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Abstract 

Sample surveys are generally multivariate, in the 
sense that they collect data on more than one 
response variable. In theory, each variable can 
then be assigned an optimal weight for estimation 
purposes. However, it is a distinct practical 
advantage to have a single weight for all variables 
collected in the survey. This paper describes how 
such multipurpose sample weights can be 
constructed when small area estimates of the 
survey variables are required. The approach is 
based on the model-based direct (MBD) method 
of small area estimation described in Chambers 
and Chandra (2006). Empirical results reported in 
this paper show that MBD estimators for small 
areas based on multipurpose weights perform well 
across a range of variables that are often of 
interest in business surveys. Furthermore, these 
results show that the proposed approach is robust 
to model misspecification and also efficient when 
used with variables that are not suited to standard 
methods of small area estimation (e.g. variables 
that contain a significant proportion of zeros). 
 
Keywords:  Multivariate surveys, Multipurpose 
sample weights, MBD approach, Mixed model. 
 

1. Introduction 
 

The weights that define the best linear unbiased 
predictor (BLUP) for the population total of a 
variable of interest (see Royall, 1976) depend on 
the population level conditional 
variance/covariance matrix for that variable. 
Unless this matrix is always proportional to a 
known matrix, this optimality is variable specific. 
However, most surveys are multivariate, and it is 
often an advantage to have a common weight for 
all response variables. This is especially true 
where linear estimates are produced using the 
survey data. In what follows we refer to such 
weights as �multipurpose�. 
 
When a sufficiently rich set of auxiliary variables 
exist, and response variables can be assumed to be 
conditionally uncorrelated given these variables, 
multipurpose weights can be constructed by 
fitting a linear model for each response variable in 
terms of the complete set of auxiliary variables. 
See Chambers (1996). An essentially equivalent 
idea is to use a calibrated set of sample weights, 

where the calibration is with respect to these 
auxiliary variables. See Deville and Särndal 
(1992). 
 
Small area estimation is now widely used in 
sample surveys. Many of the methods currently in 
use are variable specific and based on the 
application of mixed models (Rao, 2003). 
Weighted direct estimation for small areas based 
on these models is described in Chambers and 
Chandra (2006), who refer to this approach as the 
model-based direct (MBD) method of small area 
estimation. Since the weights used in MBD 
estimation are based on the second order 
properties of linear mixed models fitted to the 
survey variables, they are variable specific. 
However, as noted above, there are obvious 
practical advantages from having a single 
multipurpose weight that can be used for small 
area estimation for all the survey variables. 
Consequently, in section 2 of this paper we 
replace the variable specific BLUP optimality 
criterion that underlies the mixed model weights 
used in the MBD approach by a modified �total 
variability� criterion that leads to a single set of 
optimal multipurpose weights for use in MBD 
estimation for small areas. Section 3 then presents 
empirical results on the performance of this 
approach. Finally, in section 4 we summarise our 
results and make suggestions for further research. 
 

2. Optimal Multipurpose Sample Weighting 
 

2.1 Basic Concepts and Notation 
 
Consider a population U consisting of N units, 
each of which has a value of a characteristic of 
interest y  associated with it. The population 

vector 1( ,..., )U Ny y y ′=  is treated as the 

realisation of a random vector 1( ,..., )U NY Y Y ′= , 
and our aim is estimation of the total 

y jj U
T y

∈
=∑  (or mean 1

jj U
Y N y−

∈
= ∑ ) of the 

values defining Uy . A sample s of n units is 
selected from U, and the y values of the sample 
units are observed. We denote the set of N � n 
non-sampled population units by r. We assume 
the availability of UX , an N × p matrix of values 
of p auxiliary variables that are related, in some 

Section on Survey Research Methods

2979



sense, to the values in Uy . In particular, Uy and 

UX  are related by the general linear model 

( )U UE y X β=  and ( )U UVar y V=  (1) 

where β  is a 1p×  vector of unknown parameters 

and UV  is a positive definite covariance matrix. 
Without loss of generality, we arrange the vector 

