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Abstract 

 

With increase in the number of surveys, the cost of 

personal interviewing using a complete frame has 

increased significantly. As a result, new surveys are 

often conducted using dual frames with one frame or 

both frames cheaper to sample but incomplete. Under 

simple random sampling in both frames, we consider 

the determination of “optimal” frame sample sizes 

that minimize the cost subject to constraints on the 

variances of dual frame estimators of totals for one or 

more characteristics of interest. The case of 

estimators calibrated to known frame sizes is also 

studied. Dual frame estimators based on multiple 

weight adjustments to account for nonresponse, 

multiplicities, and calibration to know auxiliary totals 

are also given. Finally, we apply the Demnati and 

Rao (2004) method to take account of such multiple 

weight adjustments in variance estimation. 

 

Keywords: Calibration, incomplete frame, 

multiplicity, optimal sample size, variance estimation. 

 

1. Introduction 
 

In a dual frame survey, samples are drawn 

independently from two frames 
1

F  and 
2

F . We 

assume that frames 
1

F  and 
2

F  together cover the 

population of interest, F . In one example, one frame 

is complete, say FF =
1

, but is expensive to sample, 

whereas the other frame 
2

F  is incomplete but cheap 

to sample. Hartley (1962, 1974) demonstrated the 

advantages of sampling both frames in this case to 

arrive at more efficient estimators for the same cost 

compared to sampling from the complete frame only. 

In another example, both frames 
1

F  and 
2

F  are 

incomplete: 
1

F  is a frame of landline telephones and 

2
F  is a frame of cellular telephone numbers (Lohr 

and Rao, 2006). We were motivated by the following 

application. Consider a fixed period of traffic during 

which a collection of trips moves through a network. 

Each trip originates at one node in the network and 

travels to another node along a path. A survey is 

conducted to produce a profile of the volume and 

characteristics of the network by taking random 

samples on each directed link or site. For example, 

the 1999 National Roadside Study conducted 

roadside observations and interviews on more than 

250 sites (directed links) to produce a profile of the 

volume and characteristics of the trucking activity in 

Canada. The road network covers more than 25 

thousand kilometers of mostly the National Highway 

System, augmented by routes of regional importance 

to trucking. The survey period is one week in order to 

capture day and hour variation. The data collected at 

each site consists, in part, of a random sample of 

interviews and observations of the trips, and in 

another part, of a series of count of trucks passing the 

site during the survey period. Data collected from 

different sites are integrated into a single data set. 

This integration can be easily expressed in terms of 

multiple frame where each site represents an 

incomplete frame of trips population. By identifying 

the route of each trip, we can determine the 

multiplicity of each trip, i.e., the number of sites 

(frames) reporting a given trip.  

 

In this paper, we study two problems in dual frame 

surveys. In section 2, we consider simple random 

sampling in both frames and obtain “optimal” frame 

sample sizes, 
1

n  and 
2

n , that minimize the cost 

subject to constraints on the variances of dual frame 

estimators of totals for one or more characteristics of 

interest. We obtain optimal 
1

n  and 
2

n  for the dual 

frame estimator of Hartley (1962) as well as the 

“single” frame estimators proposed by Kalton and 

Anderson (1986) (also Skinner, 1991) and Bankier 

(1986). The case of calibration to known frame sizes 

1
N  and 

2
N  is also studied. Section 3 shows how to 

account for nonresponse, multiplicities and 

calibration to know auxiliary totals through multiple 

weight adjustments. Finally, variance estimation 

under multiple weight adjustments is studied in 

section 4, using the Demnati and Rao (2004) 

linearization method. 
 

2. Determination of optimal sample sizes 
 

2.1  Hartley’s dual frame estimator 
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In dual frame surveys, the population total Y  of a 

characteristic of interest y  can be expressed as 

 
fkkfkkf

yJ =Y φ∑∑ , (2.1) 

 

where 
f

∑  represents summation over the frames, 

2,1=f , 
k

∑  represents summation over population 

elements,  J fk  is the frame f  membership indicator 

variable for element k , ϕφ =
k1

 and ϕφ −= 1
2k

 if 

element k  is in both frame with 10 ≤≤ ϕ , and 

1=
fk

φ  if element k  is only in one frame. We assume 

that samples are independently drawn from each 

frame. The basic design weights for frame f  are 

given by 

 
fkfkfkfk

aJd π/= , (2.2) 

where 
fk

a  is the conditional sample membership 

indicator for element k  in frame f  and 

)1|( ==
fkfkfk

JaEπ  is the conditional probability of 

selection of element k  from frame f .  Hartley’s 

(1962) dual frame unbiased estimator of the total Y  

is given by  

 *ˆˆ
ffkfkfkkfH

Yyd =Y ∑=∑∑ φ , (2.3) 

where **ˆ
fkfkkf

yd Y ∑=  and 
kfkfk

yy φ=*
. 

