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1. Introduction 
Abstract 

 
Last year, we reported on an effort to construct a 
disclosure control method using partially-synthetic 
data for American Community Survey (ACS) group 
quarters.  This effort was in anticipation of the first 
planned release of ACS group quarters public-use 
microdata samples.  As ACS data for 2006 becomes 
available, we have been able to test our method for 
the first time on a full-size group quarters sample.  
We give results of our test, along with discussions of 
new modeling methods, issues faced in the synthesis 
workflow, and possibilities for future research. 
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This report is released to inform interested 
parties of ongoing research and to 
encourage discussion of work in progress.  
Any views expressed on statistical, 
methodological, technical, or operational 
issues are those of the author and not 
necessarily those of the U.S. Census Bureau. 
 
Statistical agencies must live with 
compromises: between survey size and cost, 
between computational time and program 
accuracy, between model complexity and 
interpretability, and so on.  When preparing 
survey data for public consumption, 
agencies must compromise between the 
statistical utility of the data and the 
confidentiality of survey respondents.  This 
�risk-utility tradeoff� is a key issue in data 
release and at the heart of statistical 
disclosure-control practices. 
 
U.S. law prohibits the Census Bureau from 
publicly releasing data or data summaries 
that can compromise the confidentiality of 
survey respondents.  For household surveys, 
a respondent�s confidentiality is 

compromised when data users can 
successfully assign publicly-released 
information back to the respondent.  The 
information can range from demographic 
variables (age, sex, race) to survey 
participation itself.  Protecting 
confidentiality in data slated for public 
release is a key role of disclosure control. 
 
Disclosure control is particularly important 
for microdata releases.  Microdata consists 
of samples of survey responses, as opposed 
to aggregated measurements given in tables.  
A properly constructed  microdata sample 
allows data users to perform statistical 
analyses without the aid of the releasing 
agency.  Since microdata contains actual 
survey responses, care must be taken to limit 
the level of detail available.  Although 
allowing such directly identifying 
information such as names and addresses to 
remain in the released sample would be an 
obvious and egregious violation of 
confidentiality, other seemingly innocuous 
information could be combined to identify a 
respondent. 
 
The focus of our research is protecting the 
confidentiality of survey respondents in the 
American Community Survey (ACS), 
specifically those respondents residing in 
group quarters.  Groups quarters (GQ) are 
facilities that house many often non-related 
residents.  Examples are college dormitories, 
nursing homes, and prisons.  In 2007, the 
public will see the first release of ACS GQ 
microdata, in the form of ACS public-use 
microdata samples (PUMS).  Our task has 
been to investigate new methods for 
providing disclosure control for ACS group 
quarters, beyond the techniques currently 
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used to protect respondents in the ACS 
household sample. 
 
Our method for providing disclosure control 
involves using statistical models to modify 
respondent records that we feel pose a 
disclosure risk.  The models generate new 
variable values, called synthetic data, that 
attempt to mask individuals while 
maintaining the overall statistical properties 
of the PUMS.  Since we last reported on our 
project, we have utilized new methods for 
synthetic data generation and have obtained 
the complete ACS GQ sample for testing. 
 
2. Disclosure Procedures 
 
Numerous methods of disclosure control 
exist, including: topcoding, which censors 
values for a variable that exceed a 
prescribed upper bound; swapping, which 
matches records on a set of attributes and 
then swaps variable values between them; 
suppression, which simply blanks those 
values that are deemed risky; and synthetic 
data, which replaces risky data with new 
values that are generated from models. 
 
