient has a fever. Normal body temperature is 
considered to be 37o C, and a temperature above 37o C 
is described as a fever. In this example, another set of 
10 patients was observed, as shown in Table 1. 
 
In this case, the evaluation function can be defined as a 
sample deviation from the value of 37o C. A smaller 
value of kg  indicates a treatment sequence that 
successfully reduces the body temperature of a patient 
to normal  

2 2
1

( 37)ijki j
k

y
g

K
=

−
=
∑ ∑    

where ijky  is the body temperature for the thj  subject 

given treatment sequence k  in the thi  period, and K  
is the total number of patients given the treatment 
sequence k . 
 
In this example, we have 0 63;AAg = .  

0 875;ABg = . 1 75;BAg = . and 6 25BBg = . . Of the four 

possible treatment sequences, treatment sequence AA  
performs the best.  
 
Note that the function for Example 1 basically 
calculates the mean response, while that for Example 2 
calculates the sample variance for each sequence. 
However, any function that satisfies the two properties 
described earlier can be used. 
 
3.2 Selection Criteria 
 
Now we define the optimal selection criteria for our 
allocation rule.  
 
Consider 
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where ( )Θ ⋅  is an optimality criteria function, such as 
the determinant (D-optimality), the trace (A-optimality) 
or the maximum eigenvalue (E-optimality) of the 
information matrix, and 1l kg − ,  is a suitably defined 

evaluation function based on the first ( 1)l −  patients 

given treatment sequence k , with ( )Ok , the treatment 
sequence that maximizes the optimality criteria function 

( )Θ ⋅ , and ( )Ek , the best treatment sequence based on 
the observed data on the first ( 1)l −  patients under the 

evaluation function 1, ( )l kg − ⋅ . Without loss of 

generality, we assume that a higher value of 1l kg − ,  
indicates a better treatment sequence.  
 
The observed information matrix is ^

1( )1 lHlA −−
, which 

is estimated on the basis of data available from the first 
( 1)l −  patients using their allocation-and-response 

history 1lH − . The information in this matrix includes: 
1) the number of patients assigned to each treatment 
sequence, and 2) the value of the response variable in 
each time period for each patient.  
 
The estimated expected Fisher information matrix after 
the thl  observation, given the history of the first 
( 1)l −  patients and the assumption that the thl  patient 

will be treated by treatment sequence k , is 
^

1( )k
l lH −A . 

We can use the plug-in method, where the unknown 
parameters in 1( )k

l lH −A  are estimated on the basis of 

observed data from the first ( 1)l −  patients.  
 
The overall selection criterion Λ  has two components. 
The first component deals with choosing the treatment 
sequence to maximize the information matrix. The 
second deals with choosing the treatment sequence that 
gives the best performance based on the observed data. 
Prior to the experiment, investigators can choose a 
parameter [0,1]λ ∈  to balance the two objectives. The 
value of λ  gives weights to these two elements. 
When 1λ = , we have the traditional criterion of a 
statistical optimal design problem. When 0λ = , all 
weights are given to choose the design based on the 
efficacy of treatment. The choice is often driven by 
what researchers want to emphasize. We will discuss 
the effect of using different λ  values along with 
specific applications in Section 5. The ultimate goal is 
to assign a patient to a sequence k that maximizes Λ . 
 
To illustrate the utility of the evaluation function and 
the selection criteria, we consider a matrix 

representation of model (1) 
        [ ]jk kE =y X β ,   (3) 

where ( )T
jk ijky=y  is a 1p× vector of observations 

from subject j  in treatment sequence k , β  is the 

column vector of unknown parameters, and kX  is the 

design matrix for treatment sequence k . 
 
Then we define the observed information matrix given 
the data from the first ( 1l − ) patients  

1

1^^
1

l

T
l k k k

k H
N

−

−

−
∈

= ∑ X C XA ,  (4) 

where 
^
C  is the estimated variance-covariance matrix 

for the response vector jky .  
 
