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Abstract

Resampling methods have long been used in survey sam-
pling, dating back to Mahalanobis (1946). More recently,
jackknife and bootstrap resampling methods have been
proposed for small area estimation; in particular for mean
squared error (MSE) estimation and confidence intervals.
We present a brief overview of early uses of resampling
methods in survey sampling, and then provide an ap-
praisal of recent resampling methods for small area esti-
mation.

KEY WORDS: Bootstrap, Confidence intervals, Condi-
tional properties, Jackknife, MSE estimation, Small area
models.

1. Early Uses of Resampling

The importance of measurement errors in sample surveys
was recognized as early as the 1940’s. Mahalanobis (1946)
developed the technique of interpenetrating subsamples
(also called replicated sampling, Deming (1960)) for as-
sessing both sampling and measurement errors, and used
it extensively in large-scale sample surveys in India. The
sample is drawn in the form of two or more independent
subsamples according to the same sampling design such
that each subsample provides a valid estimate of the finite
population total or mean. By assigning the subsamples
to different interviewers (or teams), a valid estimate of
the total variance, that takes proper account of the cor-
related response variance due to interviewers, is obtained.
Hall (2003) provides a scholarly historical account of Ma-
halanobis’ seminal contributions to early development of
survey sampling in India.

For the case of independent and identically distributed
(IID) observations y1, . . . , yn, Quenouille (1956) devel-
oped an ingenious method of bias reduction in a full-
sample estimator, θ̂, of a model parameter θ. The sam-
ple of size n is first divided at random into g groups
G1, . . . , Gg, each of size m, assuming that n = gm. The
groups, Gj , are deleted in turn and the delete-group esti-

mates θ̂(j), j = 1, . . . , g, are computed. Quenouille (1956)
showed that the estimator

θ̂ =
1

g

g
∑

j = 1

{

gθ̂ − (g − 1)θ̂(j)

}

≡ gθ̂ − (g − 1)θ̂(·) ≡
1

g

g
∑

j = 1

θ̂Qj

leads to bias reduction, in the sense that the bias of θ̂Q
is of order O(n−2) if the bias of θ̂ is of the form

B(θ̂) =
a

n
+

b

n2
+O

( 1

n3

)

.

In the sample survey context, Durbin (1959) applied Que-
nouille’s method to ratio estimation, using g = 2 groups.
Rao (1963) and Rao and Webster (1966) studied the op-
timal choice of g for bias reduction in ratio estimation,
and showed that g = n is the optimal choice. In the latter
case, we have the delete–1 jackknife.

Tukey (1958) noted that for g = n and θ̂ = y, the

sample mean, the “pseudo-values” θ̂Qj reduce to θ̂Qj = yj
and hence IID. Motivated by this result, Tukey suggested
regarding the θ̂Qj as IID for general θ̂ and then using

vJ (θ̂Q) =
1

n(n− 1)

n
∑

j = 1

(

θ̂Qj − θ̂Q

)2

=
n− 1

n

n
∑

j = 1

{

θ̂(j) − θ̂(·)

}2

as the “jackknife” variance estimator of θ̂Q or θ̂. Note

that vJ(θ̂Q) is computer-intensive if θ̂ requires iterative
calculation, because n sets of iterative calculations need
to be performed to calculate θ̂(j), j = 1, . . . , n and hence
the jackknife variance estimate. In the 50’s this was in-
deed a problem, given the state of high-speed computing
in those days. Miller (1964) established the asymptotic

consistency of vJ for smooth functions of means, θ̂ and
studied the question “Is the jackknife trustworthy?” We
refer the reader to Shao and Tu (1995, Chapter 2) for
later work on the jackknife.

