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Abstract

With increase in the number of surveys, the cost of
personal interviewing using a complete frame has
increased significantly. As a result, new surveys are
often conducted using dual frames with one frame or
both frames cheaper to sample but incomplete. Under
simple random sampling in both frames, we consider
the determination of “optimal” frame sample sizes
that minimize the cost subject to constraints on the
variances of dual frame estimators of totals for one or
more characteristics of interest. The case of
estimators calibrated to known frame sizes is also
studied. Dual frame estimators based on multiple
weight adjustments to account for nonresponse,
multiplicities, and calibration to know auxiliary totals
are also given. Finally, we apply the Demnati and
Rao (2004) method to take account of such multiple
weight adjustments in variance estimation.

Keywords: Calibration, incomplete frame,
multiplicity, optimal sample size, variance estimation.

1. Introduction

In a dual frame survey, samples are drawn
independently from two frames F, and F,. We

assume that frames F, and F, together cover the

population of interest, F . In one example, one frame
is complete, say F, = F, but is expensive to sample,
whereas the other frame F, is incomplete but cheap

to sample. Hartley (1962, 1974) demonstrated the
advantages of sampling both frames in this case to
arrive at more efficient estimators for the same cost
compared to sampling from the complete frame only.

In another example, both frames F, and F, are

incomplete: F, is a frame of landline telephones and
F.

2
and Rao, 2006). We were motivated by the following
application. Consider a fixed period of traffic during
which a collection of trips moves through a network.
Each trip originates at one node in the network and
travels to another node along a path. A survey is
conducted to produce a profile of the volume and

is a frame of cellular telephone numbers (Lohr
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characteristics of the network by taking random
samples on each directed link or site. For example,
the 1999 National Roadside Study conducted
roadside observations and interviews on more than
250 sites (directed links) to produce a profile of the
volume and characteristics of the trucking activity in
Canada. The road network covers more than 25
thousand kilometers of mostly the National Highway
System, augmented by routes of regional importance
to trucking. The survey period is one week in order to
capture day and hour variation. The data collected at
each site consists, in part, of a random sample of
interviews and observations of the trips, and in
another part, of a series of count of trucks passing the
site during the survey period. Data collected from
different sites are integrated into a single data set.
This integration can be easily expressed in terms of
multiple frame where each site represents an
incomplete frame of trips population. By identifying
the route of each trip, we can determine the
multiplicity of each trip, i.e., the number of sites
(frames) reporting a given trip.

In this paper, we study two problems in dual frame
surveys. In section 2, we consider simple random
sampling in both frames and obtain “optimal” frame
sample sizes, n, and n,, that minimize the cost
subject to constraints on the variances of dual frame
estimators of totals for one or more characteristics of
interest. We obtain optimal », and n, for the dual
frame estimator of Hartley (1962) as well as the
“single” frame estimators proposed by Kalton and
Anderson (1986) (also Skinner, 1991) and Bankier
(1986). The case of calibration to known frame sizes
N, and N, is also studied. Section 3 shows how to
account for nonresponse, multiplicities and
calibration to know auxiliary totals through multiple
weight adjustments. Finally, variance estimation
under multiple weight adjustments is studied in
section 4, using the Demnati and Rao (2004)
linearization method.

2. Determination of optimal sample sizes

2.1 Hartley’s dual frame estimator
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In dual frame surveys, the population total ¥ of a
characteristic of interest y can be expressed as

Y:Zf Zk'-]fkyk¢/k5 (21)

where 2. represents summation over the frames,
f =12, >, represents summation over population
elements, J, is the frame f membership indicator
variable for element k, ¢, =¢ and ¢, =1-¢ if
element k£ is in both frame with 0<¢p <1, and
#, =1 ifelement k is only in one frame. We assume

that samples are independently drawn from each
frame. The basic design weights for frame f are

given by

d,=J,a,lr,, 2.2)
where a, is the conditional sample membership
indicator for element k& in frame [ and

7, =E(a,|J, =1) is the conditional probability of
selection of element k& from frame f . Hartley’s

(1962) dual frame unbiased estimator of the total Y
is given by

V,=%,%,d,8,9,=2,Y, (2.3)
where ¥, =%, d,y, and y, =¢,y,.
The sampling variance of fH is
Var(V) =X, Var(Y))=X,V, (b)),  (2.4)

where V,(u), in operation notation, is the sampling

variance of the estimated total U , =2, ud, for

frame f .

f

Under simple random sampling (SRS) in both frames
we have

V. (u)y=N;(I1-n,/N,)S}()/n,,
where  S?(w)=Y,J,(u,-U,)’ (N, -1)
U, =%,J,u,/N, and n

frame f .