Uy  so that the first n elements correspond to the 

sample units, writing ( )U s ry y y′ ′ ′= . We similarly 

partition UX  and UV  according to sample and 

non-sample units as [ ]U s rX X X ′=  and 

ss sr
U

rs rr

V V
V

V V

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
.Here sX  is the n p×  matrix of 

sample values of the auxiliary variable, ssV is the 

n n×  covariance matrix associated with the n 
sample units that make up the 1n×  sample 
vector sy . Corresponding non-sample quantities 

are denoted by a subscript of r, while rsV  denotes 

the ( )N n n− ×  matrix defined by ( , )r sCov y y . It 

is known (see Royall, 1976) that among linear 

prediction unbiased estimators �
y s sT w y′=  of yT  

the variance of the prediction error, �( )y yVar T T− , 

is minimised by weights of the form 

( )
( ) 1

1 1 1

1                   

s n U N s n

n s ss sr N n

w H X X

I H X V V−
−

′ ′ ′= + −

′ ′+ −
. (2) 

Here ( ) 11 1
s ss s s ssH X V X X V

−− −′ ′= , 1m is a vectors of 

ones of order m and nI  is the identity matrix of 
order n. We refer to the weights (2) as the best 
linear unbiased prediction (BLUP) weights for y. 
By definition, these weights are calibrated on the 
variables in UX  and so exactly reproduce the 
known population totals defined by the columns 
of this matrix, i.e. 1s s N U xw X X T′ ′= = . 
Furthermore, under the assumption that a mixed 
linear model can be used to specify the covariance 
matrix components ssV  and srV  in (2), the MBD 
approach to small area estimation (see Chambers 
and Chandra, 2006) uses these weights, with ssV  

and srV  replaced by suitable estimates, to define 
direct estimates of small area quantities. 
 
2.2 Optimal Multipurpose Weighting for 
Uncorrelated Variables 
 
Suppose we have K response variables and a 
common set of auxiliary variables with values 
defined by the population matrix UX , and that 
model (1) holds for each of them (although with 
different parameter values). Suppose further that 
these variables are mutually uncorrelated. We use 
an extra subscript k (k =1,�,K) to denote 

quantities associated with the kth response 

variable, for example kssV  and ksw  denote 

respectively the n n×  covariance matrix and 1n×  
vector of sample weights that are associated with 
the 1n×  vector ksy  of sample values of the thk  
response variable. With this notation, our aim is to 
derive an optimal set of multipurpose weights sw  

= { ; }jw j s∈  for the K response variables 

measured in the survey. Let 1k N kT y′=  denote the 

population total of ky , with estimator �
k s ksT w y′=  

based on these multipurpose weights. The weights 

sw  are then said to be φ -optimal if (a) 

�( ) 0k kE T T− =  for each value of k, and (b) the φ -
weighted total prediction variance 

�( )k k kk
Var T Tφ −∑  is minimised at sw . Here kφ  

is a user-specified non-negative scalar quantity 
that reflects the relative importance attached to 

the thk  response variable, with 1kk
φ =∑ . 

 
Put 1s s sa w= − . In order to derive an explicit 

expression for the φ -optimal multipurpose 
weights we first note that under (a) 

�( ) ( 1 )

1 
k k s ks N n kr

s s N n r

E T T E a y y

a X X
−

−

′ ′− = −
′ ′⇒ =

. (3) 

Furthermore, the prediction variance for estimator 
�
k s ksT w y′=

 
is then 

2

�( ) ( 1 )

[ ( 1 )]                       
k k s ks N n kr

s ks N n kr

Var T T Var a y y

E a y y

−

−

′ ′− = −
′ ′+ −

. 

The second term on the right hand side above 
vanishes under (3), so that  

�( ) 2 1 1 1k k s kss s s ksr N n N n krr N nVar T T a V a a V V− − −′ ′ ′− = − + .
     (4) 
We use the method of Lagrange multipliers to 
minimise (4) subject to (3). The corresponding 
Lagrangian loss function is 

{ }(1)

1
2 1

2( 1 )                 

K

k s kss s s ksr N nk

s s N n r

a V a a V

a X X

φ
λ

−=

−

′ ′Φ = −
′ ′+ −

∑  (5) 

where λ  is a vector of Lagrange multipliers. 
Differentiating (5) with respect to sa  and setting 
the result equal to zero leads to 

{ }
(1)

1
2 2 1 2 0

K

k kss s ksr N n sk
s

V a V X
a

φ λ−=

∂Φ = − + =
∂ ∑  

⇒ ( ) { }1

1 1
1 -

K K

s k kss k ksr N n sk k
a V V Xφ φ λ

−

−= =
= ∑ ∑

     (6) 
Multiplying both sides of (6) on the left by sX ′  
and using (3), we see that 

( ) { }11 1
1 1 1 1s s s r N nX U X X U W Xλ

−− −
−′ ′ ′= −     (7) 
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Where 1 1

K

k kssk
U Vφ

=
=∑  and 1 1

K

k ksrk
W Vφ

=
=∑ . 