We have used a synthetic-data approach 
throughout our research; that is, we fit 
statistical models to the data and then draw 
from those models to obtain synthetic values 
for at-risk variables and records of our 
choosing.  The goal of such a procedure is to 
produce values that are modified enough, 
per record, to remove disclosure risk, but 
that have enough distributional similarity to 
the original data to maintain its statistical 
properties.  More succinctly, we want to 
change individual attributes but preserve 
population (and sub-population) attributes.  
To understand this goal, it is helpful to think 
of two opposing pathological models.  A 
fully saturated model would refit the data 
perfectly, but would thus afford no 
protection from risk.  A completely random 

model (where values are drawn uniformly 
across the variable support independently 
for each variable) would offer excellent risk 
protection, but would mar the statistical 
properties of the data, especially the 
multivariate properties.  We therefore seek a 
median approach, governed by the risk we 
perceive in the data and the statistical 
integrity demanded by our data users. 
 
Our initial attempts at synthetic-data 
production used simple models: a Bayesian 
linear regression for continuous variables, 
and a Bayesian multinomial model for 
categorical variables.  Although simple to 
understand and execute, these models did 
have a number of noticeable and significant 
drawbacks.  The linear regression model 
tended to give significant numbers of 
synthetic values outside of the support of the 
original data, which forced us either to 
censor those values to a bound or redraw 
until they lay within the support, increasing 
computational burden.  The multinomial 
model had the drawback of being limited as 
to the number of variables we could model 
simultaneously, since the number of cells to 
be estimated by the model increases at least 
exponentially with the number of included 
variables.  This added difficulty to the 
maintenance of multivariate relationships 
within the data. 
 
Our latest modeling methodology makes use 
of several statistical devices, namely: 
additive regression, bootstrapping, and 
predictive mean matching.  The R function 
aregImpute, in library Hmisc, is the 
computational backbone for our 
methodology.  (see Harrell, 2007).  The 
method can be seen as a hybrid between 
purely synthetic data methods (such as fully-
Bayesian regression) and donor-based 
systems (such as hot-deck imputation and 
swapping).  It was originally intended to 
impute values for missing data, but with 
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minor adaptations it is well suited for 
synthesizing data for disclosure control. 
 
We first discuss the method as it is intended 
for missing data.  The input to the method is 
a list of variables, including variables 
containing missing data and variables to be 
used as predictors.  The algorithm proceeds 
through each variable having missing 
values, using a combination of techniques to 
complete the variable.  Once completed, the 
imputed values are used in any future 
calculations involving the variable.   
 
For a particular variable requiring 
imputation, the first stage in the algorithm 
involves taking a full-size sample with 
replacement from those observations in the 
data that do not have a missing value for the 
variable.  This bootstrapping step introduces 
variability into the model fit, since the 
algorithm used to estimate the model is 
otherwise deterministic.  As such, this step 
is useful for allowing this method to be used 
in the context of multiple imputation, (see 
Reiter, 2003a). 
 
The next stage involves fitting an additive 
regression model to the sample.  This model 
is of the form: 
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• g(y) is a transformation of the 
response variable y 

• fi(xi) is a transformation of the 
predictor variable xi 

 
We can view this model as stating that there 
are transformations of the response and 
predictors such that the mean transformed 
response is a linear function of the 
transformed predictors.  The aregImpute 
function uses the alternating conditional 
expectation (ACE) algorithm to estimate 
these transformations.   

 
ACE operates by finding transformations 
that maximize the variance explained by the 
linear regression of the transformed 
response on the transformed predictors.  The 
fraction of variance not explained by the 
transformed regression is: 
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Where g(Y) is the transformation of the 
response and fi(xi) is the transformation of 
predictor i.   
 
The functions g and fi that minimize this 
value are considered to produce the optimal 
model fit.  Breiman and Friedman (1985) 
show that the ACE algorithm converges to 
these optimizing functions.  The algorithm 
iteratively minimizes e2 by minimizing the 
numerator expectation with respect to a 
single function (either g or an fi) and then 
using the minimizing function in the next 
iteration. 
 
We describe the algorithm in words then 
give pseudocode.  Throughout, it is assumed 
that the actual distributions of the response 
and the predictors are known, and that 
conditional expectations can be derived.  
The algorithm also assumes that all initial 
distributions have zero mean, and that the 
response has unit variance. 
 