 

The sampling variance of 
H

Ŷ  is 

 )()ˆ()ˆ( ** yVYVar=YVar
ffffH

∑≡∑ , (2.4) 

where )(uV
f

, in operation notation, is the sampling 

variance of the estimated total 
fkkkf

du =U ∑ˆ  for 

frame f . 

 

Under simple random sampling (SRS) in both frames 

we have  

 
ffffff

nuSNnNuV /)()/1()(
22 −= , (2.5) 

where )1/()()(
22 −−∑=

ffkfkkf
NUuJuS  with 

fkfkkf
NuJU /∑=  and 

f
n  is the sample size from 

frame f . 

 

Suppose we consider p  characteristics of interest 

p
yy ,...,

1
. Then, under SRS, it follows from (2.4) and 

(2.5) that for a specified ϕ  we can express )ˆ(
Hj

YVar  

for the thj  variable 
j

y  as 

 
fjffjHj

nvvYVar /)ˆ(
0

∑+= , pj ,...,1=  (2.6) 

where )(
*2

0 jfffj
ySNv ∑−= , )(

*22

jffjf
ySNv = , and 

fkjkjfk
yy φ=*

. We first determine the optimal 
1

n  and 

2
n  for a specified ϕ   such that the cost 

 
ff

nccC ∑+=
0

 (2.7) 

is minimized subject to constraints on the p  

variances:  

 
jHj

VYVar ≤)ˆ( , pj ,...,1=  (2.8) 

where 
0

c  is the fixed cost, 
f

c  is the cost per unit in 

frame f  and the 
j

V  are specified tolerances. For 

example, one could specify upper limits, 
j

δ , on the 

coefficient of variation of 
Hj

Ŷ  so that 
2
)(

jjj
YV δ= . 

We can improve the efficiency of the unbiased 

estimator 
H

Ŷ  by calibrating on the known sizes 
1

N  

and 
2

N  (Bankier, 1986). In particular, a generalized 

regression estimator (GREG), 
H

Y
~

, can be used to 

ensure calibration to 
1

N  and 
2

N . In case of GREG, 

we replace (2.8) by 

 
jHj

VYVar ≤)
~
( , pj ,...,1= . (2.9) 

It is easily seen that 

 )()
~
( *eVYVar

ffH
∑≈ , (2.10) 

where 

 )(
*

Bt
T

kkfkfk
ye −= φ , (2.11) 

with TNN ),(
21

=T , T

kkk
JJ ),(

21
=t  and 

kkfkkf

T

kkfkkf
ytttB φφ ∑∑∑∑= −1

][ . By letting 

1−=
ff

nx , the cost C  becomes a separable convex 

function in the 
f

x  and the constants (2.8) or (2.9) 

change to linear functions of the 
f

x . Hence, the 

optimization problem is reduced to a standard convex 

programming problem. The optimal ϕ  and associated 

1
n  and 

2
n  can be obtained by minimizing the optimal 

cost )(ϕC  with respect to ϕ .  

Note that the unbiased estimator 
H

Ŷ  given by (2.3) 

with the optimal ϕ   uses a common weight for all 

variables y  and ensures that the constraints (2.8) are 

satisfied for the variables 
p

yy ,...,
1

 with minimum 

cost. Thus is also true for the GREG 
H

Y
~

. 

 

Example 

 

We generated a population )},,,{(
4321 kkkk

yyyy  of 

size 000,1=N , where )6.0,1(~
1

By
k

, 

kk
y ε×+= 1650

2
 with )1,0(~ N

k
ε , ),1(~

3 kk
pBy , 

with ))11.0exp(1/()11.0exp(
22 kkk

JJp ×++×+= ,  

and 
kkkkk

JJy
22124

1045050 εε ××+×+×+=  with 
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)1,0(~
1

N
k

ε  and )1,0(~
2

N
k

ε . 