Substituting (7) in (6) then yields the optimal 
value of sa : 

( ) ( )

( )

1(1) 1 1
1 1

11 1 1
1 1 1 1

1 1

- 1

s s s s N s n

n s s s s N n

a U X X U X X X

I U X X U X X U W

−− −

−− − −
−

′ ′ ′= −

⎡ ⎤′ ′+ ⎢ ⎥⎣ ⎦

. 

That is, the optimal multipurpose sample weights 
are given by 

( )
[ ]

(1)
1

1
1 1 1

1 1 1

- 1             

s n U N s n

n s N n

w H X X

I H X U W−
−

′ ′ ′= + −

′ ′+
  (8) 

where ( ) 11 1
1 1 1s s sH X U X X U

−− −′ ′= . 

Observe that the analytical form of the optimal 
multipurpose weights (8) is similar to the variable 
specific BLUP weights (2), except that kssV and 

ksrV  are replaced by the weighted sums 

1 k kssk
U Vφ=∑  and 1 k ksrk

W Vφ=∑  respectively. 

Clearly (8) reduces to (2) for 1K = . 
 
2.3 Optimal Multipurpose Weighting for 
Correlated Variables 
 
Survey variables are correlated in general. Let 

( , )kl k lC Cov y y= . The obvious generalization of 

the φ -weighted total prediction variance to this 
case leads to the loss function 

( ) ( )1 2 1 2, ,.... , ,....K Kφ φ φ φ φ φ′ ∆  (9) 

where elements of the matrix { }kl∆ = ∆  are given 
by 

�( - )

� �( - , - )

             
 

   

k k
kl

k k l l

Var T T if k l

Cov T T T T if k l

⎧ =⎪∆ = ⎨
≠⎪⎩

. 

 
The Lagrange function to be minimized in this 
case is 

( ) ( )(2)
1 2 1 2, ,.... , ,....K Kφ φ φ φ φ φ′Φ = ∆

 2( 1 )s s N n ra X X λ−′ ′+ −                    (10) 

Differentiating (10) with respect to sa and setting 
the result equal to zero yields 
 2 21 0s N n sU a W X λ−− + =  

⇒  ( )1
2 21 -s N n sa U W X λ−

−=   (11) 

where 2 k kss k l klss
k k l k

U V Cφ φ φ
≠

= +∑ ∑∑  and  

2 k ksr k l klsr
k k l k

W V Cφ φ φ
≠

= +∑ ∑∑ . 

 
Proceeding as in the uncorrelated case then leads 
to the optimal multipurpose weights for correlated 
survey variables 

( )
[ ]

(2)
2

1
2 2 2

1 1 1

- 1          

s n U N s n

n s N n

w H X X

I H X U W−
−

′ ′ ′= + −

′ ′+
  (12) 

where ( ) 11 1
2 2 2s s sH X U X X U

−− −′ ′= . As in the 

uncorrelated variables case, we note that the 
weights defined by (12) have the same analytic 
form as the BLUP weights (2), except that in this 
case kssV  and ksrV  are replaced by 

2 k kss k l klss
k k l k

U V Cφ φ φ
≠

= +∑ ∑∑  and 

2 k ksr k l klsr
k k l k

W V Cφ φ φ
≠

= +∑ ∑∑  respectively. 

