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1. Introduction: 
If an end user of survey data from a complex 
sample is interested in calculating a confidence 
interval for a mean, total, or proportion, then 
typically the justification of approximately valid 
confidence intervals is based on the central limit 
theorem.  Validity of this normal approximation 
for a given sample size is typically determined 
by rules of thumb usually based on Edgeworth 
expansions.  Cochran (1977) gives a rule of 
thumb for determining sample size if the 
principle problem in the data is skewness.  
Cochran�s estimate of the sample size necessary 
to achieve nominal coverage is based on the 
Fisher�s skewness coefficient, G1.  Cochran�s 
rather simple rule is the sample size should be at 
least 25G1

2 in order for a 95% confidence 
interval to have a coverage rate of at least 94%.  
 
Most nationally representative surveys have 
sufficient sample size by Cochran�s criteria to 
produce valid confidence intervals for national or 
even regional level estimates of means or totals.  
However, analysts are often interested in 
subdomain specific estimates and even for large 
national surveys, subdomains of interest can be 
sparse.  Since the finite population intervals are 
based on normal approximations to the sampling 
distribution, and if the sample size cannot be 
changed, the only alternatives are to either rely 
on the distributional assumptions or to use a 
confidence interval correction.  Of course, if an 
analyst is willing to build models, then quite 
accurate estimates might be constructed.  But if 
an analyst simply wants to construct a 
confidence interval for skewed data within a 
sparse subdomain the question is whether 
distributional assumptions can increase the 
accuracy of confidence interval coverage.  This 
paper will attempt to address this issue in the 
setting of stratified sampling. 
 
Generally, attempts to improve the accuracy of 
confidence interval coverage have proceeded 
along the lines of Edgeworth corrections, 
saddlepoint approximations, bootstrap 

corrections, corrections to Empirical Bayes 
intervals, or generalized confidence intervals.  
This paper investigates the Empirical Bayes 
intervals and compares them to the standard 
normal intervals and ad hoc gamma intervals. 
 
This paper will proceed as follows.  Section two 
addresses constructing confidence intervals 
based on the gamma distribution.  In section 
three, we discuss intervals based on the 
lognormal distribution.  The lognormal interval 
attributed to Cox will be presented.  Section four 
describes the Empirical Bayes interval based on 
a lognormal distribution.  Section five presents 
the results of two types of simulations.  The first 
type of simulation is based on simple random 
sampling from a pseudo-population of skewed 
data.  The second type of simulation is based on 
stratified sampling from the pseudo-population 
of skewed data.  Results are given in section six.  
Finally, the last section provides a conclusion 
with directions for future research.  
 

2. Gamma Confidence Intervals 
2.1 The Gamma Distribution for a 
Sample Mean 
The process of constructing gamma intervals is 
actually straightforward given that a gamma 
distribution has a multiplicative location 
parameter.  In this paper, if X has a gamma 
distribution with shape parameter, ν, and scale 
parameter, λ, it will mean that X has density 

proportional to λν /1 xex −− on the non-negative 
real numbers.  This is denoted as X ~ ),( λνΓ  

and under this parameterization νλ=)(XE  

and 2)( νλ=XVar .  A simple calculation 
using the moment generating function shows that 
for a simple random sample of size n from a 
gamma distribution, and constructing the sample 

mean as ∑
=

=
n

i
in XX

1

1 , then X ~ 

),( nn λνΓ .  
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2.2 Construction of Simple Gamma 
Confidence Intervals 
For notation, assume that α is the nominal 
confidence level of interest and µ is the 
population mean which we are trying to estimate.  
Regardless of what the underlying distribution is, 

µ=)(XE , the population mean, and this is 
the basis of both normal and gamma confidence 
intervals.  To construct a gamma confidence 

interval, start with the assumption that µ/X  is 
distributed as gamma with mean 1.  Note that if 

µ/X  is distributed as gamma with mean 1, 
then since the mean of a gamma distribution is 
the product of the scale parameter times the 

shape parameter it must be that µ/X  is 

distributed as )/1,( νν nnΓ , i.e., νλ n/1= .  