The above choice of 
k

p , gives 75.0≈
k

p  when 

1
2
=

k
J  and 52.0≈

k
p  when 0

2
=

k
J . 

Frame 1 membership indicator is set to 1
1
=

k
J , 

which mean that frame 1 is complete (as the case of 

an area frame), and frame 2 membership indicator 

variable is generated from )6.0,1(~
2

BJ
k

, which 

assume a 60% coverage of frame 2.  We assume 

simple random sampling to be used in each frame. 

For the cost, we set 0
0
=c , 1

1
=c  and two different 

costs are used for 
2

c : 0.5 and 0.2. We set 05.0=
j

δ , 

4,...,1=j , for the tolerances. Table1 reports the 

multivariate optimization results for 5.0=ϕ  using 

both the basic estimator 
H

Ŷ  and the GREG estimator 

H
Y
~

 . We have also included the results in the case of 

sampling only from the complete frame 1. First, 

Table 1 shows that we reduce the minimum cost for a 

given 
2

c  by using GREG: with 2.
2
=c , 165

min
=C  

for 
H

Y
~

 compared to 188 for 
H

Ŷ . Secondly, we note 

that the minimum  cost, 
min

C , for the dual frame 

approach goes down as  
2

c  decreases: for the GREG 

196
min

=C  with 5.
2
=c  compared to 165 with 

2.
2
=c . Third, it is interesting to note that 

min
C  for 

dual frames can be larger than the 
min

C  using only the 

complete frame if 
12

/ cc  is not small: with 5.
2
=c , 

220
min

=C  for 
H

Ŷ  compared to 203
min

=C  for the 

single complete frame estimator. However, as 
12

/ cc  

decreases, use of dual frames can lead to significant 

reduction in the minimum cost using the GREG: 

165
min

=C   compared to 203
min

=C  for the complete 

frame only estimator.  

 

To determine the optimal value for ϕ , we repeated 

the optimization process for different value of ϕ  

between 0 and 1, and the results are given in Figure 1. 

The resulting optimal value for ϕ , 
1

n , 
2

n  and 
min

C  

are reported in Table 2. Comparing the results in 

Tables 1 and 2, we see that 
min

C  is somewhat reduced 

by using the optimal ϕ  relative to 5.0=ϕ : for the 

GREG with 2.
2
=c , 158

min
=C  using 22.0=

opt
ϕ  

compared to 165
min

=C  using 5.0=ϕ . However, 

)(
min

ϕC  seems to be fairly flat near 
opt

ϕ  (see Figure 

1). 

 

2.2  “Single” frame estimators 
 

In some cases, dual frame surveys are treated as 

single frame surveys by combining the two samples. 

Kalton and Anderson (1986) and Skinner (1991) 

proposed a “single” frame estimator, 

 
fkkkfkkfkkfkkfS

yIdyId=Y φ∑∑+−∑∑ )1(ˆ , (2.12) 

for general designs in the two frames, where 
k

I  is the 

overlap membership indicator for element 
k

I  and  

 
)(

21 kk

fk

fk
=

ππ

π
φ

+
. (2.13) 

We can improve the efficiency of 
S

Ŷ  by calibrating 

on the known frame sizes. Denote the resulting 

GREG as 
S

Y
~
.  Let 

kkk
yIx )1( −= , 

kkk
yIz =  then 

the variance of 
S

Ŷ  is given by 

 

).,(2

)(

)()ˆ(

fkkfkkkfkkf

fkkfkkf

kfkkfS

zdxdCov

zdVar

xdVar=YVar

φ

φ

∑∑∑+

∑∑+

∑∑
 (2.14) 

 

Approximate variance of GREG 
S

Y
~
 is obtained by 

changing 
k

y  to Bt T

kk
y −  in (2.14). 

 

Under SRS in each frame, we have 

1221

21

11
NnNn

Nn
==

k +
φφ , 

12
1 φφ −= , 

xxfffffkfkkf
SnNNxdVar

;
)1/()( −∑=∑∑ , 

 
zzfffffffkkfkkf

SnNNzdVar
;

2
)1/()( −∑=∑∑ φφ  

and 

xzfffffffkkfkkkfkkf
SnNNzdxdCov

;
)1/(),( −∑=∑∑∑ φφ

 

where )1/())((
;

−−−∑=
ffkfkfkxzf

NZzXxJS  and 

fkfkf
NzJZ /∑= . 