 
2.4 Application to Small Area Estimation 
 
Following Chambers and Chandra (2006), we use 
the multipurpose weights (8) and (12) to construct 
model-based direct (MBD) estimates for small 
area means. In this case we assume that the 
population can be partitioned into m non-
overlapping small areas or domains, indexed by i 
in what follows. Thus, for example, the 
population size of area i is denoted by iN  and so 
on. The variable-specific MBD estimate of the 
mean of the thk  response variable with values kjy  

in area i  is then 

,
�

i i

MBD
k i kj kj kjj s j s

Y w y w
∈ ∈

=∑ ∑  (13) 

where is  denotes the sample (of size in ) in area 

i  and the weights kjw  are calculated using (2), 

substituting estimated values �
kssV  and �

ksrV  for the 
corresponding components of the covariance 
matrix of the population values of this variable. In 
order to define these estimates, we assume that 
these population values follow the linear mixed 
model 

kU U k U k kUY X Z u eβ= + +   (14) 

where ,1 ,( ,..., )kU k k mY Y Y′ ′ ′= , 1( .. )U mX X , .,X′ ′ ′= , 

( 1 )U iZ diag Z ; i m= ≤ ≤ , ,1 ,( ,..., )k k k mu u u ′=  and 

,1 ,( ,..., )kU k k me e e ′=  denote partitioning into area 

�components�. Here k,iu  is a random effect 

associated with area i, with ,( )
ik,i u k NVar u I= Σ , 

and k,ie  is the vector of individual random effects 

for area i, with ,( )
ik,i e k NVar e I= Σ . It follows that 

, , , ,( )
ik i k i e k N i u k iVar Y V I Z Z ′= = Σ + Σ . The variance 

components ,e kΣ  and ,u kΣ  can be estimated from 

the sample data using standard methods 
(maximum likelihood, restricted maximum 
likelihood, i.e. REML, or method of moments). 
Substituting these estimated variance components 
back into the definition of ,k iV  and noting that 

,( 1 )k k iV diag V ; i m= ≤ ≤  then leads to a 
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corresponding estimate of this population level 
covariance matrix. This can be appropriately 
partitioned into sample and non-sample 

components to give the estimated values �
kssV  and 

�
ksrV . We refer to the weights (2) with these 

estimated values substituted as the (variable 
specific) EBLUP weights. 
 
In order to use the multipurpose weights (8) and 
(12) in MBD estimation, we assume that the 
survey variables all follow the linear mixed model 
(14), with normal random effects. Furthermore, 
for any two variables of interest, say the thk  and 

thl , area and individual random effects remain 
uncorrelated but now 

( ) (0, )ki li uu u MVN′ Σ�   (15) 

and 

( ) (0, )kij lij ee e MVN′ Σ�   (16) 

Hence 

, , , ,( )
ik i k i e kk N i u kk iV Var Y I Z Z ′= = Σ + Σ  

, , , ,( )
il i l i e ll N i u ll iV Var Y I Z Z ′= = Σ + Σ , and  

, , , , ,( , )
ikl i k i l i e kl N i u kl iC Cov Y Y I Z Z ′= = Σ + Σ  

Given these definitions, we put  

1 1( ;1 )iU diag U i m= ≤ ≤  and  

1 1( ;1 )iW diag W i m= ≤ ≤  in (8) and  

2 2( ;1 )iU diag U i m= ≤ ≤  and  

2 2( ;1 )iW diag W i m= ≤ ≤  in (12). Here 

( )1 , , , , ,ii k kss i k e kk n s i u kk s i
k k

U V I Z Zφ φ ′= = Σ + Σ∑ ∑       

( )1 , , , ,i k ksr i k s i u kk r i
k k

W V Z Zφ φ ′= = Σ∑ ∑ , and  

2 , ,i k kss i k l klss i
k k l k

U V Cφ φ φ
≠

= +∑ ∑∑  

2 , ,i k ksr i k l klsr i
k k l k

W V Cφ φ φ
≠

= +∑ ∑∑ . 

 
In practice, the bivariate variance components 

, , ,, ,u kk u kl e kkΣ Σ Σ  and ,e klΣ , see (15) and (16), are 

unknown and must be estimated from the survey 
data. For example, in the empirical study 
described in the next section, these components 
were estimated using the method of moments. In 
any case, substituting estimates for these 
components in the formulae above then enables us 
to compute 1U , 1W , 2U  and 2W , and hence the 
multipurpose weights (8) and (12). Computation 
of MBD estimates for the small area means of the 
different survey variables is then straightforward 
using (13), with these multipurpose weights 
replacing the variable specific EBLUP weights 
there. 
 