(2.5)
with

, is the sample size from

Suppose we consider p characteristics of interest
Vs> Y, - Then, under SRS, it follows from (2.4) and

(2.5) that for a specified ¢ we can express Var(f )
for the ;" variable y, as

Var(Y,)=v,,+%,v,/n,, j=l.,p  (2.6)
where v, =-2, N,.Sf.(y;) > Vi = NfZsz(y/) » and
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Y =9, We first determine the optimal », and
n, for a specified ¢ such that the cost
(2.7)

is minimized subject to constraints on the p

C=c,+2c,n,

variances:
Var(Y, )<V, j =l p (2.8)

where ¢, is the fixed cost, ¢, is the cost per unit in

s
frame f and the V, are specified tolerances. For

example, one could specify upper limits, ;, on the

coefficient of variation of fw so that V, = (5/.YJ.)2.
We can improve the efficiency of the unbiased
estimator fH by calibrating on the known sizes N,
and N, (Bankier, 1986). In particular, a generalized
regression estimator (GREGQG), I7H, can be used to
ensure calibration to N, and N, . In case of GREG,

we replace (2.8) by

Var(Y, ) SV,, j=1up. (2.9)
It is easily seen that
Var(Y,) =X, V,(€), (2.10)
where
e, =¢,(y,—t B), (2.11)
with T=(N,,N,)", t,=(J,,J )" and
B=[X, 2, ¢,t,t,1'2, %, $,t,y,. By letting

x, =n,', the cost C becomes a separable convex

=y
function in the x, and the constants (2.8) or (2.9)
change to linear functions of the x,. Hence, the

optimization problem is reduced to a standard convex
programming problem. The optimal ¢ and associated

n, and n, can be obtained by minimizing the optimal
cost C(¢) with respectto ¢ .

Note that the unbiased estimator Y, , given by (2.3)
with the optimal ¢ wuses a common weight for all
variables y and ensures that the constraints (2.8) are

satisfied for the variables y,,..,y, with minimum

cost. Thus is also true for the GREG I7H .

Example

We generated a population {(¥,,, ¥, V>V ) Of
N =1,000, where Y ~ B(1,0.6),
Y, =50+16x¢g, with ¢ ~N(,)), v, ~B({1,p,),
with  p, =exp(0.1+1xJ, )/(1+exp(0.1+1xJ,,)),
and y, =50+J,, x50+4x¢g, +J,, x10x¢, ~with

size
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&, ~N(@,2) and &,, ~N(0,]).

The above choice of p,, gives p, =0.75 when
J,,=1land p, =0.52 when J,, =0.

Frame 1 membership indicator is set to J, =1,

which mean that frame 1 is complete (as the case of
an area frame), and frame 2 membership indicator
variable is generated from J,, ~ B(1,0.6), which

assume a 60% coverage of frame 2. We assume
simple random sampling to be used in each frame.
For the cost, we set ¢, =0, ¢, =1 and two different

costs are used for ¢,: 0.5 and 0.2. We set 5, =0.05,
j=1..4, for the tolerances. Tablel reports the
multivariate optimization results for ¢ =0.5 using

both the basic estimator fH and the GREG estimator

)7H . We have also included the results in the case of
sampling only from the complete frame 1. First,
Table 1 shows that we reduce the minimum cost for a
given ¢, by using GREG: with ¢, =.2, C, , =165
for I7H compared to 188 for fH. Secondly, we note
cost, C
approach goes down as ¢, decreases: for the GREG
C.. =19 with ¢,=.5

mis

that the minimum for the dual frame

compared to 165 with

¢, =.2. Third, it is interesting to note that C_, for

min

dual frames can be larger than the C , using only the

complete frame if ¢, /¢, is not small: with ¢, =.5,

C.. =220 for fH compared to C_ =203 for the
single complete frame estimator. However, as ¢, /c,

decreases, use of dual frames can lead to significant
reduction in the minimum cost using the GREG:
C.. =165 compared to C_, =203 for the complete

frame only estimator.