The algorithm initializes g to the 
standardization of Y and initializes each fi to 
the zero function.  After initialization, the 
algorithm proceeds through two loops.  The 
inner loop minimizes the value of e2 for each 
xi, and stores the minimizing function, fi(xi), 
as the current transformation of xi.  This 
loop is iterated until the value of e2 fails to 
decrease (that is, the minimal value for an 
iterate exceeds the minimal value from the 
previous iterate).  The outer loop minimizes 
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the value of e2 for Y, using the values of 
fi(xi) determined by the inner loop; again the 
loop is iterated until the value of e2 fails to 
decrease.  Maximizing values for each loop 
are given by Breiman and Friedman (1985). 
 
The algorithm pseudocode is given in Figure 
1.  The final values of the functions are used 
as the optimal transformations.  More 
information on the algorithm, including 
convergence, can be found in Breiman and 
Friedman (1985). 
  
The algorithm assumes that the distributions 
of the response and all predictors are known, 
and that conditional expectations can be 
calculated.  This is never true in practice, 
and so we must replace the population 
quantities with their sample estimates (see 
Breiman and Friedman (1985)).  In 
particular, estimating the conditional 
expectations requires careful consideration.  
When the conditioning variable is 
categorical, Breiman and Friedman give the 
following straightforward estimate: 
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where Z is the categorical conditioning 
variable.  This amounts to taking the mean 
of the values of X that have an associated 
value of z on the conditioning variable. 
 
When the conditioning variable is ordinal or 
continuous, more complicated estimates are 
needed.  A simple method for accomplishing 
this would be to use a linear regression to 
estimate the conditional expectation.  This is 
unrealistic, however, since the reason for 
fitting an additive model is that we do not 
believe the assumptions of a linear 
regression hold.  Breiman and Friedman 
instead base their estimation on scatterplot 
smoothers.  Specifically, they chose for 
implementation the so-called super-
smoother of Friedman and Stuetzle (1982).  

Other options are possible, such as lowess 
fitting and kernel smoothing.  Scatterplot 
smoothers attempt to estimate the 
conditional expectation via numerical means 
by fitting a curve through the plot of the 
conditioning variable versus the dependent 
variable.  The value of the curve at a specific 
value of the conditioning variable is the 
estimate of the conditional expectation.  The 
specific details of smoothing algorithms are 
beyond the scope of this paper; please see 
Breiman and Friedman (1985) and Friedman 
and Stuetzle (1982). 
 
Once the ACE algorithm converges, the 
resulting additive model is used to obtain 
predicted transformed values of g(Y) for 
every observation, including those with an 
initially missing value of Y.  To obtain the 
final synthetic value, aregImpute then 
performs predictive mean matching, given 
the values predicted by the additive model.  
For a given observation, say k, with a 
missing value of Yk, the matching is 
accomplished as follows: 
 
1. Use the ACE-derived model to 

obtain ( ) ( )**
1 ,, NYgYg K , the predicted 

transformed values of the response 
for all observations 

2. Input these predicted values into a 
weighting function to obtain weights 
for each observation. 

3. Select an observation at random, 
drawing from a multinomial 
distribution using the weights to 
determine the probabilities. 

Once the matching record is found, its 
original Y-value is used as the synthetic 
value for observation k. 
 