As noted earlier, the multipurpose weights (8) and 
(12) are essentially EBLUP type weights based on 
�importance averaging� of the variance and 
covariance components associated with the 
different survey variables. This motivates us to 
consider a second approach to deriving 
multipurpose weights based on corresponding 
�importance averaging� of the variable specific 
EBLUP sample weights (2) for these variables. 
That is, we simply define our multipurpose 
weights as the importance-weighted average of 
the variable specific weights (2) across all K 
survey variables. This leads to weights 

(3)
s k sk

k

w wφ=∑    (17) 

where skw  denotes the value of (2) for the thk  

survey variable and kφ  denotes the relative 

importance of this variable, with 1kk
φ =∑ . 

 
3. An Empirical Study 

 
In this section we report on a design-based 
simulation study that illustrates the performance 
of small area MBD estimation combined with 
multipurpose weights. The basis of this study is 
the same target population of N = 81982 farms, 
the same 1000 independent replications of a 
stratified random sampling design with overall 
sample size 1652n =  and the same m = 29 small 
areas of interest (defined by agricultural regions) 
that underpin the simulation results reported in 
Chandra and Chambers (2005). Note that regional 
sample sizes in this design are fixed from 
simulation to simulation but vary between 
regions, ranging from a low of 6 to a high of 117, 
and hence allowing an evaluation of the 
performance of the different methods considered 
across a range of realistic small area sample sizes. 
See Chandra and Chambers (2005) for more 
details. 
 
Here we consider K = 8 variables of interest. 
These are (i) TCC = total cash costs (A$) of the 
farm business over the surveyed year, (ii) TCR = 
total cash receipts (A$) of the farm business over 
the surveyed year, (iii) FCI = farm cash income 
(A$), defined as TCR � TCC, (iv) Crops = area 
under crops (in hectares), (v) Cattle = number of 
Cattle cattle on the farm, (vi) Sheep = number of 
sheep on the farm, (vii) Equity = total farm equity 
(A$), and (viii) Debt = total farm debt (A$). Our 
aim is to estimate the average of these variables in 
each of the 29 different regions. In doing so, we 
use the fact that these regions can be grouped into 
three zones (Pastoral, Mixed Farming, and 
Coastal), with farm area (hectares) known for 
each farm in the population. This auxiliary 
variable is referred to as Size in what follows. 
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Although the linear relationship between the eight 
target variables and Size is rather weak in the 
population, this improves when separate linear 
models are fitted within six post strata. These 
post-strata are defined by splitting each zone into 
small farms (farm area less than zone median) and 
large farms (farm area greater than or equal to 
zone median). The mixed model (14) was 
therefore specified so that the matrix UX  of 
auxiliary variable values included an effect for 
Size, effects for the post-strata and effects for 
interactions between Size and the post strata. Two 
different specifications for UZ  (corresponding to 
whether a random slope on Size was included or 
not) were considered. We refer to these as model I 
and as model II respectively below. We use 
REML estimates of random effects parameters, 
obtained via the lme function in R (Bates and 
Pinheiro, 1998) when fitting (14) to individual 
survey variables. When fitting the multivariate 
mixed models defined by (15) and (16) we use the 
method of moments (Rao, 2003). 
 
The simulation study investigated the 
performance of five different estimators of the 29 
regional means, along with corresponding 
estimators of their mean squared error. These are 
the variable specific EBLUP under (14), referred 
to as EBLUP below; the MBD estimator (13) 
based on variable specific EBLUP weights (2), 
referred to as MBD0 below; the MBD estimator 
(13) based on multipurpose weights (8), referred 
to as MBD1-A below; the MBD estimator (13) 
based on multipurpose weights (12), referred to as 
MBD1-B below; and the MBD estimator (13) 
based on multipurpose weights (17), referred to as 
MBD2 below. Mean squared errors for the 
EBLUP were estimated using the approach of 
Prasad and Rao (1990), while mean squared errors 
for the various MBD estimators were estimated 
using the robust method described in Chambers 
and Chandra (2006), which itself is an application 
of the heteroskedasticity robust method of 
prediction variance estimation described in Royall 
and Cumberland (1978). 
 
