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Abstract 
 

This paper develops Bayesian penalized spline predictive 
(BPSP) estimator of finite population proportion for 
probability-proportional-to-size samples.  This new 
method allows the probabilities of inclusion to be directly 
incorporated into the estimation of population proportion, 
using a probit regression of the binary outcome on the 
penalized spline of the inclusion probabilities.  The 
posterior distribution of the population proportion is then 
obtained using Gibbs sampling.  Simulation studies show 
that the BPSP estimator gains efficiency over the HT 
estimator by using the inclusion probabilities in the non-
sampled units, and that the BPSP estimator has a better 
coverage with narrower credible interval over the HT 
estimator, especially when the true population proportion 
is close to zero or one for small samples. 
 
KEY WORDS: finite population proportion, Gibbs 
sampling, penalized spline regression model 
 

 
1. Introduction 

 
Suppose that we have a finite population consisting of N 
identifiable units and let binary variable Y  be the 
characteristic of interest.  In sample surveys, one of the 
most important problems is to estimate the proportion of 
units in the population with Y = 1. 
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In probability-proportional-to-size (PPS) sampling, the 
inclusion probability 

iπ  for unit i  is proportional to the 

value 
ix  of size variable X, which is usually known for all 

units in the finite population before a sample is drawn.  A 
PPS random sample s with elements 

nyy ,...1
 is drawn 

from the finite population according to the inclusion 
probabilities

Nππ ,...,1
.   

    A simple design-based estimator for p is the Horvitz-
Thompson (1952) estimator, which weights cases by the 
inverse of their inclusion probabilities,   
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Using Delta method and the Yates-Grundy (1953) 
estimator, by plugging in the joint inclusion probability 

approximation given by Hartley and Rao (1962), an 
estimated variance for 

HTp�  is, 
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And an approximately α−1  level confidence interval for 
the population proportion 

HTp�  is given by   

( )[ ] ( )[ ]{ }2/1
2/

2/1
2/ ���,��� HTHTHTHT pvZppvZp αα +−                        (3)                  

where 
2/αZ  is the 2/1 α−  percentile of a standard normal 

distribution.  
    One limitation with the Horvitz-Thompson (HT) 
estimator is that it only incorporates the selection 
probabilities of units in the sample.  But in PPS sampling, 
not only the inclusion probabilities in the sample but also 
those in the non-sampled units are known. Therefore, 
predictive estimators for statistical models relating 

iy  and 

iπ  may improve the efficiency in estimating population 

proportion in a PPS sample.   
    On the other hand, the model-based predictive 
estimator may yield biased estimate when the underlying 
model is misspecified. This limitation motivates the 
development of flexible statistical models that are more 
robust to model misspecification.  For continuous survey 
data, Zheng and Little (2003) estimated the finite 
population total using a nonparametric regression on the 
penalized spline (p-spline) of the inclusion probabilities. 
The estimator was shown to generally outperform the HT 
estimator and the generalized regression (GR) estimator 
in terms of root mean squared error.  Zheng and Little 
(2005) also showed that p-spline model-based estimators 
and their jackknife standard errors lead to inferences that 
are superior to HT or GR based inferences.  
    The main purpose of the present work is to obtain a 
new estimator of the proportion of units in the finite 
population with Y = 1 from a PPS sample.  First, the 
binary outcome Y is fitted on a p-spline of its inclusion 
probability by a probit regression in the sample.  Then for 
the non-sampled units, Y is predicted based on the 
regression model and its corresponding inclusion 
probability.  This model-based estimator is called 
Bayesian p-spline predictive (BPSP) estimator. The 
advantages of the BPSP estimator over the HT estimator 
are demonstrated by simulation studies.  
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2. Bayesian P-Spline Predictive (BPSP) Estimator 
 

To understand the relationship between the binary 
outcome Y and the continuous inclusion probabilityπ , we 
need to fit a binary regression of Y on π .  Parametric 
binary regressions, such as the linear or quadratic logistic 
or probit model, may not adequate in fitting the data. One 
solution for this problem of inflexibility is to fit a binary 
regression on a spline of π  by adding some knots.  
However, too many knots may result in the roughness of 
model fit. One way to overcome this problem is to retain 
all of the knots but to constrain their influence.  This is 
called binary p-spline regression model. 
    Let ( )⋅Φ−1  denote the inverse CDF of a standard normal 
distribution. We consider the following probit polynomial 
spline model with m truncated power bases (Ruppert, 
Wand, and Carroll 2003):  
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ml ,...,1= ; ni ,...,1= . 