Under the assumption that µ/X  has a gamma 

distribution, and assuming that ν is known, the 
probability statement  

αννα
µννα
−=−Γ≤

≤Γ
1)}/1,;2/1(

/)/1,;2/({

nn

XnnP
  is 

rearranged to produce the confidence interval 

αννα
µννα

−=Γ≤
≤−Γ

1)}/1,;2/(/

)/1,;2/1(/{

nnX

nnXP
.  Since ν 

is rarely known it must be estimated.  If an 

estimate, ν� , is used in the formula then the 
distribution is only approximately gamma and 
the coverage level is only approximate.  The 
small sample exact distribution of the gamma 
interval with an estimated shape is unknown but 
the simulation results indicated satisfactory 
coverage with using estimated shape. 
 
The above interval is one of many α−1  
confidence intervals for the population mean 
under the assumption that the underlying 
distribution is gamma.  However, it is not �best� 
in the sense of shortest α−1  interval, but for 
the current examination this simple interval is 
sufficient.  A small simulation indicated that 
under simple random sampling there was 
minimal difference in the performance of this 
equal tail coverage gamma interval and the 
shortest width gamma interval. 
 
The derivation of the gamma distribution for the 
sample mean can also be done under more 
general assumptions of a stratified sample.  If we 
assume that the strata means have a gamma 

distribution with common shape parameter, ν, 
strata unique scale parameters, λ(i), and that the 
strata are independently sampled, then the 
overall sample mean is distributed as gamma 
using a similar derivation as for the simple 
random sample.  The shape parameter of the 
overall mean will be equal to the common shape 
parameter from the strata divided by the number 
of strata.  The scale parameter of the overall 
mean will be equal to the sum of the strata level 
scale parameters.  Of course, this would be a 
weighted sum if the overall mean were a 
weighted sum of the strata means.   
 
The assumption that the shape parameters in the 
strata are approximately equal is equivalent to 
the idea each strata has approximately the same 
coefficient of variation.  From a survey samplers 
point of view this might be a workable 
assumption if the survey were designed 
specifically to collect the skewed variable and 
the strata were designed and allocated relative to 
the variance of the skewed variable of interest.  
Unfortunately, this is generally not the case.  
Assumptions about a common shape parameter 
and estimating this shape parameter appear to be 
the main difficulty with using a gamma 
distribution.  However, in simulations the 
gamma intervals using an estimated shape 
parameter seemed to perform satisfactorily and 
certainly better than normal intervals. 
 
2.3 Estimation of the shape Parameter 
The situation in which the shape parameter, ν, is 
known corresponds to the situation for a normal 
distribution in which σ is known but this rarely 
occurs in practice.  Thus, ν must be estimated 
from some source, usually the sample, just like σ 
must nearly always be estimated from the 
sample.  Using the relationships between the 
gamma parameters and the sample mean and 
sample standard deviation one can derive a 
simple method of moments estimator of ν as 

22 )(/� XsdX=ν .  This gives an 

interpretation of νλ /1=  as a direct function of 
the coefficient of variation. 
 
The gamma distribution with an estimated shape 
parameter can be thought of analogously to the 
Student t distribution for the normal distribution 
with an estimated standard deviation.  The small 
sample distribution of a gamma with an 
estimated shape parameter is currently unknown 
and is an area for possible future research. 
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In this paper, the following idea is used based on 
the assumption that the total sample is relatively 
large but the interest is in writing confidence 
intervals for somewhat sparse subdomains.  If 
there is truly a common shape parameter in each 
stratum, then that common shape parameter 
should also hold for the entire sample and the 
entire sample can be used to estimate the 
common shape parameter.  The estimate of the 
shape from the entire sample can then be used in 
each subdomain of interest.  This is not an ideal 
solution but seems to perform well in 
simulations.  Note that the method of estimation 
for the shape parameter used here is a simple 
method of moments estimator but more 
sophisticated estimation techniques could be 
investigated.  There are works on maximum 
likelihood estimators for estimating gamma 
parameters and robust parameter estimation for a 
gamma distribution.  However, the ultimate goal 
is to provide the end user with a simple formula 
for a gamma confidence interval, so the simple 
method of moments estimation of the shape 
parameter is satisfactory for this purpose. 
 
2.4 Summary on Gamma Intervals 
This section provided an introduction to gamma 
based confidence intervals used in the 
simulations.  Assuming the sample mean follows 
a gamma distribution has a theoretical basis for 
either simple random sampling or for stratified 
sampling.  The simple gamma interval requires 
an estimate of the shape parameter which is the 
weakness of the approach.  A small simulation 
indicated that the simple gamma interval and the 
normal interval were numerically very similar 
for subsample sizes of 5,000 or larger. 
 
