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Abstract

Many finite populations targeted by sample surveys con-
sist of homogenous subpopulations with respect to the
variables being collected. In on-going survey operations,
it is often of interest to be able to assess whether a new
observation belongs to one of those subpopulations or
should be flagged as not belonging to any of them. For
this purpose, we propose a sample-based estimator for
the subpopulation distribution functions of the distances
between the elements and the subpopulation centers. We
explore different ways to define the subpopulation cen-
ters and several distance metrics. We describe the theo-
retical properties of the estimator, and propose several
approaches for design-based variance estimation. The
practical properties of the procedures are evaluating in
a simulation study.

Keywords: jackknife, kernel estimation, estimating
equations, generalized median, elliptical distribution,
classification.

1. Introduction

A common issue in large-scale complex surveys is the
detection of outliers in the data. Such outliers can be
caused by frame imperfections, which can lead to ineligi-
ble units being selected, or by errors during data collec-
tion. If these outliers remain in the survey dataset, they
can cause inference based on the survey to be invalid for
the population of interest. Most survey operations there-
fore incorporate data editing and validation as part of the
post-data collection steps, where they attempt to iden-
tify suspicious observations and either remove or correct
them. When outliers exhibit “extreme” values on one or
several survey variables, they can be detected relatively
easily. However, because surveys often collect large num-
bers of variables, there is the potential for other outliers
which are not extreme on any single variable. Detecting
such outliers is more difficult, and identifying unusual or
suspicious patterns in the data often requires substantial
subject-matter knowledge.
In practice, many finite populations targeted by sur-
veys consist of a number of relatively homogeneous sub-
populations, and this structure can be exploited to de-
velop a statistical approach for flagging suspicious obser-
vations that does not require detailed knowledge of the
relationships between the variables. The type of surveys
we are targeting here is one in which recurring surveys are

made over time, and the characteristics and composition
of the subpopulations remains relatively stable between
surveys. The focus of the current article is to propose an
estimator for the “outlyingness” of an observation rela-
tive to a subpopulation, based on the distance between an
observation and the center of the subpopulation, and to
derive its statistical properties in an asymptotic design-
based context.
The remainder of the paper is as follows. Section 2
defines notation and establishes preliminary results for
design-based inference. Section 3 lists our general design
assumptions and assumptions on the sequence of finite
populations. Section 4 presents our theoretical results
showing asymptotic properties of distance distribution
functions using either means or medians as subpopulation
centers. Simulation results are detailed in Wang (2008)
due to space limits.

2. Notation, assumption and preliminary results

2.1 Notation and definitions

Suppose we have an increasing sequence of finite popula-
tions (Uν)

∞
ν=1 of sizes Nν with Nν < Nν+1. Associated

with the i-th population element is a p-dimensional vec-
tor of observations

yi = (yi,1, ..., yi,p),

and let Fν be the power set of ν-th finite population
{y1,y2, ...,yNν}. The finite population Uν can be parti-

tioned into G subpopulations, with Uν =
⋃G
g=1 Uνg. The

knowledge of this structure of finite population is usually
available for longitudinal surveys of stable populations,
and we assume the partition into subpopulations is pro-
vided.
We take a sample Sν =

⋃G
g=1 Sνg of size nν from pop-

ulation Uν , and the sampling design may be a complex
design with stratification or multi-stage sampling. Here,
Sνg are mutually exclusive subsets of Sν which contain el-
ements from subpopulation g only. We assume the inclu-
sion probability of the i-th population element, is known
without error,

P(i ∈ Sν) = πi,

and the sample size

nν =
G∑

g=1

nνg,
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where nνg is the number of elements in sample Sν that
come from subpopulation g. We use n∗ν = E(nν |Fν) to
denote the expected sample size conditioning on finite
population and n∗νg to denote the expected sample size
for subpopulation g.
We define the population level distribution of distances
as

Dνg,d(γνg) =
1

Nνg

∑

Uνg

I(‖yi−γνg‖≤d), (1)

where γνg is some measure of center of population Uν .
Given a sample Sν , Dνg,d(γνg) is estimated by,