The constants 
mkk << ...1

 are m selected fixed knots. A 

function such as ( )p
i k +−π  is called a truncated polynomial 

spline basis function with power p, and ( )pu +
 is equal to 

( ){ }puIu 0≥×  for any real number u.  Since the truncated 
polynomial spline basis function has p-1 continuous 
derivatives, higher values of p lead to smoother spline 
functions.  In addition, by specifying a normal distribution 
for u, the influence of the m knots is constrained in Model 
(4).  
    Model (4) can also be written in the matrix form, 
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And it can be implemented using the generalized linear 
mixed models.  However, their fitting presents some 
computational challenges.  Alternatively, using the idea of 
data augmentation, Gibbs sampling makes the 
computation much simpler (Ruppert, Wand, and Carroll 
2003).  The working algorithm is as follow:   
 
a) Probit regression models have computational 

advantages compared to logistic regression models.  
The probit regression model for the binary outcome 

[ ]Tnyyy ,...,1=  corresponds to a normal regression model 

for a latent continuous data [ ]Tnyyy **
1

* ,...,= , which has a 

truncated multivariate normal distribution with mean 

( )ZbX +β  and identity covariance matrix (Albert and 
Chib 1993).  The relation to the observed binary 
response data 

iy  is that 
iy  is the indicator that 0* >iy .  

With some initial values of ( )b,β , values of the latent 

continuous data *
iy  can be simulated.   

b) Specifying an improper uniform prior on β  and an 

inverse gamma ( )01.0,01.0IG  on 2τ , the posterior 

distribution of ( )2,, τβ b  given the simulated latent 

continuous data *y  is  
     ( ) *2 ,|, yb τβ     

              ( ) ( )( )12*12
1 /,/~

−−
++ ++ ττ DCCyCDCCMVN TTT

pm
 

( )2/01.0,2/01.0~,|
22 bmIGb ++βτ ,                              (5)  

where C=[X, Z] and D is a diagonal matrix with p+1 
zeros followed by m ones on the diagonal.   

c) At iteration t, draws from the posterior distribution of 
( ))1(2)1( ,*|, −− ttyb τβ  in Equation (5) are used to sample 

new latent data )*(� ty  conditional on observed binary 
variable y for the sample, and to obtain the predicted 
values )(� ty  as indicators whether the sampled )*(� ty  are 
greater than zero for non-sample units. And then the 
predictive proportion is calculated as 
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d) The draws of )*(� ty  in the sample are used to draw a new 

( )2,, τβ b  at iteration t+1. The posterior distribution of 

p�  is then obtained by the above Gibbs sampler.   
 
    The posterior mean of p�  is called the Bayesian p-spline 
predictive (BPSP) estimator of the finite population 
proportion, and is denoted as

BPSPp� .  One advantage of 

Bayesian analysis is that the whole posterior distribution 
of the parameter of interest is available.  To keep the 
distinction between Bayesian and classical inference 
clear, the Bayesian intervals are referred to as credible 
intervals rather than confidence intervals. The α−1  level 
credible interval for the BPSP estimator of population 
proportion can be formed in many different ways.  One 
simple way is to split the α  equally between the upper 
and lower endpoints, and thus the α−1  credible interval is  

( ){ } ( ){ }{ }2/1�:inf2/�:inf: αα −≥≤≤≥ UBPSPULBPSPL qpqpqpqp .                       

 
 

3. Simulation Study 
 

3.1 Design of the simulation studies 
 
Simulation studies are conducted to study the 
performance of the BPSP estimator, compared to the HT 
estimator for four different kinds of populations with two 
different sampling rates.  
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    We simulate finite populations with a population size 
of 2000. The inclusion probabilities in the population,  

{ }20001 ,, πππ K= , are simulated as proportional to the 

consecutive positive integer values: 71, 72, ..., 2070.  
Continuous data { }20001 ,, zzZ K=  are generated from 

normal distributions with means structures ( )πf  and 
constant error variance 0.04.  The binary outcomes 

{ }54321 ,,,, YYYYYY =  are then created by using the 

superpopulation 10th, 25th, 50th, 75th, and 90th percentiles 
of Z as cut-off values.  For instance, 

1Y  equals to 1 if Z is 
less than its superpopulation 10th percentile, otherwise 0. 
The target of estimation is the population proportion with 
Y equal to 1. Four different mean structures of the 
inclusion probabilities are simulated for Z. They are 
constant function (NULL) ( ) 30.0≡if π , linearly increasing 

function (LINUP) ( ) ii kf ππ 1= , linearly decreasing 

function (LINDOWN) ( ) ii kf ππ 2=  and exponentially 

increasing function (EXP)  ( ) ( )ii kf ππ 364.4exp +−= .  