Under the equicorrelated covariance assumption, one 
can estimate the variance-covariance matrix using  

^ 2 2^ ^
[ ] [ ] [ ] T

p p pε ξσ σ= +C I 1 1 ,  (5) 

where 2^
εσ  and 2^

ξσ  are estimated using allocation and 

response history up to the first ( 1l − ) patients, [ ]pI  is a 

p p×  identity matrix, and [ ]p1  is a 1p×  vector of 
ones. 
 
The estimated information matrix, given the history 

1lH −  and the assumption that the thl  patient receiving 

the treatment sequence k , will become 
1^^ ^

1 1( )k T
l l l k kH

−

− −= + X C XA A .              (6) 
 
3.3 Special Cases 
 
For two-period designs, the design matrix kX  for a 

given treatment sequence k  becomes 
1 0 1 0 0
1 1 1 0 1AA
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

X , 

1 0 1 0 0
1 1 1 1 0AB
⎛ ⎞

= ⎜ ⎟−⎝ ⎠
X ,  

1 0 1 0 0
1 1 1 1 0BA

−⎛ ⎞
= ⎜ ⎟−⎝ ⎠

X , 

1 0 1 0 0
1 1 1 0 1BB

−⎛ ⎞
= ⎜ ⎟− −⎝ ⎠

X ,  

with the variance-covariance matrix C of the 
vector jky  as in Equation (5) for p=2. 
 
Based on the current observations, 1lH − , the estimated 

information matrix up to the ( 1)thl −  patient as in 
Equation (4), is  
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1

1

1^^
1

2 2 1^ ^
[2] [2] [2]( )

l

l

T
l k k kk H

T T
k k kk H

N

N ε ξσ σ

−

−

−

− ∈

−
∈

=

= +

∑

∑

X C X

X I 1 1 X

A
, 

where 2^
εσ  and 2^

ξσ  are estimated using the restricted 
maximum likelihood method (Laird and Ware, 1982). 
Then the estimated information matrix, given the 
history 1lH −  and the assumption that the thl  patient 

receiving the treatment sequence k  is obtained using 
Equation (6). 
  
Similarly, for three-period designs, the design matrix 

kX  for a given treatment sequence k  will be defined 
as follows.  

1 0 0 1 0 0
1 1 0 1 0 1
1 0 1 1 0 1

AAA

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

X ,

1 0 0 1 0 0
1 1 0 1 0 1
1 0 1 1 1 0

AAB

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟−⎝ ⎠

X , 

1 0 0 1 0 0
1 1 0 1 1 0
1 0 1 1 1 0

ABA

⎛ ⎞
⎜ ⎟= −⎜ ⎟
⎜ ⎟−⎝ ⎠

X ,

1 0 0 1 0 0
1 1 0 1 1 0
1 0 1 1 0 1

ABB

⎛ ⎞
⎜ ⎟= −⎜ ⎟
⎜ ⎟− −⎝ ⎠

X , 

1 0 0 1 0 0
1 1 0 1 0 1
1 0 1 1 0 1

BBB

−⎛ ⎞
⎜ ⎟= − −⎜ ⎟
⎜ ⎟− −⎝ ⎠

X , 

1 0 0 1 0 0
1 1 0 1 0 1
1 0 1 1 1 0

BBA

−⎛ ⎞
⎜ ⎟= − −⎜ ⎟
⎜ ⎟−⎝ ⎠

X , 

1 0 0 1 0 0
1 1 0 1 1 0
1 0 1 1 1 0

BAB

−⎛ ⎞
⎜ ⎟= −⎜ ⎟
⎜ ⎟−⎝ ⎠

X , 

1 0 0 1 0 0
1 1 0 1 1 0
1 0 1 1 0 1

BAA

−⎛ ⎞
⎜ ⎟= −⎜ ⎟
⎜ ⎟
⎝ ⎠

X , 

along with the covariance matrix and information 
matrix as obtained from (4)-(6).  
 

4. The Allocation Rule 
 
A new allocation rule for setting up a response adaptive 
design with a total of N  subjects can be conducted as 
follows for a given λ .  