D̂νg,d(γ̂νg) =
1

N̂νg

∑

Sνg

1

πi
I(‖yi−γ̂νg‖≤d), (2)

or

D̃νg,d(γ̂νg) =
1

Nνg

∑

Sνg

1

πi
I(‖yi−γ̂νg‖≤d), (3)

where γ̂νg is an estimator of γνg, some measure of the
center of subpopulation g formed from sample data Sνg.
Here, N̂νg =

∑

i∈Sνg

1
πi
is an estimator of size of subpopu-

lation g which is generally not known a priori.
In equation (1), we assume γνg is a nonrandom se-

quence of finite population centers but γ̂νg is random
due to sampling mechanism. Quantities Dνg,d(γνg) and

D̂νg,d(γ̂νg) are step functions of d and γ with jumps of

size O( 1
Nνg
) and O( 1

n∗νg
).

We can use the usual mean vector as a measure of
center in equations (1)-(3),

μνg =
1

Nνg

∑

Uνg

yi, (4)

which is estimated by,

μ̂νg =
1

N̂νg

∑

Sνg

yi
πi
. (5)

We can also use a generalized version of median as a
measure of center in multivariate case. The definition
of spatial median was given in Brown (1983) and Small
(1990). We generalize this idea and define the multivari-
ate median of a finite population to be the location with
smallest overall distance to all population units with re-
spect to some norm ‖ ∙ ‖. The norm is chosen at our
choice, and commonly we use Minkoski distance or some
shape-respecting quadratic distance.

qνg = arg infγ
∑

Uνg

‖ yi − γ ‖ . (6)

The sample-based estimator of qνg is given as follows,

q̂νg = arg infγ
∑

i∈Sνg

1

πi
‖ yi − γ ‖ . (7)

We use γνg to denote a general measure of center,
which can be mean vector μνg or median qνg, and γ̂νg
denotes the estimator of γνg.
For now, we assume that the subpopulation association
for each yi in the sample is known.

3. Assumptions

3.1 General design assumptions

In this paper, we estimate the distribution of subpopu-
lation distances in design-based framework. We assume
the sequnce of finite poplations to be fixed and random-
ness only comes from the sampling mechanism. We do
not want to restrict our attention to a specific sampling
design but make rather general assumptions to cover var-
ious sampling schemes. Assumptions 3.1.1 and 3.1.2 en-
sure the design consistency and asymptotic normality of
our estimator.

Assumption 3.1.1. The following conditions hold for
population size, inclusion probabilities πi and design vari-
ance of Horvitz-Thompson estimator of the mean,

1. Nνg = O(Nν), nν = Op(N
β
ν ) with β ∈ (

1
2 , 1].

2. KL ≤ Nν
n∗ν
πi ≤ KU for all i, where KL and KU are

positive constances.

3. For any vector z with finite 2 + δ monents, define
z̄ν,π =

1
Nν

∑

Sν

zi
πi
as the Horvitz-Thompson estimator

of z̄ν =
1
Nν

∑

Uν

zi. We assume

V ar(z̄ν,π|Fν) ≤ K1V arSRS(z̄ν,π|Fν),

for some constant K1, where V arSRS(z̄ν,π|Fν) is the
design variance-covariance matrix of z̄ν,π under sim-
ple random sampling of size n∗ν .

It can be shown that under Assumption 3.1.1(3),
nνg
n∗νg

p
→ 1 by bounding its design variance.

We will make the following normality assumption on
Horvitz-Thompson estimator for a general vector with
moment conditions, similar to Fuller (2007).

Assumption 3.1.2. For any z with positive variance-
covariance matrix and finite fourth moment

n∗ν
1/2(z̄ν,π − z̄ν)|Fν

d
→ N(0,Σν,z), (8)

and

[V (z̄ν,π|Fν)]
−1
V̂HT {z̄ν,π} − Ip×p = Op(n

∗
ν
−1/2), (9)

where z̄ν =
1
Nν

Nν∑

i=1

zi, z̄ν,π =
1
Nν

∑

Sν

zi
πi
, and V̂HT {z̄ν,π}

is the Horvitz-Thompson estimator of the variance of
z̄ν,π|Fν .
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3.2 Assumptions on finite population

To show the design properties of the distance distribu-
tion estimator, we need to assume a number of regularity
conditions on the sequence of finite populations.