     We simulate two different sample sizes 100 and 200 
from each mean structure of population.   In each 
replicate, a finite population is generated before a sample 
is drawn.  A PPS sample is then drawn systematically 
from a randomly ordered list of the finite population. For 
each population and sample size combination, 1000 
replicates are obtained and the two estimators are 
compared in terms of bias, root mean square error 
(RMSE), length of the 95% confidence /credible interval, 
and the coverage.  
    Model (4) is specified using linear, quadratic, or cubic 
splines, and is also fitted using various numbers and 
positioning of knots: with 5, 15, or 30 knots, and placing 
the knots in equal space or in the equally spaced sample 
percentiles of the inclusion probabilities.  Simulations 
suggest that linear splines perform as well as quadratic 
splines or cubic splines in this setting.  In addition, 
simulations suggest that the number and positioning of the 
knots do not make much difference to the results, 
provided that the knots cover the range of the data in the 
sample reasonably well.  Therefore, we only present the 
simulation results for the linear BPSP estimator with 
knots placed at the 15 evenly spaced sample percentiles.  
Figures 1-4 show how Bayesian probit regression models 
are fitted for binary outcomes on the p-spline of the 
inclusion probabilities in these four mean structures.  
Simulation results are shown in Tables 1 through 4.  
 
3.2 Simulation results 
 
Figures 1-4 show that the Bayesian p-spline probit 
regression models fit well for the binary outcomes.  In 

each figure, the upper left plot is the scatter plot of the 
continuous variable Z by the inclusion probabilities, with 
five horizontal parallel lines superimposed, representing 
the superpopulation 10th, 25th, 50th, 75th, and 90th 
percentiles respectively.  In the upper middle plot, the 
binary variable Y, defined as 1 if Z is less than the 
superpopulation 10th percentile, are plotted with black 
circles, and the true probabilities of Y = 1 over inclusion 
probabilities are plotted with a solid black curve. The 
solid grey curve and two dashed grey curves are the mean 
and 95% credible intervals of the posterior distribution of 
probabilities of Y = 1 given the inclusion probabilities, 
obtained from the Bayesian p-spline probit regression 
model.  The other four plots are similar to the upper 
middle plot, but with superpopulation 25th, 50th, 75th, and 
90th percentiles as cut-off values in defining Y.  These 
plots show that the true probabilities of Y = 1 fall within 
the 95% credible intervals of the fitted values, and are 
close to the mean fitted values. Similar results are found 
in Figure 2, 3 and 4. 
    Tables 1-4 show that the BPSP estimator outperforms 
the HT estimator in terms of RMSE for the finite 
population proportion estimation, though the BPSP 
estimator is slightly more biased than the HT estimator.  
In the �EXP� case, when the true value of population 
proportion is 0.75 or 0.90, the RMSE is reduced by about 
a half by using the p-spline model-based predictive 
estimator.  This means that the BPSP estimator is more 
efficient than the HT estimator and gains more when the 
binary outcome is better separated by the probabilities of 
inclusion. 
    In general, the coverage calculated based on the BPSP 
estimator and its credible interval is closer to its nominal 
level than the HT estimator and its confidence interval, 
especially when the population proportion is closer to 0 or 
1, and there are relatively few observations in the tails.  
For example, for the �NULL� case, only about 85% and 
90% of the 95% confidence intervals of the HT estimator 
cover the true value of population proportion with sample 
sizes 100 and 200 respectively; while the coverages are 
closer to 95% for the BPSP estimator.  Similarly, we see 
the big improvement in the coverages of the credible 
intervals of the BPSP estimator over the HT estimator 
when the true population proportion is close to 0 in both 
�LINUP� and �EXP� cases, and when the true population 
proportion is close to 1 in �LINDOWN� case, since the 
probabilities of inclusion are smaller for the lower tails of 
�LINUP� and �EXP� and for the upper tail of 
�LINDOWN�, which results in fewer data are selected 
into the sample in these groups. More important, we 
achieve narrower intervals with the BPSP estimator than 
the HT estimator while obtaining better coverages. 
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Figure 1: �NULL� population (n=200, N=2000) 
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Figure 2: �LINUP� population (n=200, N=2000) 
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Figure 3: �LINDOWN� population (n=200, N=2000) 
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Figure 4: �EXP� population (n=200, N=2000) 
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Table 1: �NULL� population ( ) 30.0≡if π  