The weighting function used in aregImpute 
is: 
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where: 
. g(yk) is the predicted transformed value for 
the observation to be synthesized 
. g(yi) is the predicted transformed value for 
observation i 
.  h is a smoothing parameter 
. n is the number of records 
 
This weighting function assigns positive 
weight to those observations whose 
predicted transformed values lie within the 
average absolute distance to the target 
record�s value.  The weights are then used to 
select a record to act as a donor for the 
synthetic value of the current missing 
record.  This is accomplished as follows for 
a given missing record k: 
1. Take a random draw, uk, from a 
uniform distribution on the interval (0 , 1) 
2. Calculate the sum of the weights for 
all possible donor records: 
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3. Standardize the weights by the sum: 
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4. Add up these standardize weights 
until the sum exceeds uk.  The record at 
which this occurs is chosen as the donor. 
5. Use the donor�s untransformed value 
of Y as the synthetic value of the missing 
record. 
 
Since we are not using aregImpute for 
missing data, but rather complete data that 

requires disclosure control, we must modify 
the workflow for inputting the data into the 
function.  Our strategy is to stack a copy of 
the data on top of itself.  One copy of the 
data is complete, while the other copy has 
had the variable to be synthesized blanked 
(set to missing).  This stacked data is then 
input into aregImpute, which completes the 
missing values in the blanked copy.  We use 
these completed values as the synthetic data 
for those records flagged as requiring 
disclosure control. 
 
 
 
3. Defining Risk 
 
Our attempts at using statistical models to 
mask data at risk of disclosure would be in 
vain if we did not consistently and 
adequately identify those records where 
confidentiality might be compromised.  
Defining what is �at risk� is not trivial.  
Numerous aspects of the data release: 
sample size, number of variables, level of 
detail, universe sampling scheme, etc., can 
have drastic effects on confidentiality as 
well as data quality.  In addition, the 
information held by prospective data users, 
both gregarious and malicious, plays a 
significant role.  A major role of the public-
data steward is therefore to produce and 
apply a method of risk identification that 
takes all these factors into account. 
 
An important first step is determining how a 
data user might use his data to unmask the 
identities of individuals in public-use 
microdata.  For our purposes, we assume 
that the data user has compiled a data set 
that contains identifying information 
(names, addresses, social security numbers, 
etc.), along with variables that mirror 
variables found in the public-release data.  
To match records, the data user searches for 
records in the two data sets that agree on a 
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set of variables common between the data 
sets.  An identity disclosure occurs when the 
data user correctly ascribes a record in the 
public-use data with a record from his data, 
thus yielding new information about a 
specific respondent.  By �correctly� we 
mean that the data user obtains new and 
correct information about a respondent by 
extracting variables from the matched 
record.   
 
From this basic definition we see two ways 
in which our disclosure control procedures 
can ameliorate the risk of disclosure: by 
preventing record matching and by 
modifying true values in the case a match is 
made.  We therefore focus our procedures 
on those aspects of the data that users will 
use for matching and those that are sought 
by users for augmenting their own records.  
This means we must identify those variables 
that could potentially be used for matching 
and those variables that are commonly 
considered sensitive to respondents but are 
not necessarily used for matching. 
 
Given a set of matching variables, we 
assume that the user identifies records as 
follows: he first generates the multi-way 
tabulation of possible combinations of the 
variable values based on the public-use data.  
For each record in his data, he obtains the 
associated matching variable combination 
and identifies the appropriate cell in the 
table.  All records in the public-use data that 
fall within that cell are matched to the user�s 
record.  For further discussion, we refer to 
those records in the matching cell as 
�matching records� and the record chosen 
from the user�s data as the �reference 
record�.  The number of records in the 
matching cell is vital to our concept of risk.  
We first consider possibilities for matching 
in the absence of disclosure control. 
 

If the matching cell contains no records, 
then the user can assume several 
possibilities: the respondent associated with 
the reference record was not in the survey 
sample; the respondent was in the sample 
but not subsequently included in the public-
use data; the matching variables are 
recorded with error in either or both the data 
sets; or the coding scheme for the matching 
variables differs between the two data sets.  
In any case, the user has no matches and 
must therefore consider re-selecting or 
recoding his set of matching variables. 
 