Assumption 3.2.1. The sequence of population vectors
yi’s in subpopulation g has bounded 4 + δ moments,

lim
Nνg→∞

N−1νg
∑

i∈Uνg

|yi|
4+δ <∞,

for some δ > 0.

Assumption 3.2.2. 1. The limit of population level
distance distribution exists,

lim
ν→∞

Dνg,d(γ) = Dg,d(γ)

on (d,γ) ∈ [0,∞)×<p.

2. The limiting function Dg,d(γ) is continous in d ∈
[0,∞) and γ ∈ <p. Additionally, the derivatives
∂Dg,d(γ)
∂d

,
∂Dg,d(γ)
∂γ

and
∂2Dg,d(γ)
∂γ2

all exist and are fi-

nite in (d,γ) ∈ [0,+∞)×<p.

Assumption 3.2.3. The following population quantities
converge to zero:

1.

√
Nνg





1

Nνg

∑

Uνg

I(d<‖yi−γ‖≤d+hNνg ) −
∂Dg,d(γ)
∂d

hNνg






converges to zero, where hNνg = O(N
−α
νg ) and α ∈

( 14 , 1).

2.

n∗νg
1/2

Nνg

∑

Uνg

[
I
(‖yi−γ−n

−1/2
νg s‖≤d)

− I(‖yi−γ‖≤d)

−Dg,d(γ + n
∗
νg
−1/2

s) +Dg,d(γ)
]

converges to zero uniformly for γ ∈ <p and s ∈ Cs,
a large enough compact set in <p.

Assumptions 3.2.4-3.2.8 are necessary when deriving
median-based results, where we need stronger conditions
on the spreading of finite population elements and re-
strictions on the norm. Assumption 3.2.4 guarentees the
uniqueness of population median qνg. Assumption 3.2.6
restricts our concern to an inner product space, and As-
sumption 3.2.7 will be used in showing asymptotic nor-
mality of q̂νg.

Assumption 3.2.4. The finite population Uνg only puts
finitely many points yi on a line in <

p.

Assumption 3.2.5. The norm ‖ ∙ ‖ is continous on <p,
with a continuous gradient vector ψ(γ), and bounded sec-
ond derivative matrix Hs(γ).

Assumption 3.2.6. The norm ‖ ∙ ‖ has the following
inner product representation

‖γ‖ =
√
< γ,γ >

for γ ∈ <p and some inner product < ∙, ∙ >.

Assumption 3.2.7. For any γ in a neighborhood of qνg,
1
Nνg

∑

Uνg

Hs(yi − γ) is a nonsingular matrix. Further, the

sequence of Hs(yi − γνg) has bounded first two moments
at population level.

Assumption 3.2.8. Assume that the linearized term
ψ(yi − γνg) has bounded fourth population moments,

1

Nνg

∑

Uνg

∣
∣ψ(yi − γνg)

∣
∣4 <∞.

We use a kernel smoothing estimator to estimate the
derivative of limiting smooth function as needed in the ex-
pression of asymptotic variance. Assumptions 3.2.9 and
3.2.10 give conditions on the choice of kernel function and
bandwidth.

Assumption 3.2.9. The kernel function K(t) is sym-
metric with

∫∞
−∞K(t)dt = 1, and K(t) is an abso-

lutely continuous function with finite derivatives K ′(t).
Further, let R(K) =

∫∞
−∞K

2(t)dt < ∞ and σ2K =
∫∞
−∞ t

2K(t)dt <∞.

Assumption 3.2.10. The smoothing bandwidth h → 0,
and Nνgh(logNνg)

−1 →∞, as Nνg →∞.

Assumption 3.2.11. There exists a constant c, such
that

∣
∣ 1
h2
K ′
(
x
h

)∣∣ ≤ c, for any x 6= 0 and h arbitrarily
small.

4. Main results

4.1 Mean-based inference

Lemma 1. Under Assumptions 3.1.1 and 3.2.2-3.2.3,

n∗νg
1/2
(
D̂νg,d(μ̂νg)− D̂νg,d(μνg)−Dg,d(μ̂νg) +Dg,d(μνg)

)

(10)
converges to zero in design.

For a proof of this result, see Wang (2008).