 

The allocation problem consists of minimizing the 

cost of the survey given by (2.7), subject to sampling 

variance constraints 

 
jSj

VYVar ≤)ˆ( , pj ,...,1=  (2.15) 

or 

 
jSj

VYVar ≤)
~
( , pj ,...,1=  (2.16) 

with )ˆ(
Sj

YVar  and )
~
(

Sj
YVar  for pj ,...,1=  obtained 

from (2.14). The variances )ˆ(
Sj

YVar  and )
~
(

Sj
YVar  do 

not have the separable form (2.6), but non-linear 

programming can be used to determine the optimal 

1
n  and 

2
n .  

 

Bankier (1986) removed the duplicate sampled units 

in the overlap domain and proposed a Horvitz-

Thompson (HT) estimator  
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kkkB

yd=Y ∑ˆ , (2.17) 

as the unbiased estimator of the population total Y , 

where 
k

∑  is the sum over all the distinct units in the 

combined sample, 
kkk

ad π/= ,  )1(1
fkfk

aa −∏−= , 

)1(1)(
fkfkk

aE ππ −∏−== . Denoting the 

corresponding GREG that calibrates to 
1

N  and 
2

N  

as 
B

Y
~
. 

 

The variance of 
B

Ŷ  is given by the well known HT 

variance formula 

 )1)/((2)1()ˆ( 12 −∑∑+−∑= <
−

lkkllkklkkkB
yyyYVar ππππ , (2.18) 

 

with for lk ≠  

 )1)(1(1
*

flfkflkkl
= πππππ −−∏+−+ ,  (2.19) 

and )|Pr(
*

fffl
sksl ∉∈=π . Appropriate variance of 

B
Y
~
 is obtained by changing 

k
y  to Bt T

kk
y −  in (2.18). 

Again )ˆ(
Bj

YVar  and )
~
(

Bj
YVar  do not have the 

separable form (2.6), but non-linear programming can 

be used to determine the optimal 
1

n  and 
2

n  that 

minimize the cost (2.7) subject to 
jBj

VYVar ≤)ˆ(  or 

jBj
VYVar ≤)

~
( , pj ,...,1= . 

 

Example (continuation) 

 

For the example in section 2.1, Table 3 and 4 report 

the optimal 
1

n , 
2

n and minimum cost (
min

C ) for the 

Kalton-Anderson estimator and the Bankier 

estimator, respectively. From Tables 3 and 4, we note 

that GREG leads to significant reduction in minimum 

cost when 
12

/ cc  is small ( 2.0
2
=c ): 159

min
=C  for 

S
Y
~
 compared to 190 for 

S
Ŷ ; 155

min
=C  for 

B
Y
~
 

compared to 194 for 
B

Ŷ . Using GREG, the Bankier 

estimator leads to slightly lower cost compared to the 

Kalton-Anderson estimator: for 2.0
2
=c , 155

min
=C  

for 
B

Y
~
 compared to 159

min
=C  for 

S
Y
~
. It is 

interesting to note that 155
min

=C  for 
B

Y
~
 is slightly 

smaller than 158
min

=C  for 
H

Y
~

 with optimal ϕ  

(Table 2) because the duplicate sampled units in the 

overlap domain are not removed in the case of 
H

Y
~

. 

 

3. Multiple Weight Adjustments 

 

In the presence of missing responses, weighting 

adjustment is often used to compensate for unit (or 

complete) nonresponse. Let 
fk

r  denotes the partial 

response indicator variable for element k  in frame 

f , i.e. 0=
fk

r  if there is complete nonresponse and 

1=
fk

r  if there is partial response.  