bias*1000 RMSE*1000 length*100 coverage*100      
Sample size True proportion 

HT BPSP HT BPSP HT BPSP HT BPSP 

100 

0.10 
0.25 
0.50 
0.75 
0.90 

-0.7 
0.9 
-0.7 
-2.4 
-0.7 

5.5 
3.8 
-1.2 
-6.3 
-6.7 

40.6 
58.4 
65.5 
59.5 
42.0 

38.1 
52.6 
58.6 
54.3 
39.3 

13.9 
21.6 
25.1 
21.5 
14.1 

13.6 
19.3 
22.1 
19.3 
13.7 

84.6 
90.4 
93.1 
91.1 
85.2 

92.7 
93.0 
94.7 
93.2 
90.6 

200 

0.10 
0.25 
0.50 
0.75 
0.90 

0.1 
-1.3 
-1.1 
0.3 
-0.1 

3.2 
1.5 
-0.2 
-2.2 
-3.1 

27.9 
40.4 
48.1 
41.3 
28.6 

25.7 
36.7 
43.2 
37.8 
26.7 

10.0 
15.0 
17.7 
15.1 
10.2 

9.6 
13.7 
15.8 
13.7 
9.7 

90.6 
92.0 
92.0 
90.7 
89.2 

92.3 
94.4 
93.1 
93.6 
93.8 

 
 
Table 2: �LINUP� population ( ) ii kf ππ 1=  

bias*1000 RMSE*1000 length*100 coverage*100      
Sample size True proportion 

HT BPSP HT BPSP HT BPSP HT BPSP 

K1=6 
100 

0.10 
0.25 
0.50 
0.75 
0.90 

-0.01 
-3.0 
-4.0 
-1.8 
-0.4 

8.2 
-0.6 
-5.3 
-4.0 
-2.9 

55.5 
71.4 
66.1 
47.5 
27.3 

47.6 
55.0 
48.9 
37.7 
24.2 

19.4 
26.2 
25.3 
17.4 
10.2 

15.5 
19.3 
18.4 
13.8 
9.2 

83.6 
89.6 
91.7 
91.5 
91.3 

90.7 
93.2 
94.3 
94.0 
92.9 

K1=3 
200 

0.10 
0.25 
0.50 
0.75 
0.90 

-2.5 
-1.7 
-1.4 
-0.1 
0.7 

3.4 
0.9 
-1.4 
-1.4 
-0.7 

39.1 
48.7 
47.8 
33.2 
19.2 

32.4 
37.9 
35.1 
26.2 
17.1 

14.1 
18.7 
17.7 
12.0 
6.9 

11.8 
14.0 
12.8 
9.4 
9.1 

86.0 
92.0 
92.5 
93.1 
92.3 

94.3 
94.5 
92.1 
93.1 
92.7 

 
 
Table 3: �LINDOWN� population ( ) ii kf ππ 2−=  

bias*1000 RMSE*1000 length*100 coverage*100      
Sample size True proportion 

HT BPSP HT BPSP HT BPSP HT BPSP 

K2=6 
100 

0.10 
0.25 
0.50 
0.75 
0.90 

-0.4 
1.2 
-0.2 

-0.05 
-1.0 

2.0 
3.5 
1.3 
-3.2 
-9.9 

26.8 
46.3 
68.2 
70.2 
57.5 

23.9 
36.8 
50.1 
52.4 
48.3 

10.1 
17.5 
25.2 
26.3 
19.5 

9.1 
13.8 
18.2 
19.3 
15.6 

91.3 
93.2 
91.5 
90.1 
82.9 

93.6 
93.5 
92.5 
94.0 
91.2 

K2=3 
200 

0.10 
0.25 
0.50 
0.75 
0.90 

1.0 
0.5 
2.0 
1.8 
-0.5 

2.2 
1.4 
2.1 
0.1 
-5.9 

19.5 
33.0 
45.9 
49.3 
39.8 

17.5 
26.0 
33.5 
37.8 
33.5 

7.0 
12.1 
17.7 
18.9 
14.6 

7.0 
12.1 
17.7 
18.9 
14.6 

92.8 
93.3 
93.9 
92.2 
87.8 

91.7 
93.0 
93.0 
93.9 
93.3 

 
 