Theorem 1. Under Assumptions 3.1.1 and 3.2.2-
3.2.3, the sample-based quantity D̂νg,d(μ̂νg) is√
n∗νg−consistent for the corresponding population

quantity Dνg,d(μνg), namely,

n∗νg
1/2
(
D̂νg,d(μ̂νg)−Dνg,d(μνg)

)
= Op(1).

Proof. We use the following decomposition,

n∗νg
1/2
(
D̂νg,d(μ̂νg)−Dνg,d(μνg)

)

= n∗νg
1/2
(
D̂νg,d(μ̂νg)− D̂νg,d(μνg)−Dg,d(μ̂νg) +Dg,d(μνg)

)

+ n∗νg
1/2
(
D̂νg,d(μνg)−Dνg,d(μνg)

)

+ n∗νg
1/2 (Dg,d(μ̂νg)−Dg,d(μνg)

)
, (11)
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where the first term is op(1) by Lemma 1, and the last
two terms are both Op(1).

Expression (8) of Assumption 3.1.2 implies the follow-
ing multivariate normality,

n∗νg
1/2

Nνg

∑

Uνg




I(‖yi−μνg‖≤d)

1
yi





︸ ︷︷ ︸
bμ,gi

[
I(i∈Sνg)

πi
− 1

]

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Fν

d
→ N(0,Σμ,d), (12)

where

Σμ,d =
n∗νg

N2νg

∑

Uνg

∑

Uνg

(πij − πiπj)
bμ,gib

′
μ,gi

πiπgj
, (13)

as we are estimating a domain quantity and bμ,gi has
bounded second moments under Assumption 3.2.1.

Theorem 2. Under Assumptions 3.1.1-3.1.2 and 3.2.1-
3.2.3,,

nνg
1/2
[
V
(
D̂νg,d(μ̂νg)

)]−1/2 (
D̂νg,d(μ̂νg)−Dνg,d(μνg)

)

d
→ N(0, 1),

where

V
(
D̂νg,d(μ̂νg)

)
= a′μΣμ,daμ, (14)

aμ =

(

1,−Dνg,d(μνg)−
(
∂Dg,d(μνg)
∂μνg

)′
μνg,

(
∂Dg,d(μνg)
∂μνg

)′)′
,

(15)
and Σμ,d is defined in (13).

Proof. We still use decomposition (11), then it follows
from Lemma 1, expression (4.1), Taylor Linearization and
Slutsky’s Theorem.

The asymptotic variance of D̂νg,d(μ̂νg) consists of two
pieces, the piece from estimating the distribution func-
tion with known center and the piece due to the uncer-
tainty of estimating population center. The first piece of
variance can be easily estimated using plug-in estimator
or replication procedure, but the second piece involves
an unknown derivative of limiting smooth function. The
derivative can be estimated by kernel smoothing and in-
corporated into either plug-in or replication estimator.

Remarks: In Lemma 1, we use the limiting function
Dg,d(∙) instead of population quantity Dνg,d(∙), because
we want the third term in (11) to be a smooth function
so we can use linearization to quantify the randomness
due to estimating subpopulation center.

4.2 Median-based inference

Now let us look at the case when we use median as a mea-
sure of subpopulation center. We introduce the following
estimating equations at population and sample level, re-
spectively,

∑

Uνg

ψ(yi − γ) = 0, (16)

and
∑

i∈Sνg

ψ(yi − γ)
πi

= 0. (17)

The medians defined by (6)-(7) are related to the roots
of the estimating equations (16)-(17). More details are
held until Appendix B.

Lemma 2. Under Assumptions 3.2.4 and 3.2.6, for a
large enough population,

∑
Uνg
‖yi−γ‖ has only one local

minimum, which is also its global minimum.

Remark 1: Lemma 2 states a stronger result than qνg
being unique, and it also says there are no other local
minimums for

∑
Uνg
‖yi − γ‖.

Remark 2: If we make a similar assumption on the

sample Sνg, then it is obvious that
∑
Sνg

‖yi−γ‖
πi

has
a unique global minimizer and no other local minimiz-
ers. But under a complex sampling design, we may have
nonzero probability of selecting a sample where all points
are on the same line. But considering the increasing se-
quence of finite populations and sequence of sampling
designs, the probability of selecting a finite-sized sample
will go to zero.