The simulation study was carried out in 4 stages. 
In the first stage, model I was assumed and the 
performance of the three estimators MBD0, 
MBD1-A and MBD1-B for two variables (TCC 
and TCR) was investigated to see if there were 
gains to be had from exploiting correlations 
among the survey variables. As noted earlier, we 
used the method of moments (Henderson�s 
Method 3) to estimate model parameters in this 
case. Results from this stage are set out in Table 
1. In the second stage of the study we compared 
the performance of the four estimation methods 
EBLUP, MBD0, MBD1-A and MBD2 under 
models I and II for the 5 response variables (TCC, 

TCR, FCI, Cattle and Sheep) where both models 
can be fitted. Results from this stage are presented 
in Tables 2 and 3. Note that the remaining three 
target variables in the study (Crops, Equity and 
Debt) are not suited to linear modeling via (14) 
under model II because of the presence of large 
numbers of zeros. Consequently, in the third stage 
of the study, we used the multipurpose weights 
derived in the second phase (i.e. weights based on 
the K = 5 variables TCC, TCR, FCI, Cattle and 
Sheep) in MBD1-A to evaluate the performance 
of this estimator for the three variables Crops, 
Equity and Debt that were impossible to model 
using model II. Results from this stage are shown 
in Table 4. In the fourth stage we used the fact 
that model I can be fitted to all eight variables to 
define multipurpose weights that we then use in 
MBD1-A. Results from this stage are presented in 
Table 5.  
 
For the two variables TCC and TCR, Table 1 sets 
out the average and median values of various 
summary measures of estimation performance for 
the three methods MBD0, MBD1-A and MBD1-B 
under model I. These results clearly show that all 
three methods perform equivalently for this data 
set (regional specific results generated by these 
methods are virtually identical as well). This is 
evidence that the MBD method based on the 
multipurpose weights (8) is not sensitive to 
correlations between the target variables. 
Although not presented here, results from model-
based simulations of target variables with 
different levels of correlation support this 
conclusion. Consequently the simulation results 
presented below focus on MBD1-A. 
 
In the second stage of the simulation study, we 
compared the two variable specific methods 
EBLUP and MBD0 with the two multipurpose 
methods MBD1-A and MBD2. Tables 2 and 3 
show the summary performances generated by 
these four methods for the five variables TCC, 
TCR, FCI, Cattle and Sheep under Models I and 
II respectively. Under the better fitting Model II 
(Table 3), multipurpose method MBD1-A 
performs marginally better than multipurpose 
method MBD2, which in turn is slightly better 
than the variable specific MBD0. All three are 
often substantially better than EBLUP for these 
data. Under Model I (Table 2), the two 
multipurpose methods MBD1-A and MBD2 
record substantially better bias performances than 
the variable specific MBD0 and EBLUP, and 
better to comparable performances with respect to 
mean squared error. Overall, the multipurpose 
method MBD1-A seems the weighting method of 
choice for these five variables and these data. 
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In two regions (3 and 21) the weighting methods 
(MBD0, MBD1-A and MBD2) fail. Inspection of 
the data indicates that this is because of a small 
number of outlying estimates that were generated 
during the simulations. In region 21 for example 
these outlying estimates are due to the presence of 
a single massive outlier (TCC>A$30,000,000) in 
the sample data. When we discard these outlying 
estimates then the weighting methods, particularly 
MBD1-A and MBD2, perform well for TCC 
across all regions. Similar results were observed 
for the other four variables TCR, FCI, Cattle and 
Sheep. The unstable performance of EBLUP for 
the Cattle and Sheep variables in Tables 2 and 3 is 
also noteworthy. Upon investigation we found 
that these anomalous results were due to the 
presence of large numbers of negative estimates 
in some of the regions, which in turn were caused 
by zero values in the data. 
 
As noted earlier, our results suggest that 
multipurpose estimation based on MBD1-A is 
preferable to that based on MBD2. Consequently, 
in Table 4 we contrast the performances of the 
variable specific estimators EBLUP and MBD0 
with that of the multipurpose estimator MBD1-A 
for the three variables (Crops, Equity and Debt) 
that contain a large number of zeros, and so were 
not included in calculation of the multipurpose 
weights used in MBD1-A. Note that these results 
are based on model I, since model II cannot be 
used for these variables. We see that MBD1-A is 
again clearly the method of choice, with EBLUP 
performing particularly badly - as one might 
expect given the large number of zero values in 
the data for Crops, Equity and Debt.  
 