 
Step 1: The first ( )m m N<  patients are assigned 
using the optimal design suggested in the literature or a 
completely randomized design.  
 
Step 2: To allocate the thl  patient, 1m l N+ ≤ ≤ , 
calculate the observed information matrix based on the 
data available from the first ( 1)l −  patients, 

^

1( )1 lHlA −−
, and the evaluation function 

1 1( )l k lg H− , − ,where 1 2 ...k s= , , , . 
 
Step 3: Choose the treatment sequence k∗  for the thl  
patient to maximize the criterion Λ  defined in (2). In 
situations where more than one treatment sequences 
achieve the maximum criterion score, one can randomly 
assign one treatment sequence to the thl  patient.  
 
Step 4: Repeat steps 2 to 3 until all N patients have 
been allocated.  
 
Note that the above adaptive approach is applicable to 
both discrete and continuous responses, under suitable 
model assumptions. In this paper, we implement the 
allocation rule to construct response adaptive repeated 
measurement designs with continuous responses. 
 

5. Response Adaptive Repeated Measurement 
Design 

 
Based on model (1), we construct response adaptive, 
two-treatment repeated measurement designs. We 
demonstrate that the efficiency of the designs 
constructed under the new proposed allocation rule 
increases with sample size, and these adaptive designs 
are more efficient than fixed optimal designs in terms of 
the mean squared error. We also discuss the challenges 
and partial solutions in generalizing the strategy to 
multi-treatment and multi-period repeated measurement 
designs.  
 
We assume that 2 2ξσ = , 2 1εσ = , and 100μ = . We 

consider the designs for λ =1, 0.9, 0.7, 0.3 and 0 for 
N =10, 20, 40 and 100, respectively. The 1λ =  
indicates that the only objective is to increase 
estimation precision, i.e., maximize the information 
matrix, while 0λ =  indicates that the only objective is 
to increase the proportion of patients assigned to a 
better treatment. When 0 1λ< < , both objectives are 
taken into consideration. The adaptive design provides a 
balanced approach to achieving these two objectives.  
 
Since one of the components of the selection criteria 
depends on the value of the response, the design also 
depends on it. This differs from the usual construction 
of fixed optimal designs.  
 
For 0π τ γ ϕ= = = = , there is no treatment 
difference. Table 2 shows the expected outcome, the 
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mean vector [ ]jkE y , for each treatment sequence 

based on the values used for 25π τ ϕ= = =  and 

25γ = − . Since 25
2

A Bτ ττ −
= = , A is expected to be 

better than B by 50 in the scale of measurement. 

Further, 25
2

A Bϕ ϕϕ −
= =  indicates the self carryover 

effect of AA is expected to produce a better outcome 
than the self carryover effect of BB by 50 units; 

25
2

A Bγ γγ −
= = −  means the mixed carryover effect 

AB is expected to reduce the value of the outcome by 50 
units as compared to the mixed carryover effect BA; and 

25π =  indicates that the second-period effect is better 
than the first-period effect, by 25 units.  
 
As mentioned in Section 3, for simplicity we assume 
that a response of higher magnitude indicates a better 
treatment and that all responses are nonnegative. Then 
the summation of all outcomes from a given treatment 
sequence is a straightforward way of defining an 
evaluation function. This is the approach taken 
throughout this section. To smooth out the randomness, 
we report the average allocation results to treatment 
sequences from 1,000 repetitions.  
 
5.1 Two-Treatment Two-Period Designs  
 
In two-treatment two-period repeated measurement 
design, there are four different treatment sequences: AA, 
AB, BA and BB. Suppose the first l  patients were 
assigned using an optimal design suggested in the 
literature. For example, we can allocate the first l  
patients equally to the four sequences. We then allocate 
the rest of the patients adaptively, starting from the 
observed data from these four patients. Let 1lN , 2lN , 

3lN  and 4lN  be the number of patients who have 
received treatment sequence AA, AB, BA and BB, 
respectively, up to patient l .  
 