A widely-used approach to adjust for unit 

nonresponse in each frame, when predictor variables 
T

fkqfkfk f
xx ),...,(

1
=x  are available for all sampled 

elements, is to use the GREG calibration weights 

(Lundström and Särndal, 1999): 

 )1()1(

fkfkfk
gd=w

(

,  

where 

  
fkfkfk

rdd =
(

, (3.1) 

the “g-weights” are given by 

 

 
fkfk

T

fkfkfkfkk

T

frffk
ccdg xxxXX )1(1)1()1( ][)ˆ(1 −∑−+=

((
, (3.2) 

 

for specified 
)1(

fk
c , 

fkfkkf
d xX ∑=ˆ  is the HT 

estimator of the frame f  total 
f

X  of the 1×
f

q  

vector 
fk

x , and fkfkkfr d xX
((

∑=  is the HT 

estimator of the frame f  respondent total 
fr

X  of the 

vector 
fk

x . The resulting GREG estimator of the 

frame f  total 
f

Y , namely 
kfkkf

ywY )1(ˆ ∑= , has the 

calibration property  

 
ffkfkk

w Xx ˆ)1( =∑ . (3.3) 

 

Note that the right side of (3.3) is a random variable. 

 

A common approach to handle unit nonresponse is to 

classify respondents and non respondents into 
f

q  

adjustment classes, using auxiliary information on all 

sample elements, in which case 
cfk

x  denotes the group 

c , 
f

qc ,...,1= , membership indicator variable for 

element k  with 1=∑
cfkc

x . In this case, the GREG 

adjustment factor given by (3.2) with 1
)1( =

fk
c  reduces 

to 

 
fk

q

fr

q

ffrffk

ff NNNNg x)/ˆ,...,/ˆ(
)()()1()1()1(

((
= ,  

 

where )ˆ,...,ˆ(
)()1( fq

ff
NN  is the vector estimate of the 

class sizes and ),...,(
)()1( fq

frfr
NN
((

 is the vector estimates 

of the respondent class sizes. 

 

When aggregating the samples from the two frames, a 

second adjustment has to be made to account for the 

multiplicity of each element: 

 
fkfkfk

w=w φ)1()2(
.  
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Suppose an additional vector of calibration variables 
T

qkkk
tt ),...,(

1
=t  with know totals 

T

q
TT ),...,(

1
=T  is 

available in addition to the vectors 
fk

x . The vectors 

fk
x  are assumed to be related to the response 

probability of element k , while the vector 
k

t  is 

assumed to be related to the variables of interest. In 

this case, the final GREG calibration weights 
fk

w  are 

given by 

 
)2()2()3(

fkfkfk
gw=w ,  

 

where the “g-weights” are given by 

 
fkfk

T

fkfkfkfkkf

T

fk
ccwg tttTT

)2(1)2()2()2()2(
][)ˆ(1
−∑∑−+= , (3.4) 

for specified 
)2(

fk
c , and 

fkfkkf
w tT )2()2(ˆ ∑∑= . The 

resulting GREG estimator of the population total Y , 

namely 
kfkkf

ywY )3(ˆ ∑∑=  has the calibration 

property  

 Tt =∑∑
fkfkkf

w
)3(

. (3.5) 

 

4. Demnati-Rao Linearization Method 

 

After adjustment for complete nonresponse, 

multiplicities, and use of auxiliary information, the 

estimator Ŷ  of Y  is given by 

 
kfkfkfkfkkf

yggdY )2()1(ˆ φ
(

∑∑= , (4.1) 

where 
fk

d
(

 is defined by (3.1), 
)1(

fk
g  is defined by (3.2) 

and 
)2(

fk
g  is define by (3.4). Let TT

k

T

kk
),(

21
ddd = , 

T

fkfkfk
dd ),(

21
=d  with 

fkfk
dd =

1
 and 

fkfkfk
rdd =

2
. It 

follows from (4.1) that Ŷ  is of the form )(
d

Af  

where 
d

A  is a N×4  matrix with thk  column 
k

d . In 

operator notation, let )(uϑ  denote the estimator of 

total variance of a linear estimator 
fk

T

fk
U du∑∑=ˆ . 

Then, Demnati and Rao (2007) have shown that a 

linearization variance estimator of )(ˆ
d

fY A=  is 

simply given by 

 )()ˆ( zϑϑ =Y
DR

, (4.2) 

where )(zϑ  is obtained from )(uϑ by replacing ku  

by 
dbkbk

f
AA

bAz =∂∂= |/)( , where 
b

A  is a N×4  

matrix of arbitrary real numbers with thk  column 
k

b . 