In establishing the weak convergence of q̂νg for qνg,
we adopt the definition of weak convergence from P.24
of Billingsley (1968) and use general norm ‖ ∙ ‖ as a
discrepancy measure.

Theorem 3. Under Assumptions 3.1.1, 3.2.4 and 3.2.6,
any sequence q̂νg that satisfies (7) is design consistent for
qνg.

Proof. Negation. Suppose q̂νg does not converge to qνg
in probability, then there exists ε1, δ > 0, such that

P
(
‖ q̂νg − qνg ‖> ε1

)
> δ, (18)

for all ν. Equation (18) together with Assumption 3.2.4
would imply ∃ ε2 > 0, such that

P



 1

Nνg

∑

Uνg

‖yi − q̂νg‖ −
1

Nνg

∑

Uνg

‖yi − qνg‖ > ε2



 > δ,

(19)
for all ν.

Now, let us show that

1

Nνg

∑

i∈Sνg

‖yi − q̂νg‖

πi
−
1

Nνg

∑

Uνg

‖yi − q̂νg‖
p
→ 0. (20)
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Define

Qn(γ) =
1

Nνg

∑

i∈Sνg

‖yi − γ‖
πi

−
1

Nνg

∑

Uνg

‖yi − γ‖,

note that,

P(|Qn(q̂νg)| > ε) ≤ P[supγ∈C |Qn(γ)| > ε
′]+P(q̂νg /∈ C),

where C is a large enough compact set. Now it is left to
show that

supγ∈C |Qn(γ)|
p
→ 0. (21)

The equation above can be shown by covering tech-
nique. Equations (19) and (20) imply that, there exists
ε3 > 0 and δ1 > 0, such that

P



 1

Nνg

∑

i∈Sνg

‖yi − q̂νg‖

πi
−
1

Nνg

∑

Uνg

‖yi − qνg‖ > ε3



 > δ1.

(22)

As 1
Nνg

∑

i∈Sνg

‖yi−qνg‖
πi

≥ 1
Nνg

∑

i∈Sνg

‖yi−q̂νg‖
πi

, for the

same ε3 and δ1,

P



 1

Nνg

∑

i∈Sνg

‖yi − qνg‖

πi
−
1

Nνg

∑

Uνg

‖yi − qνg‖ > ε3



 > δ1,

as ν →∞. Contradicting the fact that 1
Nνg

∑

i∈Sνg

‖yi−qνg‖
πi

is design consistent for 1
Nνg

∑

Uνg

‖yi − qνg‖.

Theorem 4. Under Assumptions 3.1.1-3.1.2, 3.2.5 and
3.2.7, and let q̂νg be a design consistent sequence, then
we have the following asymptotic normality for sample
median,

n∗νg
1/2(q̂νg − qνg)

d
→ Np(0,Σνg,q), (23)

where

Σνg,q = AΣνg,ψA
′, A =



 1
Nνg

Nνg∑

i=1

Hs(yi − qνg)





−1

and
Σνg,ψ =

nνg
N2νg

∑

Uνg

∑

Uνg

(πij − πiπj)
ψ(yi−qνg)

πi

ψ(ygj−qνg)
πj

.

And further,

nνg
1/2(q̂νg − qνg)

d
→ Np(0,Σνg,q). (24)

Proof. The consistency of q̂νg for qνg gives,

∑

i∈Sνg

1

πi
ψ(yi − q̂νg) = 0

⇔
∑

i∈Sνg

1

πi
ψ(yi − qνg − (q̂νg − qνg)) = 0

⇔
∑

i∈Sνg

1

πi

{
ψ(yi − qνg)−Hs(yi − qνg)(q̂νg − qνg)

+op(q̂νg − qνg))
}
= 0,

which implies

q̂νg = qνg

+



 1
Nνg

∑

i∈Sνg

Hs(yi − qνg)

πi





−1

1

Nνg

∑

i∈Sνg

ψ(yi − qνg)

πi

+op(q̂νg − qνg) (25)

after using non-singularity condition in Assumption 3.2.7

to take the inverse of 1
Nνg

Nνg∑

i=1

Hs(yi − qνg).