For 0π τ γ ϕ= = = = , there is no treatment 
difference. Therefore, we expect the design will give 
equal allocation to all treatment sequences. Table 3 
shows, for all combinations of N  and λ  values, the 
rule assigns an approximately equal number of subjects 
to each of the four treatment sequences, as expected. In 
addition, the estimation of each parameter with its 
standard error indicates that as sample sizes increase, 
standard errors in the estimated parameters of interest 
decrease, as expected (not shown).  
 
Under the treatment difference as specified in Table 2, 
Table 3 also shows that when 1λ = , the rule assigns 
an equal number of subjects to each of the four 
treatment sequences. This is similar to the traditional 
fixed optimal design, where the treatment effectiveness 
is not taken into consideration. Estimation precision is 
the only consideration in 1λ = . When 1λ < , more 

patients are assigned to treatment sequence AA, which 
is the best combination setting. The rest of the patients, 
in decreasing order, receive treatments BA, AB or BB. 
The result is as expected. Based on the values of the 
parameters of interest, treatment A is more effective 
than treatment B ( 0τ > ); the treatment effect in the 
second period is stronger than that in the first period 
( 0π > ); the self carryover effect for treatment 
sequence AA is stronger than for treatment sequence BB 
( 0ϕ > ), and the mixed carryover effect for treatment 
sequence BA is stronger than that for treatment 
sequence AB ( 0γ < ). Therefore, the allocation results 
are consistent with what one would expect (Table 2). 
 
The estimation of each parameter with its standard error 
(not shown) indicates that in all cases the estimated 
values are very close to the true values of the 
parameters of interest. For a fixed value of λ , the 
precision of the estimation decreases as N  increases. 
For a fixed value of N , the standard error slightly 
increases as the value of λ  decreases. This happens 
because when λ  decreases we give more emphasis to 
ethical criteria than to the precision of the estimators. 
This approach involves a trade-off between benefit and 
cost.  
 
Afsarinejad and Hedayat (2002) showed that the 
treatment contrast effect cannot be estimated unbiasedly 
for any fixed design under the model that allows for two 
different types of carryover effects from each treatment. 
Therefore, adaptive designs constructed under the new 
proposed allocation rule clearly improve the design 
efficacy for the two-period trials.  
 
5.2. Two-Treatment Three-Period Designs  
 
Eight different treatment sequences are available for 
assignment. We assume that, at the initial stage, the first 
l  patients are entered into the study. Let klN  be the 

number of patients receiving treatment sequence k , 
where k AAA= , AAB , ABA , ABB , BBB , BBA , 
BAB  and BAA . Assume that eight subjects were 
already entered in the study, one for each type of 
treatment sequence.  
 
Under the traditional model with an equi-correlated 
covariance structure, the design ABB and its dual is 
known to be the universally optimal design (Laska, 
Meisner and Kushner 1983, Kershner 1986), while, 
under the self and mixed carryover effects model, the 
design ABA  and its dual is optimal for estimating the 
treatment contrast (Hedayat and Stufken, 2003). In this 
section, we compare the adaptive designs constructed 
under the new allocation rule to these fixed designs, 
Design ABB/BAA and Design ABA/BAB.  
 
As in the two-period two-treatment simulations, we first 
consider a situation where there are no effects at all. For 

2 3 0π π τ γ ϕ= = = = = , Table 4 shows that when 
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1λ < , we assign an approximately equal number of 
subjects to each of the eight treatment sequences, while 
when 1λ = , we assign an approximately equal number 
of subjects to a pair of a treatment sequence and its 
dual. More subjects were given to ABB and its dual, 
which the fixed optimal design uses for comparing two 
treatments under the traditional model. However, 
adaptive designs use six of the eight sequences rather 
uniformly.  
 
Similar to the two-period two-treatment case, when 
treatment effects present as 2 3 25π π τ ϕ= = = =  and 

25γ = − , the mean vector of each treatment sequence, 
in decreasing order, is AAA, BAA, AAB/ABA, BAB/BBA, 
ABB, and BBB (Table 2). 
 