Wu (1986) studied the linear regression model yi =
x′iβ+εi, where the independent model errors εi have zero

mean and possibly unequal variances σ2
i . Let β̂ be the

ordinary least squares estimator of β and θ̂ = g(β̂) for
some vector smooth function g(·). Under the weighted
jackknife method, pairs (yi, xj) are deleted in turn for

j = 1, . . . , n and the resulting estimates β̂(j) and θ̂(j) =

g(β̂(j)) are computed. The weighted jackknife variance

estimator of θ̂ is then given by

vJw(θ̂) =

n
∑

j = 1

(1− wj)(θ̂(j) − θ̂)(θ̂(j) − θ̂)′,

where wj = x′j (
∑n

i= 1 xix
′

i)
−1

xj . Wu (1986) established

the asymptotic consistency of vJw(θ̂) under the condi-
tion max(wj) → 0 as n → ∞. He also showed that in
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the linear case θ̂ = β̂, the weighted jackknife variance es-
timator is exactly unbiased if the error variances σ2

i are
equal (σ2

i = σ2). In Section 3, we show that both Que-
nouille’s bias reduction method and Tukey’s jackknife or
Wu’s weighted jackknife play important roles in MSE es-
timation for small areas.

Bootstrap resampling was first introduced by Efron
(1979). Efron’s pioneering 1979 paper for the IID case
and the subsequent enormous amount of research on
bootstrap had a huge impact on the practice of statis-
tics, especially after the ready availability of high-speed
computing. Bootstrap offers wider flexibility than the
jackknife, and in the IID case the bootstrap variance es-
timator for non-smooth estimators, like the median, is
consistent unlike the delete–1 jackknife. Moreover, it can
provide “better” confidence intervals than the normal ap-
proximation based methods. We refer the reader to the
excellent books by Hall (1992) and Shao and Tu (1995)
for detailed theoretical accounts of the bootstrap method.

Stratified multi-stage cluster sampling is commonly
used in large-scale socio-economic surveys. Pioneering
work on delete-cluster jackknife and balanced repeated
replication (BRR) for variance estimation is due to Mc-
Carthy (1969) and Kish and Frankel (1974). Krewski and
Rao (1981) provided theoretical justification by establish-
ing the asymptotic consistency of delete-cluster jackknife
and BRR variance estimators for surveys with a large
number of strata and small numbers of sampled clusters
within strata. They considered estimators θ̂ that can
be expressed as smooth functions of estimated totals or
means. We refer the reader to Shao and Tu (1995, Chap-
ter 6) for various extensions including the consistency of
BRR variance estimator for non-smooth estimators such
as the median; consistency or inconsistency of the delete-
cluster jackknife in the non-smooth case is not known.

Bootstrap sampling of first-stage clusters within strata
was studied by Rao and Wu (1988), Rao, Wu and Yue
(1992), Sitter (1992) and others. Bootstrap offers flexi-
bility in terms of number of resamples, B, especially for
surveys with a large number of first-stage sample clus-
ters, unlike the delete-cluster jackknife. The data file re-
ports the sample data as well as the associated full sample
weights and the B bootstrap weights. The user simply
computes θ̂, θ̂1, . . . , θ̂B from the data file, using the full
sample weights and the B bootstrap weights. The boot-
strap variance estimator of θ̂ is simply obtained as

vBO O T(θ̂) =
1

B

B
∑

b = 1

(θ̂b − θ̂)(θ̂b − θ̂)′.

Bootstrap with B = 500 is currently used in Statistics
Canada for variance estimation.

Lahiri (2003) provides a nice account of the impact of
bootstrap in survey sampling.

2. Basic Area Level Model

Model-based small area estimation has received a lot of
attention in recent years due to its potential in provid-
ing reliable area level estimates, even with small area-
specific sample sizes, by borrowing information across
areas through linking models based on auxiliary infor-
mation. A basic Fay-Herriot (FH) area level model is
obtained as follows. Let θi = g(Yi) be a suitable function
of the i-th small area total Yi linearly related to predictor
variables zi, i = 1, . . . ,m. The linking model is given by

θi = z′iβ + vi; vi ∼iid N(0, σ2
v).