It is easy to argue that


 1
Nνg

∑

i∈Sνg

Hs(yi − qνg)

πi





−1

p
→



 1
Nνg

∑

Uνg

Hs(yi − qνg)





−1

,

(26)
and

n∗νg
1/2

Nνg

∑

i∈Sνg

ψ(yi − qνg)

πi

d
→ Np(0,Σνg,ψ), (27)

where

Σνg,ψ =
n∗νg

N2νg

∑

Uνg

∑

Uνg

(πij−πiπj)
ψ(yi − qνg)

πi

ψ(ygj − qνg)

πj

.
The proof is then completed by applying Slutsky’s The-
orem to obtain (23). Then we can use Slutsky’s Theorem

again and the fact that
nνg
n∗νg

p
→ 1 to obtain (24).

Theorem 5. Suppose Assumptions 3.1.1 and 3.2.4-3.2.7
are satisfied, then for any sequence q̂νg that satisfies

(7), the estimated distance distribution D̂νg,d(q̂νg) is√
n∗νg−consistent for the corresponding population quan-

tity Dνg,d(qνg), namely,

n∗νg
1/2
(
D̂νg,d(q̂νg)−Dνg,d(qνg)

)
= Op(1).

Proof. Similar to the proof of Theorem 2, we use the
following decomposition,

n∗νg
1/2
(
D̂νg,d(q̂νg)−Dνg,d(qνg)

)

= n∗νg
1/2
(
D̂νg,d(q̂νg)− D̂νg,d(qνg)−Dg,d(q̂νg) +Dg,d(qνg)

)

+ n∗νg
1/2
(
D̂νg,d(qνg)−Dνg,d(qνg)

)

+ n∗νg
1/2 (Dg,d(q̂νg)−Dg,d(qνg)

)
. (28)

We can show the first term converges to zero in design
in a similar fashion to the proof of Lemma 1. The remain-
der of the proof follows as

√
n∗νg(q̂νg − qνg) = Op(1).

Assumption 3.2.8 together with Assumption 3.1.2 gives

n∗νg
1/2

Nνg

∑

Uνg




I(‖yi−qνg‖≤d)

1
ψ(yi − qνg)





︸ ︷︷ ︸
bq,gi

[
I(i∈Sνg)

πi
− 1

]

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Fν
d
→ N(0,Σq,d),

(29)
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where

Σq,d =
n∗νg
N2νg

∑

i

∑

j

(πij − πiπj)
bq,gib

′
q,gi

πiπj
. (30)

Theorem 6. Under Assumptions 3.1.1-3.1.2 and 3.2.4-
3.2.8, for any sequence q̂νg satisfying (7),

nνg
1/2
[
V
(
D̂νg,d(q̂νg)

)]−1/2 (
D̂νg,d(q̂νg)−Dνg,d(qνg)

)∣∣
∣
∣Fν

d
→ N(0, 1),

where

V
(
D̂νg,d(q̂νg)

)
= a′qΣq,daq, (31)

and

aq =







1

−Dνg,d(qνg)−
(
∂Dg,d(qνg)
∂qνg

)′
H−1s,Nνgqνg

H−1s,Nνg

(
∂Dg,d(qνg)
∂qνg

)





 ,

(32)

where Hs,Nνg =
1
Nνg

Nνg∑

i=1

Hs(yi − qνg) and Σq,d is defined

in (30).

Proof. We can use decomposition (28), then the leading
term in decomposition is asymptotically normally dis-
tributed follows by using Slutsky’s Theorem.

4.3 Variance Estimation

This section deals with estimating the variances of
D̂νg,d(μ̂νg) and D̂νg,d(q̂νg). We will introduce a naive
estimator, a kernel estimator estimating the effect of er-
ror in γ̂ and a jackknife estimator. The naive estimator
ignores the error in estimating population center, and
the extra piece of variance can be estimated by kernel
smoothing and included in analytic variance estimator.
An alternative is to incorporate a smoothing term in jack-
knife to get a consistent variance estimator. The smooth-
ing term is only estimated once using the whole sample,
so the benefit of replication procedure is not much af-
fected.