Table 4 shows that, when 1λ = , we assign an 
approximately equal number of subjects to a treatment 
sequence and its dual treatment sequence, and more 
subjects are given  ABB/BAA, as before. However, as 

1λ < and as it decreases, we assign more subjects to a 
better treatment sequence AAA and fewer subjects to the 
worse treatment sequence BBB. This is consistent with 
what one would expect (Table 2). 
 
Figure 1 shows the estimated relative efficiency (RE) of 
the adaptive designs relative to Design ABB/BAA for 
estimating θ = ( )Tτ γ ϕ, ,  under A-, D-, and E-
optimality, and for estimating the treatment contrast τ , 
respectively, where RE 1>  indicates a more efficient 
design than the reference design. It illustrates that 
response adaptive designs are more efficient than the 
fixed optimal design for all λ  and optimality criteria. 
In all cases, adaptive designs increase the design 
efficiency 1.5 to 4 times as compared to Design 
ABB/BAA. While Design ABA and its dual has the 
highest efficiency for estimating the direct treatment 
contrast, this design cannot estimate self carryover 
effects. However, the new proposed adaptive designs 
are superior to these fixed designs because they can 
have similar efficiency while also taking the treatment 
performance into consideration. In all cases, adaptive 
designs increase design efficiency, especially when the 
total number of subjects is large. The adaptive designs 
constructed under the new adaptive allocation rule not 
only take the treatment performance into consideration, 
but also have relatively high efficiency.  
 
5.3 Generalization  
 
One can generalize the allocation rule to construct 
adaptive t -Treatment p -Period repeated measurement 
designs. The main challenge is to narrow down the 
number of treatment sequences out of pt  possibilities, 
which increase substantially as the number of 
treatments and periods increase. One can consider a 
particular subset of RMDs, for example, uniform cross-
over designs (Bate and Jones, 2002). Alternately, one 
can refer to the fixed optimal design results available in 
the literature (Ebbutt 1984, Kershner 1986, Matthews 

1987, Carriere and Reinsel 1992&1993, Carriere 1994, 
Hedayat and Stufken 2003).  
 
For example, Liang (2006) showed that the design 
ABBA  and its dual or AABA  and its dual are the 

optimal two-treatment four-period designs for 
estimating the treatment contrast based on the self and 
mixed carryover effects model with random subject 
effects. Liang (2006) also found that the four-sequence 
design ABBA , AABB  and their duals, or the six-
sequence design, ABBA , ABAB , AABB  and their 
duals are the optimal designs for estimating the 
treatment contrast based on the traditional model. To 
construct an adaptive design, one can apply the 
allocation rule to these smaller subsets of all possible 
treatment sequences.  
 

6. Conclusion 
 
In this paper, we extended single-objective designs to 
multiple-objective designs by developing a new 
adaptive allocation rule that can provide efficient 
estimates of the treatment contrasts and assign more 
patients to a better treatment. The basic idea is to 
modify the allocation rule on the basis of observed data 
from previous patients. We assume patients enter the 
study sequentially. The first few patients can be 
assigned using the optimal design suggested in the 
literature or a completely randomized design. Then the 
information is updated based on the observed data.  
 
We introduce an evaluation function to evaluate the 
performance of each treatment sequence. For the 
incoming set of patients, we consider all possible 
treatment sequences and choose one that optimizes the 
criteria, which has two components: 1) to maximize the 
information matrix and 2) to give the best treatment 
benefit/performance based on the observed data. It can 
be easily extended to accommodate any number of 
other objectives. 
 
Prior to the experiment, the investigator can choose the 
parameter λ  to balance the two objectives. A large 
value of λ  will place more emphasis on estimation 
precision. When 1λ = , the allocation rule used in the 
traditional model will result in response adaptive 
symmetric designs as considered by Kushner (2003). A 
small value of λ  will emphasize the performance/ 
benefit of the treatment. When 0λ = , the allocation 
rule becomes a typical play-the-winner rule (Zelen, 
1969). Note that Kushner’s adaptive allocation rule is 
for trials with continuous outcomes, and Zelen’s play-
the-winner rule is for trials with dichotomous outcomes. 
However, our new adaptive allocation rule is applicable 
to either the trial with continuous or dichotomous 
outcome.  
 