In the results presented so far, the multipurpose 
weights used in the MBD1-A method have been 
based on the K = 5 target variables that were 
�suited� to linear mixed modeling with the model 
II specification. However, if a model I 
specification is used, we can use all K = 8 target 
variables to define these weights via (8). In Table 
5 therefore we compare the performance of the 
MBD1-A method under this model with weights 
obtained by using both the limited (K = 5) and full 
(K = 8) set of target variables in (8). This shows 
that these weights are quite insensitive to this 
choice.  
 

4. Summary and Further Research 
 

In this paper we develop two loss functions that 
can be used to compute optimal multipurpose 
weights suitable for use in small area estimation 
using MBD estimators. The first (8) ignores the 
correlations between the survey variables, while 
the second (12) takes these into account. For the 
population considered in our simulation studies 

the performance of the corresponding 
multipurpose weighting based MBD1-A and 
MBD1-B estimators are almost identical, i.e. there 
are no real gains from taking account of the 
correlations between the survey variables when 
constructing the multipurpose weights. We also 
investigated an alternative approach to 
constructing multipurpose weights for use in 
MBD small area estimation by suitably averaging 
the variable specific EBLUP weights. Here again, 
our empirical results demonstrate that this method 
is somewhat less efficient than the loss function 
based MBD1-A method. We also show that these 
multipurpose weights remain efficient across a 
wide range of variables, even variables that have 
not been used in the definition of the multipurpose 
weights. This can be important in some situations 
(e.g. where variables have many zero values) 
where standard mixed models cannot be fitted and 
the usual EBLUP methods do not work. An 
alternative in such cases is extend the EBLUP 
approach to mixtures of linear mixed models. The 
authors are currently working on this issue, and 
results obtained so far are encouraging. 
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Table 1 Average relative bias (ARB), median 
relative bias (MRB), average relative root mean 
squared error (ARRMSE), median relative root 
mean squared error (MRRMSE) and average 
coverage rate (ACR) generated by MBD0, 
MBD1-A and MBD1-B for TCC and TCR under 
model I. All averages and medians are expressed 
as percentages and are over the 29 regions of 
interest. 

Variable Criterion MBD0 MBD1-A MBD1-B

TCC ARB -2.99 -2.67 -2.71

 ARRMSE 20.32 20.39 20.39

 ACR 92 92 92

 MRB -0.92 -0.85 -0.86

  MRRMSE 14.29 14.36 14.35

TCR ARB -2.38 -2.62 -2.67

 ARRMSE 21.21 21.13 21.12

 ACR 92 92 92

 MRB -0.52 -0.56 -0.57

  MRRMSE 13.28 13.27 13.27

 
Table 2 Average relative bias (ARB), median 
relative bias (MRB), average relative root mean 
squared error (ARRMSE), median relative root 
mean squared error (MRRMSE) and average 
coverage rate (ACR) for the five variables best 
suited to linear mixed modelling. All averages and 
medians are expressed as percentages and are over 
the 29 regions of interest. Model I is assumed. 
 

     
Criterion 

Method TCC TCR FCI Cattle Sheep 

ARB EBLUP 4.24 5.48 6.93 138.48 304.24 
 MBD0 

-2.49 -9.25 
-

13.80 
-15.05 -7.33 

 MBD1-
A 

-1.54 -1.30 -0.50 -1.78 0.69 

 MBD2 -1.29 -1.02 -0.04 -1.35 0.98 
MRB EBLUP 1.55 0.55 -2.08 0.95 -0.23 
 MBD0 -0.82 -3.87 -2.83 -4.79 -4.48 
 MBD1-

A 
-0.61 -0.42 -0.56 -0.97 -0.35 

 MBD2 -0.52 -0.39 -0.54 -0.75 -0.30 
ARRMSE EBLUP 19.92 21.76 63.93 304.74 906.18 
 MBD0 20.56 23.34 54.42 37.45 24.88 
 MBD1-

A 
20.86 21.77 59.72 33.29 30.24 

 MBD2 20.85 21.77 60.07 33.36 30.64 
MRRMSE EBLUP 15.74 14.83 40.41 25.97 13.00 
 MBD0 14.45 16.20 35.85 30.34 15.50 
 MBD1-