 

3. Lognormal Confidence Intervals 
3.1 The Lognormal Distribution 
The lognormal distribution can also be used as a 
distributional model for heavy tailed data.  For 
example Zhou and Gao (1997) examine 
lognormal confidence intervals for health 
expenditure data.  The work of Zhou and Gao 
indicates that lognormal confidence intervals 
work well for health expenditure data associated 
with knee replacement in a sample of size 355. 
 
If X has a lognormal distribution with location 
parameter, µ, and scale parameter, σ, it means 
that log(X) is N(µ,σ) and that X has density 

proportional to 
2

2
))(log(

2

1
1

µ
σ

−−
−

x

ex  on the 

positive real numbers.  This will be denoted as X 
~ ),( σµΛ  and under this parameterization 

2
2

1

)( σµ+= eXE  and 

)1()(
222 −= + σσµ eeXVar .  The form of the 

expected value is suggestive that the parameter 
2

2
1σµ +  can be used to construct confidence 

intervals for lognormal data.  In fact all of the 
lognormal intervals studied are based on first 
transforming the data by taking a log, second 

estimating 2
2
1σµ + , third writing a confidence 

interval for 2
2
1σµ +  based on some 

distributional assumption, and finally 
transforming the interval back to the original 
scale using the exponential function. 
 
Note that if the individual observations are 
thought to be lognormal then the mean of the 
observations is not lognormally distributed.  It is 
not clear if there is a theoretical basis for using a 
lognormal interval for the overall mean with 
stratified sampling.  However, in the simulations 
it is included. 
 
3.2 Construction of Lognormal 
Confidence Intervals 
The interval proposed by Cox as reported in 
Land (1972) is the simplest interval of this form.  
If the original variable is denoted by X, then let 
Y denote the log of X.  First, the Cox interval 

estimates 2
2
1σµ + by 

2
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Φ denotes a standard normal distribution.  
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Finally this interval is back-transformed using 
the exponential function. 
 
3.3 Summary on Lognormal Intervals 
This section presented the Cox interval for the 
lognormal distribution.  The interval is based on 
a logarithm transform of the data, constructing a 
normal confidence interval for the parameter, 
which equals the mean plus one half the variance 
of the transformed data, then back transforming 
the data using an exponential function. 
 
 

4. Empirical Bayes Lognormal 
Confidence Intervals 

4.1 The Empirical Bayes approach 
 
The lognormal distribution can also be used as a 
distributional model for Empirical Bayes 
estimation.  Again, if X has a lognormal 
distribution with location parameter, µ, and scale 
parameter, σ, then log(X) is N(µ,σ) and that X 

has density proportional to 
2

2
))(log(

2

1
1

µ
σ

−−
−

x

ex  
on the positive real numbers.  Under this 

parameterization 
2

2
1

)( σµ+= eXE  and 

)1()(
222 −= + σσµ eeXVar .  The approach 

used here will be to construct an Empirical 
Bayes confidence interval for the parameter 

2
2
1σµ +  and transform the interval back to the 

original scale using the exponential function. 
 
4.2 Estimation of Empirical Bayes 
Confidence Intervals 
The fully Bayesian approach would specify a 
lognormal distribution for X given the 
parameters, (µ,σ), along with a prior distribution 

for µ, ),(~ 2ταµ Ni  which depends on the 

hyperparameters ),( 2τα .  For the moment 

assume that both ),( 22 τσ  are known.  Then 

the posterior distribution of µ is given by  

),|(

),|()|(
),,|(

2

2
2

ατ
ατµµατµ

xm

gxf
xp =  

where ),|( ανxm  is the marginal distribution 
of the data given the hyperparameters.  In the 
Empirical Bayes approach, the hyperparameters 
are estimated from the marginal distribution, 

),|( ανxm , usually using maximum likelihood 
estimators. 
 