4.3.1 Naive estimator

To estimate V
(
D̂νg,d(μ̂νg)

)
and V

(
D̂νg,d(q̂νg)

)
as de-

fined in (14) and (31), we need to estimate gradient vec-

tors
∂Dg,d(μνg)
∂μνg

and
∂Dg,d(qνg)
∂qνg

. We can either use some

nonparametric smoothing method or propose a paramet-
ric model for the subpopulation distribution. First, we
will show that if the subpopulation is a realization of
an elliptical distribution, the variance due to estimating
subpopulation center can be ignored.

Lemma 3. Assume random variable Y g ∼
ECp(μg,Λg, φ) with mean vector μg, and Λg is a
non-negative definite matrix. We define the norm as,

‖ u ‖=
√
u′Bu, (33)

where B is a non-negative definite matrix. Then

1. the partial derivative evaluated at superpopulation

mean is 0,
∂Dg,d(μg)
∂μg

= 0.

2. mean μg coincide with median qg, μg = qg.

Lemma 4. Assume 3.2.2,
∂Dg,d(γg)
∂γg

= 0 for some con-

stant vector γg, and the sequence of subpopulation centers

γνg converges to γg, lim
ν→∞

γνg = γg. Then
∂Dg,d(γνg)
∂γνg

=

o(1).

Proof. The proof follows from Taylor expansion,

∂Dg,d(γνg)
∂γνg

=
∂Dg,d(γg)
∂γg

+
∂2Dg,d(γ

∗
νg)

∂γ∗νg
2 (γνg − γg) = o(1).

Lemma 3 and 4 imply that the extra variance due to
estimating subpopulation centers can be ignored in ellip-
tical distributions with a norm specified by (33). This
special case is similar to case A of Randles (1982), where
we can pretend that we are using true population cen-
ter γνg without affecting the leading variance. So we can
propose the following naive plug-in variance estimator for
the leading term,

V̂NV

(
D̂νg,d(γ̂νg)

)
=
(
1,−D̂νg,d(γ̂νg)

)
Σ̂γ,d

(
1,−D̂νg,d(γ̂νg)

)′
,

(34)
with

Σ̂γ,d,NV

=
nνg

N̂2νg

∑

i

∑

j

πij − πiπj
πij

[
I(‖yi−γ̂νg‖≤d)

1

] [
I(‖yi−γ̂νg‖≤d), 1

]

πiπj
.

4.3.2 Estimating the effect of error in γ̂

The naive estimator (34) ignores the piece of variance
due to estimating population center and tends to under-
estimate the true variance for a general suppopulation.

So we need to estimate
∂Dg,d(γ)
∂γ

and incorporate the ex-

tra piece of variance. Let ζg,d(γ) =
∂Dg,d(γ)
∂γ

. We have

proposed an estimator of ζg,d(γ) using kernel smoothing,

ζ̂νg,d(γ) =
1

N̂νgh

∑

Sνg

K
(
d−‖yi−γ‖

h

)
ψ(yi − γ)

1

πi
. (35)

The idea of estimator ζ̂νg,d(γ) is to estimate Dg,d(γ)
using primitive function of kernel K(∙), and then take
derivative with respect to γ.
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Lemma 5. Under Assumptions 3.1.1, 3.2.5 and 3.2.8-
3.2.10, the estimator ζ̂νg,d(γ) is design consistent for
ζνg,d(γ).

Lemma 6. Under Assumptions 3.1.1, 3.2.5 and 3.2.7-
3.2.11, and assume the sequence of populations is such
that

sup
γ∈<p

∣
∣ζνg,d(γ)− ζg,d(γ)

∣
∣→ 0, (36)

the kernel estimator ζ̂νg,d(γ̂νg) is design consistent for
ζg,d(γνg) for every d.

Remarks: We have established uniform strong con-

sistency of ζg,d(γ) for
∂Dg,d(γ)
∂γ

, under appropriate su-

perpopulation assumptions. Assumption (36) assumes
that we are not working with the populations where
ζνg,d(γ) does not converge to ζg,d(γ), which is on a zero-
probability set.

We can directly plug the estimator (35) into estimators
(14) and (31) to get a design-consistent variance estima-
tor, and it performance will be evaluated in simulation
study as shown in Wang (2008).

4.3.3 Jackknife variance estimator

This section only applies formally to mean-based esti-
mator, but can be modified to include median-based es-
timator. To introduce the jackknife variance estimator
for our application, we borrowed some strength from Da
Silva and Opsomer (2006) and start by assuming there
already exists a design consistent jackknife variance es-
timator for linear estimators. Then we define jackknife
replicates in our case and show its consistency.