The case of one matching record in a cell is 
more intriguing.  We call such a record a 
�sample unique.�  Ostensibly, sample 
uniques give the user exactly what he wants: 
a single matching record from which he may 
extract new information; however, there are 
underlying difficulties.  The fact that a 
record is unique in a cell in the sample does 
not imply that the record is unique in a cell 
in the population.  If the matched record is 
not a population unique then there is no 
guarantee that the information in the record, 
other than the matching variables, 
corresponds with true information for the 
reference record.  Thus to effectively draw 
new information based upon a sample 
unique, the user must have a certain degree 
of confidence that either the record is also 
unique in the population, or that the other 
associated records in the population share 
the sample record�s characteristics on those 
variables chosen for extraction.  Skinner et 
al. (1990) give a thorough overview of 
disclosure risk in microdata. 
 
Disclosure control procedures complicate 
the matching process by producing 
uncertainty as to the validity of the matching 
records.  In the presence of disclosure 
control, a data user having matches must 
consider several possibilities for errors in 
matching: 
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1.  The matching is incorrect because the 

matching variables used have been 
modified by the disclosure control 
procedure.  

2.  The matching is correct, but the extra 
information contained in the 
matching record(s) has been 
modified by the disclosure control 
procedure 

3.  Both 1 and 2 have occurred. 
 
We can see how disclosure control 
procedures can add multiple layers of 
protection to a publicly-released data set.  If 
we modify those variables that users 
commonly use for matching records, we will 
produce uncertainty in their matches, thus 
throwing into question the validity of any 
extra data they might obtain from matched 
records.  But even if data users use 
unmodified variables for matching, if we 
have used our disclosure control method to 
alter other variables in the data, then the user 
still cannot guarantee validity on a per-
record basis. 
 
4. Workflow 
 
The production and release of public 
microdata involves numerous stages, and 
agencies must decide at what point the 
application of disclosure control methods 
should occur.   The interaction of disclosure 
control with other data quality procedures 
has consequences for overall data quality 
and for the complexity of the workflow and 
the individual components thereof. 
 
Editing is a common element of the ACS 
workflow that can have intimate interactions 
with disclosure control.  Editing is the 
process of deterministically correcting errors 
in variable values.  Often the errors involve 
nonsensical, contradictory, or ineligible 

values for an individual record which 
conflict with the record as a whole. 
 
One of the main goals of editing is to make 
variables in the data set conform to so-called 
universe definitions.  These definitions 
define which values of a variable are 
allowable for various subsets of the data.  
For example, the universe definition for 
variable X might required that all records 
with a value on another variable Y, say Y = 
1, should have a missing value of X.  Thus if 
a record contains Y = 1 and X is not 
missing, the editing procedures would 
change either the value of Y or X, or both, to 
satisfy the universe definition. 
 
We considered three options for including 
both editing and disclosure control into the 
workflow: 
1. Apply disclosure control first, 

allowing the editing procedure to 
correct conflicts between universe 
definitions and synthetic values 

2. Apply disclosure control first, 
ensuring that synthetic values adhere 
to the universe definitions in the 
modeling 

3. Apply editing first and ensure that 
the disclosure control procedure 
maintains universe definitions 

 
The first option is the easiest in terms of 
applying the disclosure control procedure.  
Since the editing procedure will correct out-
of-universe values, any model we used to 
synthesize data for disclosure control would 
not need to inherently restrict the range of 
drawn values.  If this framework is used, 
caution must be taken to insure that 
synthesized values be clearly marked as 
such, otherwise one risks confounding 
original out-of-universe values and those 
generated by the disclosure control model.  
This could prevent internal analysis of 
patterns of universe-related problems. 
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The second option complicates the 
disclosure procedure by requiring the 
models to produce synthetic values 
congenial with the universe definitions.  
Despite this added complication, we feel this 
is a better option than the first, since it 
forces us to produce models that yield 
synthetic values that more closely match the 
reality of the data (assuming the universe 
definitions are sensible). 
 