A matching sampling model is of the form

θ̂i = g(Ŷi) = θi + ei, ei ∼iid N(0, ψi)

with known sampling variance ψi, where Ŷi is a direct
estimator of Yi (Fay and Herriot (1979)). A mismatched
sampling model Ŷi = Yi + fi with E(fi) = 0 is more
realistic for small area samples because E[g(Ŷi)] can differ
significantly from θi if g(·) is non-linear. However, we
focus on the simple case θi = Yi in which case the two
sample models are identical.

The best estimator (under squared loss) of θi is given

by θ̂B = E(θi|θ̂i, β, σ
2
v) ≡ h(θ̂i, β, σ

2
v). We estimate the

model parameters β and σ2 by a suitable method, such as
maximum likelihood (ML), residual maximum likelihood
(REML) or the FH method of moments. Substituting the

estimators β̂ and σ̂2
v in θ̂Bi , we get the empirical best (EB)

estimator: θ̂ EB
i ≡ h(θ̂i, β̂, σ̂

2
v) = γ̂iθ̂i + (1 − γ̂i)z

′

iβ̂ under
the FH area level model, where γi = σ2

v/(σ
2
v + ψi). This

estimator is also the empirical best linear unbiased pre-
diction (EBLUP) estimator without normality assump-
tion.

Mean squared error of θ̂ EB
i may be written as

MSE(θ̂ EB
i ) = E(θ̂ EB

i − θi)
2

= E(θ̂Bi − θi)
2 + E(θ̂ EB

i − θi)
2

≡ M1i(σ
2
v) +M2i(σ

2
v). (1)

For the FH model, the leading term in (1) is M1i(σ
2
v) =

g1i(σ
2
v) = γiψi which shows efficiency gain over the di-

rect estimator θ̂i with MSE(θ̂i) = E(θ̂i − θi)
2 = ψi.

No closed-form expression for M2i(σ
2
v) exists. Prasad

and Rao (1990), Datta and Lahiri (2000) and Datta,
Rao and Smith (2005) obtained a Taylor linearization
approximation to M2i(σ

2
v) for large m as M2i(σ

2
v) ≈

g2i(σ
2
v) + g3i(σ

2
v), where the neglected terms are of or-

der O(m−2), and g2i(σ
2
v) and g3i(σ

2
v), depend on the

asymptotic variance of β̂ and σ̂2
v , respectively. Note that

the neglected terms in the second order approximation,
g1i(σ

2
v) + g2i(σ

2
v) + g3i(σ

2
v), to MSE(θ̂ EB

i ) are of order
O(m−2).

Turning to MSE estimation, a “nearly” unbiased esti-
mator under REML is given by (Datta and Lahiri (2000))

mse(θ̂ EB
i ) = g1i(σ̂

2
v) + g2i(σ̂

2
v) + 2g3i(σ̂

2
v). (2)
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Under ML and FH moment method, an extra bias correc-
tion term is needed (Datta and Lahiri (2000), Datta, Rao
and Smith (2005), Rao (2003, Chapter 7). Note that the
MSE estimator (2) is not area-specific in the sense that

it does not depend on θ̂i. Alternatives to 2g3i(σ̂
2
v) that

depend on θ̂i have been proposed (Rao (2003, Chapter
7)).

If θi = g(Yi), then the best estimator of Yi,
E(Yi|Ŷi, β, σ

2
v) = h̃(Ŷi, β, σ

2
v) has no closed form expres-

sion. As a result, MSE estimation using Taylor lineariza-
tion becomes complex or difficult. In Sections 3 and 4,
we show that the jackknife and bootstrap can be used
to handle such general cases including generalized linear
mixed models.