A 
14.69 13.41 42.09 30.55 14.67 

 MBD2 14.74 13.46 42.45 30.56 14.67 
ACR EBLUP 90 88 87 86 91 
 MBD0 92 91 94 93 94 
 MBD1-

A 
92 92 94 95 96 

 MBD2 92 92 94 95 96 
 
 
 
 
 
 
 

Table 3 Average relative bias (ARB), median relative 
bias (MRB), average relative root mean squared error 
(ARRMSE), median relative root mean squared error 
(MRRMSE) and average coverage rate (ACR) for the 
five variables best suited to linear mixed modelling. All 
averages and medians are expressed as percentages and 
are over the 29 regions of interest. Model II is assumed. 
 
Criterion Method TCC TCR FCI Cattle Sheep

ARB EBLUP 2.98 2.85 16.7 131.66 2.63
 MBD0 -2.13 -1.25 0.5 -0.29 3.66
 MBD1-A -1.67 -1.29 0.74 -1.95 1.1
  MBD2 -1.3 -0.72 3.17 -1.29 0.93
MRB EBLUP 0.61 1.37 3.98 0.62 0
 MBD0 -0.47 -0.51 0.35 -0.31 0
 MBD1-A -0.65 -0.5 0.24 -0.3 -0.15
  MBD2 -0.52 0.01 0.53 -0.22 -0.09
ARRMSE EBLUP 19.87 20.28 68.85 231.08 630.01
 MBD0 20.15 21.46 65.43 30.8 37.82
 MBD1-A 19.06 21.03 64.03 30.09 32.04
  MBD2 27.13 34.84 129.29 45.16 34.99
MRRMSE EBLUP 16.4 15.61 33.89 22.64 11.73
 MBD0 13.16 12.39 37.64 28.79 14.68
 MBD1-A 12.84 12.18 37.92 24.84 14.77
  MBD2 12.84 12.71 37.62 24.93 14.72
ACR EBLUP 85 86 84 86 89
 MBD0 93 93 90 95 96
 MBD1-A 93 93 94 95 96
  MBD2 93 93 94 95 96

 
Table 4 Average relative bias (ARB), median relative 
bias (MRB), average relative root mean squared error 
(ARRMSE), median relative root mean squared error 
(MRRMSE) and average coverage rate (ACR) for 
EBLUP, MBD0 and MBD1-A for Crops, Equity and 
Debt under model I. All averages are expressed as 
percentages and are over the 29 regions of interest. 

Criterion Methods Crops Equity Debt

ARB EBLUP 90.31 4.36 8.39

 MBD0 0 -9.32 -4.94

 MBD1-A -0.21 -1.2 -0.96

MRB EBLUP 0 -0.28 1.16

 MBD0 -0.84 -3.51 -2.36

 MBD1-A 0 -0.32 -0.61

ARRMSE EBLUP 123.96 18.51 29.02

 MBD0 23.53 19.14 27.71

 MBD1-A 22.92 17.05 28.57

MRRMSE EBLUP 15.1 12.32 21.49

 MBD0 15.76 16.18 23.7

 MBD1-A 15.8 13.52 24.88

ACR EBLUP 95 88 91

 MBD0 96 92 93

  MBD1-A 96 94 93
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Table 5 Average relative bias (ARB), average relative 
root mean squared error (ARRMSE) and average 
coverage rate (ACR) for multi-purpose weighting 
(MBD1-A) based on original K = 5 and extended K = 8 
variable sets under model I. 

Variable K = 5 

  ARB ARRMSE ACR

TCC -1.54 20.86 92

TCR -1.3 21.77 92

FCI -0.5 59.72 94

Cattle -1.78 33.29 95
Sheep 0.69 30.24 96

Crops -0.21 22.92 96

Equity -1.2 17.05 94

Debt -0.96 28.57 93

 K = 8 

TCC -1.08 20.91 92

TCR -0.8 21.83 92

FCI 0.21 60.22 94

Cattle -1.05 33.49 95

Sheep 1.24 31.06 96

Crops -0.2 22.97 96

Equity -0.72 17.14 94

Debt -0.68 28.74 93
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