We utilize this allocation rule to construct adaptive 
repeated measurement designs with continuous 
responses/outcome, using the self and mixed carryover 
effects model. We provide a detailed allocation rule for 
constructing adaptive two-treatment two- and three- 
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period repeated measurement designs.  
 
The value of λ  is predetermined by researchers and 
used to balance the two objectives of increasing 
estimation precision and decreasing the proportion of 
patients receiving inferior treatments. We find that the 
design efficiency is a skewed function of λ  that 
decreases sharply as λ  decreases. Therefore, choosing 
a high value of λ  is recommended in practice. This 
results in designs with effective treatment sequences 
without much loss of estimation precision. 
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Table 1: Example of Data  
 

Subject ID Treatment 
Sequence Period 1 Period 2 

1 AA 1 37.5 1 37 
2 AB 0 37.5 0 38 
3 AA 1 37.8 1 37 
4 BA 0 37.5 1 37 
5 BB 1 38.5 0 39 
6 BA 0 38.5 0 37.5 
7 AB 1 37.5 1 37.5 
8 AA 0 38 1 37 
9 BA 0 38.5 1 37.5 

10 BB 1 39 0 38.5 
 
Note: Entries in the shaded columns are data for a dichotomous response and those in the columns to the right are data 
for a continuous response.  
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Table 2: Expected Outcome for Each Treatment Sequence Based on the Values Used for Simulations 
 

Design Value of Parameter Treatment Sequence Expected Outcomes 
AA (125, 175)T 
AB (125, 75)T 
BA (75, 175)T 

Two-Treatment 
Two-Period 

100μ =  
25π τ ϕ= = =  

25γ = −  BB (75, 75)T 
AAA (125, 175, 175)T 

AAB (125, 175, 75)T 
ABA (125, 75, 175)T 
ABB (125, 75, 75)T 
BBB (75, 75, 75)T 
BBA (75, 75, 175)T 
BAB (75, 175, 75)T 

Two-Treatment 
Three-Period 

100μ =  
25π τ ϕ= = =  

25γ = −  

BAA (75, 175, 175)T 
 
Note: Entries are the expected mean vectors jky .
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Table 3: Estimated Numbers of Patients for Each Treatment Sequence Using a Two-Period Design 
 

N λ  NAA NAB NBA NBB 
10 1 2.502 2.519 2.498 2.481 2.466 2.441 2.534 2.559 

 0.9 2.497 3.000 2.503 2.000 2.510 3.000 2.490 2.000 
 0.7 2.501 3.000 2.499 2.000 2.488 3.000 2.512 2.000 
 0.3 2.479 3.000 2.518 2.000 2.491 3.000 2.512 2.000 
 0 2.527 3.000 2.506 2.000 2.484 3.000 2.483 2.000 

40 1 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 
 0.9 10.000 12.000 10.000 9.000 10.000 11.000 10.000 8.000 
 0.7 10.000 13.000 10.000 9.000 10.000 11.001 10.000 6.999 
 0.3 10.000 13.416 10.000 8.986 10.000 11.030 10.000 6.568 
 0 10.000 13.717 10.000 8.979 10.000 11.022 10.000 6.282 

80 1 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 
 0.9 19.998 25.547 20.007 17.930 20.000 22.405 19.995 14.118 
 0.7 19.997 26.810 20.009 17.693 19.999 22.451 19.995 13.046 
 0.3 20.001 27.127 19.995 17.624 20.002 22.426 20.002 12.823 
 0 19.995 27.243 20.000 17.602 19.998 22.374 20.007 12.781 

100 1 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 
 0.9 25.008 32.299 24.991 22.197 25.001 28.103 25.000 17.401 
 0.7 24.999 33.664 24.999 22.021 24.997 28.089 25.005 16.226 
 0.3 25.004 34.051 24.986 21.959 24.997 28.054 25.013 15.936 
 0 24.971 34.134 25.014 21.955 25.006 28.051 25.009 15.860 