min

To determine the optimal value for ¢, we repeated
the optimization process for different value of ¢

between 0 and 1, and the results are given in Figure 1.
The resulting optimal value for ¢, n,, n, and C_,

are reported in Table 2. Comparing the results in
Tables 1 and 2, we see that C__ is somewhat reduced

by using the optimal ¢ relative to ¢ =0.5: for the
GREG with ¢,=2, C =0.22

compared to C__ =165 using ¢ =0.5. However,

min

min = 158 uSing ¢0p1‘

min

C,. (@) seems to be fairly flat near ¢,, (see Figure
1).
2.2 “Single” frame estimators
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In some cases, dual frame surveys are treated as
single frame surveys by combining the two samples.
Kalton and Anderson (1986) and Skinner (1991)
proposed a “single” frame estimator,

V,=%,%,d,0-1)y, +%,%,d,1y4,.2.12)
for general designs in the two frames, where /, is the
overlap membership indicator for element /, and

Vg

¢ﬂ"
We can improve the efficiency of };S by calibrating
on the known frame sizes. Denote the resulting
GREG as Y,. Let x, =(1-1)y,, z, =1y, then
the variance of I?S is given by
Var(l}s) =2, Var(X, d,x,)
+2 Var(X, d,z,¢,)
+2%,Cov(X, d,x,,2, d,z,8,).

(2.14)

Approximate variance of GREG 175 is obtained by
changing y, to y, —t; B in (2.14).

Under SRS in each frame, we have

nlNZ
=g =—12  §=1—g,
¢]k ¢] nl]\]2 + nle ¢2 ¢]

X Var(X,d,x)=2,N,(N,/n,-DS, .,
Z; Var(zk d/kzk¢/k)zzf ¢/2N/(N/ /I’l, _1)Sf;z:

and
2, CovX,d,x. .2, d,z2$,)=2,6N,(N,/n,-DS,

where S, =XJ,(x,-X,)z,—Z,)/(N,-1) and
Z,=2J,z/N,.
The allocation problem consists of minimizing the

cost of the survey given by (2.7), subject to sampling
variance constraints

Var(Y,)<V,, j=l.,p (2.15)
or
Var(Y,)<V,, j=l.p (2.16)

with Var(Y,) and Var(Y;) for j=1,.,p obtained

from (2.14). The variances Var(fsj) and Var()zj) do
not have the separable form (2.6), but non-linear
programming can be used to determine the optimal
n, and n, .

Bankier (1986) removed the duplicate sampled units
in the overlap domain and proposed a Horvitz-
Thompson (HT) estimator
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YB :zk dkykﬂ (2'17)
as the unbiased estimator of the population total Y,
where >, is the sum over all the distinct units in the

combined sample, d, =a, /7, , a, =1-11,(1-a,),
r,=E(a)=1-11,0~-7,). the
corresponding GREG that calibrates to N, and N,

as Y, .

Denoting

The variance of I?B is given by the well known HT
variance formula
Var()’}g) = ZyZ(”: - 1) + 2Zk Z1<A yky[(”AI /(ﬁk”l) - 1) H (218)

with for £k #/

m,=m +m —-1+I1,0-7 )(1-7,), (2.19)
and 7r; =Pr(/ es, |k ¢s,). Appropriate variance of
}73 is obtained by changing y, to y, —¢/ B in (2.13).
Again Var(f’ ) and Var(?gj) do not have the
separable form (2.6), but non-linear programming can
be used to determine the optimal », and n, that

V. or

minimize the cost (2.7) subject to Var(f&.)ﬁ f

Var(i/.) <V, j=lL.,p.

Example (continuation)

For the example in section 2.1, Table 3 and 4 report
the optimal »,, n,and minimum cost (C_, ) for the
Kalton-Anderson  estimator and the Bankier
estimator, respectively. From Tables 3 and 4, we note
that GREG leads to significant reduction in minimum
cost when ¢, /¢, is small (¢, =0.2):C, =159 for

Y, compared to 190 for Y,; C, =155 for Y,

N

compared to 194 for )}B. Using GREG, the Bankier
estimator leads to slightly lower cost compared to the
Kalton-Anderson estimator: for ¢, =0.2, C , =155

for Y

B

min

compared to C, =159 for Y. It is

i
interesting to note that C_, =155 for )75 is slightly
smaller than C_, =158 for I7H with optimal ¢
(Table 2) because the duplicate sampled units in the

overlap domain are not removed in the case of Y, .

3. Multiple Weight Adjustments

In the presence of missing responses, weighting
adjustment is often used to compensate for unit (or
complete) nonresponse. Let r, denotes the partial
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response indicator variable for element k& in frame
f,ie. r, =0 if there is complete nonresponse and
r, =1 if there is partial response.