These options have a common problem that 
makes the third worth investigating.  When 
performing disclosure control before editing, 
we run the risk of fitting models to possibly 
erroneous data.  We never expect the data as 
a whole to be of low quality; however, 
certain variables that we chose to model 
might be afflicted by profligate universe 
errors.  This can have a significant impact 
on the validity of our model, as we are 
fitting to data that possibly does not match 
reality.  Although the editing procedure will 
correct values from the disclosure model, we 
could not say that the model would have 
produced vastly different synthetic values 
had we performed synthesis after editing. 
 
Thus we chose the third option, which is to 
perform disclosure control after editing.  
The difficulty in this case, as in the second, 
is that the disclosure model cannot be 
allowed to generate out of universe synthetic 
values.  The synthesis models, however, are 
based on edited data, which can help reduce 
the number of out-of-universe values as well 
as give the models added validity. 
 
The decision to perform disclosure control 
after editing played a large part in our 
decision to use aregImpute as our modeling 
procedure.  The predictive mean matching 
step ensures that the final synthesized value 
will not lie outside of the support of the data 
used for fitting.  This means that as long we 

fit the models to data that already satisfy the 
universe definitions, we will not produce 
out-of-universe values.  To guarantee this 
happens, we perform our modeling within 
subpopulations determined by the universe 
definitions.  As long as each subpopulation 
is associated with a unique universe, 
conflicts will be avoided. 
 
Our work focuses on generating synthetic 
data for release in the ACS PUMS; however, 
sampling for PUMS is performed after 
synthetic data generation.  This is 
advantageous for two reasons.   First, it 
allows us to fit our models on the data as a 
whole, affording us larger sample sizes and 
all the benefits thereof.  Second, it allows 
the data to be sampled multiple times 
without the need for reapplying disclosure 
control.  This is advantageous if ACS GQ 
records are to be included in any future 
microdata releases other than the 2007 
PUMS. 
 
We would like to note two other important 
aspects of the workflow.  First, the 
disclosure procedure we have discussed has 
currently only been planned for use in the 
2007 ACS PUMS, and only for group 
quarters respondents.  There has not been an 
official decision as to the use of this 
procedure for multi-year estimates and for 
household data.  Second, the modeling 
procedure was run before the application of 
survey weights, which implies that these 
weights were not available for use in 
modeling. 
 
5.  Results 
 
As this time, the list of variables considered 
for synthesis is confidential, which limits the 
scope of results that may be presented.  We 
first analyzed an unweighted synthesized 
continuous variable.  For this variable, there 
were no significant differences in the mean, 
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quartiles, or the extreme observations 
between the synthetic and original data.  
This last observation is particularly 
important.  Topcoding is a common method 
of data protection for public-use files, which 
provides protection by setting a maximum-
allowable value for a given sensitive 
variable.  The use of topcoding prevents 
analysis of the extreme observations of the 
variables to which it is applied.  Model-
based methods for disclosure can generate 
new data in these extreme regions, allowing 
for statistical analysis while affording 
protection. 
 
In terms of the unweighted synthesized 
categorical variables, we found a kappa 
statistic of 0.9720 for the agreement of the 
multi-way tabulation of these variables 
between the original data and the synthetic 
data.  This indicates that the original and 
synthetic data agree on the distribution of 
these variables. 
 
As another measure of statistical validity, 
we performed an unweighted regression of a 
synthesized continuous variable on a 
combination of synthetic and non-synthetic 
variables.  Results for this are given in Table 
1 (see below).  We see no appreciable 
differences between the coefficient estimates 
and their standard errors, as well as no 
change in their significance. 
 
Other analyses performed internally show 
equally positive results in terms of statistical 
integrity.  Results from re-identification 
experiments (not shown here), indicate that 
the synthetic data provide the necessary 
disclosure protection required for public-use 
data.  We feel confident in presenting this 
method as a viable option for providing 
disclosure control to ACS group quarters. 
 