Following the explicit differentiation method of 

Demnati and Rao (2004), 

),(|/)(
21

T

k

T

kkbk db
f zzbAz

AA
≡∂∂= =  is evaluated as: 

 
T

fkfkfk ),( 21 zzz = , (4.3) 

with 
fkf

T

ffk
ez xB )(ˆ *

1
= , 

 ( )
fkf

T

ffkfkfk
eegz xB )(ˆ **)1(

2
−= , 

where 

 ( )
k

T

kfkfkfk
yyge tB )(ˆ)2(* −= φ , 

*)1(1)1(* ][)(ˆ
fkfkfkfkfkk

T

fkfkfkfkfkkff
ecrdcrde xxxB ∑∑= − , 

and 

kfkfkfkkf

T

fkfkfkfkkf
ycwcwy tttB )2()2(1)2()2( ][)(ˆ ∑∑∑∑= − . 

 

It remains to evaluate )(uϑ . We have 

 
gtgtfk

T

fkgtfk
udduu ),cov()( ∑∑=ϑ , (4.4) 

with 

 

,]/)1([

10

00
]ˆ/)ˆˆˆ([),cov(

)()()(

)()()(

T

gtfk

fg

kt

fg

kt

fg

kt

fg

ktgtfk

fg

ktgtfk

fg

ktgtfk

d

rrd

vv

dd

ωω

ξξξξ

−+









−=  (4.5) 

 

where 
kffk

∑∑=∑ , 
T

fkfk
r ),1(=v , )(ˆˆ

fkrfk
rE=ξ ,  

)(ˆˆ )(

gtfkr

fg

kt
rrE=ξ , ][/

)(

gtfkgtfk

fg

kt
ddEddd = , 

][/][][
)(

gtfkgtfk

fg

kt
ddEdEdE=ω  and 

r
E  is the 

response expectation. If gf ≠  then 1][ =
gtfk

ddE , 

gtfk

fg

kt
ddd =)(

, and 1)( =fg

kt
ω . 

 

Substituting 
k

z   in (4.3) for 
k

u  in (4.4), we get 

 

sr

sgtsfk

fg

kt

fg

kt

fg

ktgtfk

rgtrfk

fg

ktgtfk

fg

ktgtfk

fg

ktgtfkDR

zzd

zzrrdY

ϑϑ

ωω

ξξξξϑ

+≡

−∑∑+

−∑∑=

;;

)()()(

;;

)()()(

]/)1([

]ˆ/)ˆˆˆ([)ˆ(
 (4.6) 

where ( )
fkf

T

ffkfkrfk
eegz xB )(

**)1(

;
−= , and 

( )
fkf

T

ffkf

T

ffkfkfksfk
eeegrz xBxB )(ˆ)(ˆ ***)1(

;
+−= . 

 

Note that the first component, 
r

ϑ , corresponds to the 

response mechanism and the second component, 
s

ϑ , 

corresponds to the sampling design. 

 

Under simple random sampling in each frame, 

 
22

/)/1(
sfzfffffs

snNnN −∑=ϑ , (4.7) 

where )1/()(
22 −−∑=

fffkfkfx
nxxas  and 

ffkfkf
nxax /∑= .  

 

Under independent response mechanism 

 

 

,]ˆ/)ˆˆˆ([)(12

)ˆ1(

;2;1

)12(

21

)12(

2121

;;

rtrkkktkkttktktk

rfkrfkfkfkfkkfr

zztkrrdd

zzrd

ξξξξ

ξϑ

−=∑∑+

−∑∑=  (4.8) 

 

where 1)(1 == tk  if element k  is the same as 

element t  and 0)(1 == tk  if not.  

The sum of (4.7) and (4.8) constitutes )ˆ(Y
DR

ϑ . 
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We conducted a small simulation study to examine 

the unconditional (design-response) performances of 

ratio estimator )3(ˆ
R

Y  of the finite population total 

Y
N
=θ . In particular, we compared the efficiency of 

)3(ˆ
R

Y , using the three weight adjustments, relative to 

)2(ˆ
R

Y  using only the adjustments for nonresponse and 

multiplicities. Here (.)(.)(.) ˆ/ˆˆ XYXY
R
=  where 

kfk
ywY (.)(.)ˆ ∑∑= . We also examined the 

unconditional performance of the variance estimators 

)ˆ( )3(

RDR
Yϑ  and )ˆ( )2(

RDR
Yϑ  in tracking the total 

variances of )3(ˆ
R

Y  and )2(ˆ
R

Y , respectively. Note that 

)ˆ( (.)