A widely-used approach to adjust for unit
nonresponse in each frame, when predictor variables
X, = (X X, »)' are available for all sampled

elements, is to use the GREG calibration weights
(Lundstrom and Sérndal, 1999):

wy =d gy,
where
d,=d,r,, 3.1
the “g-weights” are given by
gV =1+(X, - X)X, d, ) x,x;1'cPx,, (3.2)
for specified ¢, X,=%,d,x, is the HT

estimator of the frame f total X, of the ¢, x1

vector x,, and X, =2,d, x; is the HT
estimator of the frame f respondent total X, of the

vector x,. The resulting GREG estimator of the

frame f total Y,, namely Y . =2, w,y,, has the

calibration property

T owix, =X (3.3)

;-
Note that the right side of (3.3) is a random variable.

A common approach to handle unit nonresponse is to
classify respondents and non respondents into ¢,

adjustment classes, using auxiliary information on all
sample elements, in which case x_, denotes the group

¢, c¢=l..,q,, membership indicator variable for

element kK with X x_, =1. In this case, the GREG

(]

w =1 reduces

adjustment factor given by (3.2) with ¢
to
g;,l{) _ (]\‘[;1) /INO

R

() ) xrlar)
N7IN X, ,

where (N}”,...,N ) is the vector estimate of the

. N NTCT NN .
class sizes and (N},...,N ") is the vector estimates

of the respondent class sizes.

When aggregating the samples from the two frames, a
second adjustment has to be made to account for the

multiplicity of each element:

) = O

2
Wfk fe ¥ et
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Suppose an additional vector of calibration variables
t,=(t,,..t,)" with know totals T =(T,..,T,)" is
available in addition to the vectors x,. The vectors

x, are assumed to be related to the response

#
probability of element k, while the vector ¢, is
assumed to be related to the variables of interest. In

this case, the final GREG calibration weights w, are
given by
3) — 1,2 52
Wi =Wi 8 »

where the “g-weights” are given by

g2 =1+ (T-TO)[Z, Z, w471 c%t,, (3.4)

: @) rQ _ @

for specified c\’, and T® =2 > w,t,. The

resulting GREG estimator of the population total Y,
namely Y = 2,2, why, the

property

has calibration

Y, E, Wi, =T. (3.5)

4. Demnati-Rao Linearization Method

After adjustment for complete nonresponse,
multiplicities, and use of auxiliary information, the

estimator ¥ of ¥ is given by

Y=%,%.d,88,80 (4.1)
where d , is defined by (3.1), g} is defined by (3.2)
and g{ is define by (3.4). Let d, =(d/.d},)",
d,=(d,.d,,) withd, =d, and d,, =dr, . It
follows from (4.1) that Y is of the form f(4)
where A, is a 4x N matrix with k" column d, . In
operator notation, let $(u#) denote the estimator of
total variance of a linear estimator U =YY u"d

= fle
Then, Demnati and Rao (2007) have shown that a

linearization variance estimator of ¥ = f(4,) is
simply given by

9 ()= 9(2) .
where 9(z) is obtained from (u) by replacing u,
by z, =0(4,)/0b,|,_, , where A4, is a 4xN

matrix of arbitrary real numbers with k" column b, .

4.2)

Following the explicit differentiation method of
Demnati and Rao (2004),

7, =0f(A4,)/0b, |, , =(z,.2,) is evaluated as:

T
T = (zljk’z2jk) >

z, =Bj(e))x

4.3)

with P
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o = gj;{’(e;k -B (e, )x/k),
where
¢, =487l - B On,).
B (e))=[X,drycix,x, 1" X, d,rc)x e,
and
B(y)=[Z, X, wiledt, 51" X, Towilell't, y, .

It remains to evaluate $(u) . We have

Huy=%, % u, cov(d ,.d )u (4.4)

gt?

Wlth
CO‘(d/A’d:) a/{(ﬁ )‘ fk ,,[(5:, k é//\gu)/é/i )] 4 5

+ d:/g)[(l _ w:l/g))/a);/g)]vﬂv;,

where Y, =X %, v,=(Lr,), &, =E(r,),
200 = E (rr,) d =d,d,/Eld,d,],
) =Eld,|E[d,]/Eld,d,] and E  is
response expectation. If f =g then E[d ,kdg,]zl,
d =d,d

the

(fe)
orand o =1.

Substituting z, in(4.3) for u, in (4.4), we get
9N =2, X, difr,r (6 =,/ ), 2,

L3, T, AP0 0k, (O
=9 +9
(1 * T *
where Z,, =8% (e,k - B (e, )x,k), and

_ m(,* DT * DT [ *
Zpss = T8 g (efk _Bf (ef )xfk )"" Br (ef )xfk'

Note that the first component, §,, corresponds to the
response mechanism and the second component, § ,
corresponds to the sampling design.