Table 4: �EXP� population ( ) ( )ii kf ππ 364.4exp +−=  

bias*1000 RMSE*1000 length*100 coverage*100      
Sample size True proportion 

HT BPSP HT BPSP HT BPSP HT BPSP 

K3=52 
100 

0.10 
0.25 
0.50 
0.75 
0.90 

1.2 
-1.2 
-4.0 
-2.0 
-1.3 

16.7 
12.1 
-2.1 
-3.4 
-1.1 

51.5 
67.8 
66.9 
43.8 
24.6 

52.0 
57.8 
48.2 
23.3 
13.0 

17.9 
25.1 
25.3 
16.6 
9.4 

16.0 
19.4 
16.8 
8.3 
4.6 

84.6 
90.1 
91.2 
92.1 
93.0 

89.9 
91.7 
91.5 
92.4 
90.3 

K3=26 
200 

0.10 
0.25 
0.50 
0.75 
0.90 

-2.0 
-1.8 
-0.8 
0.7 
0.2 

10.4 
9.5 
-0.1 
-1.5 
-0.5 

35.7 
47.6 
47.6 
29.4 
16.5 

34.6 
42.7 
34.5 
16.2 
8.6 

12.7 
17.7 
17.7 
11.4 
6.3 

12.1 
14.5 
12.4 
5.8 
3.2 

87.7 
92.1 
92.3 
93.7 
94.6 

93.3 
92.0 
91.6 
92.0 
92.2 
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5. Discussion 
 
The Bayesian p-spline predictive estimator is preferable 
to the Horvitz-Thompson estimator in probability-
proportional-to-size sampling, because the BPSP 
estimator gains efficiency over the HT estimator by 
using the inclusion probabilities in the non-sampled 
units, using a flexible statistical model that is robust to 
model misspecification.  Though the bias is slightly 
increased in some cases, the gain in efficiency more than 
offsets the loss in bias.  In addition, the coverage 
calculated based on the BPSP estimator and its credible 
interval is closer to its nominal level than the HT 
estimator and its confidence interval, especially when 
the population proportion is closer to 0 or 1, and there 
are relatively few data in the tails.   
 
The HT estimator and its approximate 95% confidence 
interval can provide a valid inference for population 
proportion when the sample is large.  However, when 
the sample is moderate or small and the true population 
proportion to be estimated is close to 0 or 1, the 
asymptotic properties do not hold for the HT estimator 
any more.  However, Bayesian approach can provide 
more valid inference for small samples, and thus the 
BPSP estimator has a better coverage with narrower 
credible interval in these cases.  
 
Compared to the HT estimator, one drawback of the 
BPSP estimator is that it needs more computation; but 
the extra computation provides the complete posterior 
distribution of the population proportion, that is, we 
don�t need extra work to estimate the variance or 95% 
credible interval of the BPSP estimator, as they can be 
obtained simultaneously with the point estimator.  In 
Zheng and Little (2005), three variance estimators of the 
p-spline model-based estimator for finite population 
total in a PPS sample were compared, including model-
based empirical Bayes variance estimator, jackknife 
method of variance estimation, and the balanced 
repeated replicate (BRR) variance estimation method. 
The simulation studies showed that the jackknife 
method worked well, whereas the BRR method tended 
to yield conservative standard errors and the model-
based empirical Bayes estimator was vulnerable to 
misspecification of the variance structure.  In the present 
work, the α−1  level credible interval for the BPSP 
estimator of population proportion is constructed by 
splitting α  equally between the upper and lower 
endpoints of the posterior distribution of p.  This pure 
Bayesian approach based on Gibbs sampling and draws 
from the posterior distributions can avoid specification 
of the variance structure and heavy computation 
associated with the jackknife and BRR method. 
 

In future work we plan to extend the BPSP estimator of 
the proportion to include covariates other than inclusion 
probabilities, and from one-stage PPS sampling to two-
stage PPS sampling with clusters. We also plan to adapt 
the current approach for finite population proportion to 
the related problem of estimating finite population 
percentiles. 
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