Theorem 7. Let θ̂ be a linear estimator for subpopula-
tion g with

θ̂g =
∑

Sνg

wizi,

where wi is the survey weight and zi has bounded 4 + δ
moments. Assume there is a jackknife replication proce-
dure that generates L replicated estimates

θ̂(l)g =
∑

Sνg

w
(l)
i zi,

with l = 1, 2, ∙ ∙ ∙ , L and w(l)i is replication weight for
unite i in the l−th replicate. The replication variance
estimator is defined as

V̂JK(θ̂g) =
L∑

l=1

cl

(
θ̂(l)g − θ̂g

)2
, (37)

where cl is a set of constants for the l − th replicate.
Assumptions similar to (D1)-(D4) and (D6) in Da Silva
and Opsomer (2006) are assumed.

We define the l-th jackknife replicate as

D̂(l)(μ̂νg)

= D̂
(l)
νg,d(μ̂νg)

+
1

N̂νgh

∑

Sνg

1

πi
K
(
d−‖yi−μ̂νg‖

h

)
ψT (yi − μ̂νg)(μ̂

(l)
νg − μ̂νg),(38)

where D̂
(l)
νg,d(μ̂νg) =

1

N̂
(l)
νg

∑
i∈Sνg

w
(l)
i I(‖yi−μ̂νg‖≤d),N̂

(l)
νg =

∑

i∈Sνg

w
(l)
i and μ̂

(l)
νg =

1

N̂
(l)
νg

∑

i∈Sνg

w
(l)
i yi.

Then the jackknife variance estimator

V̂JK

(
D̂νg,d(μ̂νg)

)
=

L∑

l=1

cl

(
D̂(l)(μ̂νg)− D̂(μ̂νg)

)2

(39)

is design consistent for V
(
D̂νg,d(μ̂νg)

)
.

Proof. The use of this jackknife variance estimator is sug-
gested by expression (11). The first term in (38) is used

to approximate the variance of D̂νg(μνg), and the sec-
ond term approximates the variance due to estimating
the center.

To examine the connection between the jackknife esti-
mator and kernel estimator in section 4.3.2, we first ignore
the second piece in (38) and compare it with the naive
estimator (34). The naive estimator only approximates
the linearized variance for the ratio, but the jackknife es-
timator usually overestimates this linearized variance. If
we compare the whole jackknife replicate (38) with kernel
estimator, the difference exists because of the nonlinear-
ity of D̂νg,d(μνg) and μ̂νg.
A great advantage of jackknife variance estimator over
the plug-in estimator is that we do not need to estimate
the covariance matrix (13), which can be complicated in
a large-scale complex survey. In jackknife variance es-
timation, we estimate the gradient vector based on the

whole sample only once, but D̂
(l)
νg,d(μ̂νg) and μ̂

(l)
νg will

change with replicate. Variations of delete-1 jackknife
like delete-d or delete-a-group jackknife can be used in
complex surveys or in case of using median as measures
of center.

Acknowledgement

This research was supported in part by the USDA Nat-
ural Resources Conservation Service cooperative agree-
ment NRCS-68-3A75-4-122.

References

Billingsley, P. (1968). Convergence of Probability Mea-
sures. John Wiley & Sons.

Brown, B.M. (2007). Statistical uses of the spatial me-
dian. Journal of the Royal Statistical Society, Series
B: Methodology 45. 25-30.

Section on Survey Research Methods

3009



Da Silva, D. and Opsomer, J(2001). A kernel smooth-
ing method to adjust for unit nonresponse in sample
surveys. the Canadian Journal of Statistics 34. ???
- ???.

Fuller, W. (2007). Sampling statistics.

Randles, R.H.(1982). On the asymptotic normality of
statistics with estimated parameters The Annals of
Statistics 10. 462-474.

Small, C.G. (2007). A survey of multidimensional me-
dians International Statistical Review 58. 263-277.

Wang, J. (2008). Estimating the distance distribution
of subpopulations for a large-scale complex survey.
Ph.D. thesis, Iowa State University.

Section on Survey Research Methods

3010