 
Note: Entries in the shaded columns are based on 1,000 computer replications under 2-treatment 2-period RMDs with 0π τ γ ϕ= = = = , and those to the right are for 

25π τ ϕ= = = , 25γ = − , for 2 2ξσ = , 2 1εσ = , and 100μ = . 
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Table 4: Estimated Numbers of Patients for Each Treatment Sequence Using a Three-Period Design  
 

N λ  NAAA NAAB NABA NABB NBBB NBBA NBAB NBAA 

40 1 1.016 5.984 5.977 7.023 1.018 5.982 5.974 7.026 
  1.014 5.986 5.968 7.032 1.014 5.986 5.980 7.020 
 0.9 4.144 5.000 5.591 5.263 4.149 5.000 5.609 5.244 
  5.144 5.000 6.000 4.856 3.000 5.000 5.000 6.000 
 0.7 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 
  6.009 5.003 5.977 4.000 3.011 5.000 5.000 6.000 
 0.3 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 
  6.975 5.001 5.010 4.000 3.014 5.000 5.000 6.000 
 0 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 
  6.996 5.000 5.000 4.000 3.005 5.000 4.999 6.000 

80 1 1.009 12.998 11.848 14.145 1.007 13.000 11.842 14.151 
  1.006 12.998 11.842 14.154 1.009 12.995 11.839 14.157 
 0.9 9.065 9.996 10.647 10.297 9.062 10.000 10.628 10.305 
  12.001 10.28 11.038 8.736 6.328 9.501 9.999 12.117 
 0.7 10.000 10.000 10.001 10.000 9.998 10.000 10.001 10.000 
  12.999 10.81 10.996 8.001 6.749 9.119 9.321 12.005 
 0.3 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 
  13.067 10.947 10.973 8.000 6.859 9.071 9.083 12.000 
 0 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 
  13.151 10.944 10.947 8.000 6.840 9.057 9.060 12.001 

120 1 1.010 20.016 17.649 21.325 1.007 20.019 17.630 21.344 
  1.011 20.021 17.645 21.323 1.008 20.024 17.651 21.317 
 0.9 14.098 14.972 15.629 15.324 14.089 14.964 15.592 15.332 
  18.662 15.878 16.712 12.310 9.767 14.008 14.444 18.219 
 0.7 14.950 14.994 15.039 15.019 14.953 14.999 15.028 15.018 
  19.968 15.999 16.029 11.998 9.971 13.999 14.007 18.029 
 0.3 14.997 14.999 15.000 15.004 14.999 14.996 15.002 15.003 
  20.010 15.998 16.005 11.999 9.98 14.000 14.000 18.008 
 0 15.001 14.996 15.003 15.003 14.999 15.004 14.998 14.996 
  20.019 16.000 16.000 11.992 9.988 13.999 13.998 18.004 

 
Note: Entries are based on 1,000 computer replications under 2-treatment 3-period RMDs with 

2 3 0π π τ γ ϕ= = = = = (shaded) and 2 3 25π π τ ϕ= = = = , 25γ = − , respectively with 2 2ξσ = , 2 1εσ = , and 

100μ = .

WNAR

3768



  

  

Figure 1: Relative Efficiency of the Parameters of Interest Compared to Design ABB/BAA for Two-treatment Three-period RMDs 
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Note: Relative efficiencies in the upper row are calculated by using 1,000 computer replications with 2 3 0π π τ γ ϕ= = = = = , the bottom row with 25π τ ϕ= = = , 25γ = − , 

for 2 2ξσ = , 2 1εσ = , and 100μ = , where  adaptive design with  λ =1;  adaptive design with λ =0.9;  adaptive design with λ =0.7;  adaptive design with 

λ =0.3; adaptive design with λ =0; and  design ABA/BAB. Since Design ABA/BAB cannot estimate self carryover effect contrast, the efficiency is compared only for the 
direct treatment effect contrast (d). 
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