3. Jackknife MSE Estimation

Jiang, Lahiri and Wan (2002) proposed a jackknife esti-

mator of MSE(θ̂ EB
i ) that avoids the explicit evaluation

of g2i(·) and g3i(·) terms in (2), but it still requires the
derivation of g1i(·) term which is simple for the EB es-

timator θ̂EB
i above They applied Tukey’s jackknife idea

to get a delete-area jackknife estimator of M2i(σ
2
v). Let

φ = (β, σ2
v) and φ̂(u) denote the delete u-th area esti-

mator of φ; u = 1, . . . ,m. Then, the Jiang, Lahiri and
Wan (JLW) unweighted jackknife estimators of M2i(σ

2
v)

is given by

M2i,J =
m− 1

m

m
∑

u= 1

{

h
(

θ̂i, φ̂(u)

)

− h
(

θ̂i, φ̂
)
}2

. (3)

Quenouille’s bias reduction method is applied to M1i(σ̂
2
v)

in (1) to get

M̂1i,J = g1i(σ̂
2
v)−

m− 1

m

m
∑

u= 1

{

g1i(σ̂
2
v(u))− g1i(σ̂

2
v)
}

.

(4)
JLW proved that M̂i,J = M̂1i,J + M̂2i,J is a nearly

unbiased estimator of MSE(θ̂EB
i ) in the sense that its

bias is of lower order than m−1. A weighted ver-
sion is obtained by applying Wu’s weighted jackknife
method (Chen and Lahiri (2002)) with weights wu =
1 − (z′u/ψu)(Σziz

′

i/ψi)
−1zu: Replace (m − 1)/m in (3)

and (4) by wu (u = 1, . . . ,m) and take it inside the sum-
mation terms. Note that M̂2i,J and its weighted version

are area-specific in the sense of depending on θ̂i. The
weighted jackknife version performed better in small sam-
ples (m = 12) than M̂i,J (Chen and Lahiri (2002)).

As noted by Bell (2001) in the context of FH model,
the jackknife estimator M̂i,J , due to bias correction in (4),
can take negative values under certain scenarios. Chen
and Lahiri (2005) used jackknife linearization, under the
REML estimator σ̂2

v , to get

M̂i,JL = g1i(σ̂
2
v) + g2i(σ̂

2
v) +

ψ2
i

(σ̂2
v + ψi)2

vwJ(σ̂
2
v)

+
ψ2
i

(σ̂2
v + ψi)4

(θ̂ − z′iβ̂)
2vwJ(σ̂

2
v), (5)

where vwJ(σ̂
2
v) =

∑m
u= 1 wu

(

σ̂2
v(u) − σ̂2

v

)2
is a weighted

jackknife variance estimator of σ̂2
v . The estimator (5) is

always non-negative, unlike M̂i,J or its weighted version,
but requires additional analytical work as in the case of
(2). An extra term involving the bias of σ̂2

v needs to be
subtracted in the case of ML and FH estimators of σ̂2

v ,
and this could lead to negative MSE estimates in rare
cases. A simulation study indicated superior performance
of the proposed jackknife linearization MSE estimator in
(5).

The JLW jackknife method is applicable to general
small area models, including mismatched models and
non-normal cases (binary or count unit level responses).
We simply start with the best estimator of the small area
parameter of interest, given the model parameters φ. But
it may not have a closed form expression and hence may
require numerical integration for specified φ. Moreover,
the leading M1i (or g1i) term of the MSE can involve
complex numerical computations, and it is required for
bias correction as in the FH model. Lohr and Rao (2007)
proposed an alternative jackknife MSE estimator that
avoids the extra integration or summation with respect
to marginal distribution, and as a result it is computa-
tionally simpler than the JLW estimator of MSE. Also,
its leading term in nonlinear cases is area-specific, in the
sense of depending on the area-specific data, unlike the
JLW estimator.

To illustrate that Lohr-Rao method, consider the sim-
ple case of yi ∼iid B(ni, pi) given pi and pi ∼in d Beta
(α, β), i = 1, . . . ,m, and the parameter of interest is pi.
In this case, the best estimator of pi is p̂

B
i = E(pi|yi, φ) ≡

h(yi, φ) and the EB estimator is p̂EB
i = h(yi, φ̂), where

φ̂ = (α̂, β̂) is a consistent estimator of φ = (α, β). We
have

MSE(p̂EB
i ) = EV (pi|yi, φ)+E(p̂EB

i − p̂Bi )
2 ≡ M1i +M2i.