6.  Future Research 
 
Research continues into the use of synthetic 
data for the ACS.  Foremost is the 
possibility of using this method to provide 
protection to individuals in households (who 
are currently protected in ACS PUMS via 
data swapping).  Household data 
complicates the modeling process by 
requiring the maintenance of demographic 
relationships among family members, which 
is not an issue in group quarters. 
 
Another major focus of research is the use of 
multiple imputation within the synthetic data 
framework for ACS.  Multiple imputation 
involves releasing several copies of the 
synthetic data; this allows data users to 
estimate the variability added by the 
synthesis model, affording accurate standard 
errors (see Rubin, 1987 and Reiter, 2003). 
 
Other areas of research include 
improvements to the process of flagging 
records as needing disclosure protection.  
Currently a record is flagged on the 
complete cross-tabulation of a list of key 
identifying variables.  This gives us no 
information on which particular variables 
are putting a particular record at risk.  We 
are investigating the option of flagging 
records based upon minimal combinations 
of the key variables, which would allow us 
to avoid synthesizing variables that do not 
put the record at risk. 
 
Finally, since the aregImpute function was 
originally intended to impute missing data, 
we would like to investigate the use of this 
method to perform item non-response 
imputation for the ACS.  Having the same 
procedure for both imputation and 
disclosure could possibly simply both our 
internal workflow and user analyses. 
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Figure 1:  Pseudocode for the ACE Algorithm 
 
Assume E[g2(Y)] = 1 (this can be guaranteed by first transforming Y by subtracting its 
mean) and that all functions have expectation of zero: 
 
Initialize: 

[ ]2
1

2)( YEYYg =  
 (standardize the response) 
 

( ) 0=ii Xf , i = 1, � , p 
 (initialize f to zero function) 
 
Outer Loop (iterate until e2 fails to decrease): 
 Inner Loop (iterate until e2 fails to decrease): 
 
  For k = 1 to p: 

  ( ) ( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
−= ∑

≠
k

ki
iikk XXfYgEXf 1,  

  (compute expectation of the difference of the transformed response and 
the  transformed predictors) 

 
  ( ) ( )kkkk XfXf 1,=  
  (set the current f to this expectation) 
 
  End; 
 End; 
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 (compute expectation of a linear regression of the sum of the transformed 
predictors on the transformed response.  Standardize this expectation (which is a 
function of the response)) 

 
 ( ) ( )YgYg 1=  
 (set the current g to this expectation) 
 
End; 
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Table 1:  Linear Regression of Continuous Synthesized Variable 
 

Effect Original Synthetic Original Synthetic Original Synthetic

Intercept * * 0.2088 0.2089 <.0001 <.0001

Variable 1 -3.3940 -3.4102 0.0714 0.0714 <.0001 <.0001

Variable 2 0.7986 0.8115 0.1571 0.1571 <.0001 <.0001
1.4593 1.4305 0.3083 0.3085 <.0001 <.0001

-0.7410 -0.7220 0.3866 0.3867 0.0552 0.0619
5.2827 5.3050 0.2362 0.2363 <.0001 <.0001

Variable 3 3.4346 3.4362 0.0638 0.0638 <.0001 <.0001
0.7353 0.7461 0.2745 0.2746 0.0074 0.0066

Variable 4 -10.6433 -10.6375 0.1080 0.1081 <.0001 <.0001
-30.6871 -30.6650 0.2100 0.2102 <.0001 <.0001
29.5641 29.5483 0.1085 0.1086 <.0001 <.0001

-11.3107 -11.3478 0.5563 0.5566 <.0001 <.0001
-28.6310 -28.6374 0.1096 0.1097 <.0001 <.0001
-21.1350 -21.1322 0.1705 0.1706 <.0001 <.0001

Estimate Estimated Critical Value
Standard Error
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