Under simple random sampling in each frame,

9 =%X,N;(I-n,/N,)/n:s,, 4.7
where sp=2a,(x, =x,) /(n, =1) and
X, =xa,x,/n,.

Under independent response mechanism
g :Zf ZA d/Ar/A(l_é/x)Z/A.yZ/n.r (48)

+ 2 zk z( dlkdllrlkrll l(k = t)[(g/fllm - glkél()/glfl‘lz‘]zlﬂ.r'zll.r"

where 1(k=¢)=1 if element k is the same as
element ¢ and 1(k =¢) =0 if not.

The sum of (4.7) and (4.8) constitutes 4,, (}; ).
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We conducted a small simulation study to examine
the unconditional (design-response) performances of

ratio estimator Y of the finite population total
6, =Y . In particular, we compared the efficiency of
Y, using the three weight adjustments, relative to
Y using only the adjustments for nonresponse and

multiplicities. ~ Here Y = XYY /X"  where

Yo=%y wiy,. We the
unconditional performance of the variance estimators
3, Yy and &,(Y?) in tracking the total

also examined

variances of Y¥” and Y.*, respectively. Note that
9y (V) s
u, =X, —YY/X"Y)/X". We first generated one
finite populations {y,} of size N =393, from the

given by &, (XXu,w})where

ratio model
v, =2x,+x,¢,,

with ¢, are independent observations generated from
a N(0,1), where the fixed x, are the “number of
beds” for the Hospitals population studied in Valliant
et al. (2000, p.424-427). We set J,, =1 and we
generate J,,  from B(p,)  where
logit(p,)=1-0.003x, . This choice gives N, =393
and N, =189. We set (c,,c,,c,)=(0,1,0.5) and
0 =.05. Using Kalton and Anderson estimator, the
optimal simple random sample sizes are n, =104 and
n, =55 . In order to set up the response mechanism,
we first grouped population units into two classes:
class 1 constitutes units & having x <350, and class
2 constitutes units having x>350. The response
probabilities are set as follows: Frame 1: 0.70 for
class 1, and 0.90 for class 2. Frame 2: 0.60 for class 1,
and 0.80 for class 2. From the two frames, we
generated R =20,000 dual  frames  with
nonresponses. From each generated dual frame, one
SRS of size 104 was drawn from frame 1, and one
SRS of size 55 was drawn from frame 2. We

calculated the ratio estimates Y, o, Y &, and the

; ; 7 (2) 7 (3)
variance estimates ¢,,(Y,”), 3, (Y,”), from each

combined sample and their means Y, Y.,
3, (Y?), and 9, (Y"), and the variance of ¥

and Y, denoted V(Y®) and V(Y'). We have the
following results:
(1) VD) V(Y ?)=1.0113 , suggesting that post-
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stratification is not effective with ratio estimation
when the model fits the data well; in fact, it lead to
slight increase in variance. This result is in agreement
with the observation made by Rao, Yung, and
Hidiroglou (2002).

(2) The relative biases of DR variance estimators are:

(3 TEY=V (I PNV (D) =-2.9%
(3, T =V () /1 V(FO) =-3.8% , showing that

4, tracks the total variance with two or three weight

and

adjustments.
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Table 1: Optimal n,, n, and C,, using ¢ =0.5: Hartley’s estimator

Estimator n, n, Coin
Complete frame 203 203
¢, =035 Basic 174 92 220
GREG 152 88 196
¢, =02 Basic 161 134 188
GREG 140 127 165

Table 2: Optimal ¢, n,, n, and C,, : Hartley’s estimator

Estimator 4 n, n, Co
¢, =05 Basic 87 190 23 202
GREG 57 158 75 196
¢, =02 Basic 64 166 96 186
GREG 22 119 191 158

Table 3: Optimal n,, n, and C,,, : Kalton-Anderson estimator

min

Estimator n, n, min
¢, =05 Basic 197 12 203
GREG 157 79 197
¢, =02 Basic 173 83 190
GREG 121 187 159

Table 4: Optimal n,, n, and C,, : Bankier estimator

min

Estimator n n, C.
¢, =05 Basic 201 4 203
GREG 151 78 190
¢, =02 Basic 181 64 194
GREG 119 176 155
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Figure 1: Minimum cost for different value of ¢
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