(6)
JLW need M1i in (6) as a function of φ to get their
bias corrected estimator M̂1i,J which is not area-specific.

Area-specific estimator, M̂2i,J , ofM2i is given by (3) with

θ̂i replaced by yi. Let V (pi|yi, φ) = g̃1i(yi, φ) which de-
pends on area-specific data, unlike in the FH case studied
above. Following a suggestion of Rao (2003, Chapter 9),
Lohr and Rao (2007) applied jackknife bias corrections

to g̃1i(yi, φ̂) to get the following estimator of M1i:

M̃1i(yi) = g̃1i(yi, φ̂(i))

−
m− 1

m

m
∑

u= 1

{

g̃1i(yi, φ̂(u))− g̃1i(yi, φ̂)
}

(7)

The JLW estimator M̂2iJ is used for M2i in (6). The
Lohr-Rao (LR) estimator M̃i,J = M̃1i(yi)+M̂2iJ is nearly
conditionally unbiased given yi, unlike the JLW estima-
tor, and also nearly unbiased unconditionally as in the
case of JLW. Note that in the FH model case, the pos-
terior variance given φ, V (θi|θ̂i, φ), does not depend on

θ̂, unlike in the non-linear case. Hence, it is not possible
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to obtain an area-specific estimator of the leading term
M1i = g1i(σ

2
v) in the FH case.

Lohr and Rao (2007) conducted a simulation study un-
der the above binomial-beta model. Their results may be
summarized as follows: (1) Unconditional relative bias
(URB) of both JLW and LR estimators is small, but co-
efficient of variation (CV) of JLW is smaller, as expected,
because g̃1i(yi, φ) differs for each value of yi unlike M̂1i,J .
(2) Conditional relative bias (CRB) of LR is small and
it decreases as m increases, while JLW exhibits strong
pattern for CRB: large and positive when yi is small or
large, and large and negative when yi is close to the mid-
dle. Moreover, CRB of JLW does not necessarily decrease
as m increases.

4. Bootstrap MSE Estimation

Parametric bootstrap versions of the JLW jackknife MSE
estimator, M̂iJ , have been proposed by Butar and Lahiri
(2003) and Pfeffermann and Glickman (2004). For
the FH model under normality, B bootstrap samples
{(θ̂bi , zi); i = 1, . . . ,m}, b = 1, . . . , B are generated as fol-
lows: (i) Generate v̂bi and ê

b
i independently from N(0, σ̂2

v)

and N(0, ψi) respectively, (ii) Let θ̂bi = z′iβ̂ + v̂bi + êbi ≡
θbi + êbi . Using the b-th bootstrap sample, we calculate

the estimators σ̂2
v(b) and β̂(b) and the resulting EB esti-

mators h(θ̂bi , φ̂(b)).

The components corresponding to M̂1i,J and M̂2i,J are
then given by (Butar and Lahiri (2003)):

M̂1i,B = g1i(σ̂
2
v)−

1

B

B
∑

b = 1

{

g1i(σ̂
2
v(b))− g1i(σ̂

2
v)
}

= 2g1i(σ̂
2
v)−

1

B

B
∑

b= 1

g1i(σ̂
2
v(b)) (8)

and

M̂2i,B =
1

B

B
∑

b= 1

{

h(θ̂i, φ̂(b))− h(θ̂i, φ̂)
}2

, (9)

leading to M̂i,B = M̂i1,B + M̂2i,B as the bootstrap MSE

estimator of θ̂ EB
i . Pfeffermann and Glickman (2004)

proposed a different version of M̂2i,B , but M̂1i,B is not
changed:

M̃2i,B =
1

B

B
∑

b= 1

{

h(θ̂bi , φ̂(b))− θbi

}2

. (10)

They provide a heuristic argument that the resulting
MSE estimator M̂1i,B + M̃2i,B has “the advantage of
potential robustness against sampling from non-normal
distributions”. The above bootstrap methods extend to
more general models, as in the jackknife case. A possi-
ble disadvantage of the bootstrap method is that the bias
of the MSE estimator may be sensitive to the choice of
number of bootstrap samples, B. It may be advisable to
study sensitivity as B changes.