RDR
Yϑ  is given by )(

(.)

fkfkDR
wu∑∑ϑ where 

(.)(.)(.) ˆ/)ˆ/ˆ( XXYyXu
kfk
−= . We first generated one 

finite populations }{
k

y  of size 393=N , from the 

ratio model 

 
kkkk

xxy ε2/12 += , 

with 
k

ε  are independent observations generated from 

a )1,0(N , where the fixed 
k

x  are the “number of 

beds” for the Hospitals population studied in Valliant 

et al. (2000, p.424-427). We set 1
1
=

k
J  and we 

generate  
k

J
2
 from  )(

k
pB  where 

kk
xpitlog 003.01)( −= . This choice gives 393

1
=N  

and  189
2
=N . We set )5.0,1,0(),,(

210
=ccc  and  

05.=δ . Using Kalton and Anderson estimator, the 

optimal simple random sample sizes are 104
1
=n  and  

55
2
=n . In order to set up the response mechanism, 

we first grouped population units into two classes: 

class 1 constitutes units k  having 350<x , and class 

2 constitutes units having 350≥x . The response 

probabilities are set as follows: Frame 1: 0.70 for 

class 1, and 0.90 for class 2. Frame 2: 0.60 for class 1, 

and 0.80 for class 2. From the two frames, we 

generated 000,20=R  dual frames with 

nonresponses. From each generated dual frame, one 

SRS of size 104 was drawn from frame 1, and one 

SRS of size 55 was drawn from frame 2. We 

calculated the ratio estimates )2(ˆ
R

Y , )3(ˆ
R

Y , and the 

variance estimates )ˆ( )2(

RDR
Yϑ , )ˆ( )3(

RDR
Yϑ , from each 

combined sample and their means )2(ˆ
R

Y , )3(ˆ
R

Y , 

)ˆ( )2(

RDR
Yϑ , and )ˆ( )3(

RDR
Yϑ , and the variance of )2(ˆ

R
Y  

and )3(ˆ
R

Y , denoted )ˆ( )2(

R
YV  and )ˆ( )3(

R
YV . We have the 

following results: 

(1) 0113.1)ˆ(/)ˆ( )2()3( =
RR

YVYV  , suggesting that post-

stratification is not effective with ratio estimation  

when the model fits the data well; in fact, it lead to 

slight increase in variance. This result is in agreement 

with the observation made by Rao, Yung, and 

Hidiroglou (2002). 

(2) The relative biases of DR variance estimators are: 

%9.2)ˆ(/))ˆ()ˆ(( )2()2()2( −=−
RRRDR

YVYVYϑ  and 

%8.3)ˆ(/))ˆ()ˆ(( )3()3()3( −=−
RRRDR

YVYVYϑ , showing that 

DR
ϑ  tracks the total variance with two or three weight 

adjustments. 
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Table 1:  Optimal 
1

n , 
2

n  and 
min

C  using 0.5=ϕ : Hartley’s estimator 

 

 Estimator 1
n  

2
n  

min
C  

Complete frame 203  203 

5.0
2
=c  Basic 174 92 220 

 GREG 152 88 196 

2.0
2
=c  Basic 161 134 188 

 GREG 140 127 165 

 

 

Table 2: Optimal ϕ , 
1

n , 
2

n   and 
min

C : Hartley’s estimator 

 

 Estimator ϕ  
1

n  
2

n  
min

C  

Basic .87 190 23 202 5.0
2
=c  

GREG .57 158 75 196 

Basic .64 166 96 186 2.0
2
=c  

GREG .22 119 191 158 

 

 

 

Table 3:  Optimal 
1

n , 
2

n  and 
min

C : Kalton-Anderson estimator 

 

 Estimator 1
n  

2
n  

min
C  

5.0
2
=c  Basic 197 12 203 

 GREG 157 79 197 

2.0
2
=c  Basic 173 83 190 

 GREG 121 187 159 

 

 

Table 4:  Optimal  
1

n , 
2

n  and 
min

C : Bankier estimator 

 

 Estimator 1
n  

2
n  

min
C  

5.0
2
=c  Basic 201 4 203 

 GREG 151 78 190 

2.0
2
=c  Basic 181 64 194 

 GREG 119 176 155 
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Figure 1: Minimum cost for different value of ϕ  
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