As noted before, for general small area models it is dif-
ficult to evaluate the M1i term. Instead, it is possible
to develop a bootstrap analogue of the Lohr-Rao method
and get a computationally simpler and area-specific MSE
estimator that is conditionally as well as uncondition-
ally unbiased. Hall and Maiti (2006) and Chatterjee
and Lahiri (2007a) developed a general double bootstrap
method that is computer-intensive and avoids the evalu-
ation of the M1i-term. We illustrate the method for the
FH model but it is applicable for general parametric mod-
els. First, we note that MSE(θ̂ EB

i ) = E{h(θ̂i, φ̂) − θi}
2

which suggests that a naive estimator based on the (level
1) bootstrap samples, b, is given by M̃2i,B in (10). Next,

we perform bootstrap bias correction of M̃2i,B using level
2 bootstrap samples. The c-th level 2 bootstrap sample
{(θ̂b(c), zi); i = 1, . . . ,m}, c = 1, . . . , C associated with
the b-th level 1 bootstrap sample is obtained by gener-
ating vbi (c) and e

b
i (c) independently from N(0, σ̂2

v(b), and

N(0, ψi) and then letting θ̂bi (c) = z′iβ̂(b)+ v̂bi (c)+ êbi(c) ≡
θbi (c) + êbi(c). Using the (bc)-th level 2 bootstrap sam-

ple we calculate the estimators σ̂2
v(bc) and β̂(bc) and the

resulting EB estimators h{θ̂bi (c), φ̂(bc)}. Let

M̃2iBC =
1

BC

B
∑

b= 1

C
∑

c = 1

{

h(θ̂i(bc), φ̂(b))− θbi (c)
}2

(11)

Then the bias-corrected estimator of MSE(θ̂EB
i ) is given

by
M̃i,BC = 2M̃2i,B − M̃2i,BC. (12)

The estimator M̃i,BC is nearly unbiased for very large B
and C, but its bias may be quite sensitive to the choice
of B and C (Tang and Jiang (2007)).

Hall and Maiti (2006) studied MSE estimation un-
der a unit level nested error linear regression model
yij = x′ijβ + vi + eij , j = 1, . . . , i; i = 1, . . . ,m, with
vi and eij independent and having zero means and fi-
nite second and fourth moments, where ni is the num-
ber of sample observations (yij , xij) in small area i and
the population mean Xi is known. Customary normal-
ity assumption on vi and eij is thus relaxed. Hall and
Maiti (2006) proposed drawing B level 1 bootstrap sam-
ples from distributions that match the estimated second
and fourth moments of vi and eij and then computing the
empirical best linear unbiased prediction (EBLUP) esti-
mators of small area means of y from the level 1 bootstrap
samples. The resulting MSE estimator of the form (10) is
then bias-corrected using a double bootstrap with C level
2 bootstrap samples form each level 1 bootstrap sample
using the same moment matching method. The resulting
MSE estimator of the form (12) is nearly unbiased for
very large B and C. The Hall-Maiti method could also be
used under the FH model without normality assumption,
but it could be quite involved for general linear mixed
models, such as two level models, because the fourth mo-
ments need to be estimated. Again, the bias of the MSE
estimator could be quite sensitive to the choice of B and
C.
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Bootstrap methods seem to have the potential to pro-
vide second order accurate confidence intervals on small
area parameters (Chatterjee, Lahiri and Li (2007b)). Fur-
ther work on this topic would be practically useful and
theoretically challenging.
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