In particular, if the log of the observed strata 
means are assumed to be independent normally 

distributed, ),(~)log( 2
iii nNX σµ where 

ni is the sample size, and ),(~ 2ταµ Ni then 

the marginal distribution of log(X), given the 
hyperparameter α, is 

),(~)|)(log( 22 τσαα +ii nNXm so the 

marginal maximum likelihood estimator of α is 

∑=
K

iX
K 1

)log(
1

�α .  Then the estimated 

posterior for αµ �),log(| ii X  is 

))1(),log()1(�( 2σα BXBBN i −−+  where 

22

2

τσ
σ

+
=

i

i

n

n
B .  Since the posterior for 

αµ �),log(| ii X  is normal with known 

parameters, and still assuming that both 

),( 22 τσ  are known, a naïve 95% Empirical 

Bayes confidence interval for 2
2
1σµ + can be 

constructed.  As discussed in section 3.5 of 
Carlin and Louis (2000), the naïve Empirical 
Bayes confidence interval will undercover but a 
method by Morris will correct the naïve interval.  
The next step is to estimate the parameters 

),( 22 τσ  from the data.  2σ  is estimated by 

the within strata variance while 2τ  is estimated 
as the between strata variance.  Finally this 
interval is back-transformed using the 
exponential function. 
 
4.3 Summary on Empirical Bayes 
Intervals 
This section presented the intervals for the 
lognormal distribution using Empirical Bayes 
methodology.  The interval requires maximum 
likelihood estimation of hyperparameters. 
 
5. Simulation Methods 
This section describes how the pseudo-
population was constructed and how the 
sampling was done.  A discussion of the results 
follows.  
 
5.1 Construction of the Pseudo 
Population 
Berk and Monheit (2001) have previously 
described the skewed nature of healthcare 
expenditure data among the civilian non-
institutionalized population of the United States 
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from the Medical Expenditure Panel Survey 
(MEPS).  MEPS is collected to estimate 
healthcare expenditures and usage among the 
civilian non-institutionalized population.  To 
obtain skewed data for this study, healthcare 
expenditure data from six MEPS full year 
person-level public use files, available from 
www.AHRQ.MEPS.gov were merged along 
with a stratification that spanned 1996 to 2001.  
The pseudo-population consisted of over 
156,000 records obtained from MEPS full year 
consolidated files HC-012, HC-020, HC-028, 
HC-035, HC-050, and HC-060.  These records 
were grouped into 125 strata.  Strata and primary 
sampling unit information were obtained from 
the MEPS 1996-2002 pooled estimation linkage 
file HC-036.  For each record the following 
variables were extracted: total annual healthcare 
expenditures; sample information such as strata, 
primary sampling unit, and weight; and 
demographic and geographic information such as 
age, race, sex and region. 
 
All records in the MEPS Public Use Files with 
nonzero expenditure, whether imputed or not, 
were retained.  Approximately 28,000 records in 
the time period 1996-2001 had zero expenditures 
for the year so after these records were dropped 
there remained over 128,000 records with 
nonzero health expenditures for the year.  One 
problem of healthcare expenditures is dealing 
with the semi-continuous nature of the data.  The 
zero expenditure category can create problems 
and for this study only the nonzero expenditures 
were used, but including the zero category is a 
possible topic for future research. 
 
5.2 Construction of Subdomains 
As mentioned in the introduction, the primary 
interest is in constructing confidence intervals 
for subdomains, but it is not straightforward how 
to simulate sampling in order to estimate 
confidence interval coverage for subdomains.  
There appear to be two choices, neither of which 
is ideal.  Starting with a fixed size sample for the 
total sample from the pseudo-population, we can 
look at fixed subdomains within the total sample, 
e.g., black females in the South, but these subsets 
will be of random size.  Alternatively, we can 
take a random subdomain, not based on 
demographics, but of a fixed subsample size out 
of the total sample.  The random subdomain 
approach allows control of the subsample size of 
the subset but it doesn�t reflect inherent 
differences that can be found in expenditures in 
subdomains determined by demographic 

characteristics.  However, both of these 
approaches were investigated and the results are 
reported. 
 
5.3 Method of Sampling 
Given the pseudo-population of approximately 
128,000 records with nonzero expenditures, two 
methods of sampling were used.  In both 
methods, a total sample of approximately 26,000 
records was selected.  This sample size matches 
the number of nonzero records in the 2001 
MEPS full year file and thus reflects the total 
number of records an analyst might have to work 
with in a typical full year data file.  For given 
total sample size of 26,000, the first method of 
sampling was to take a simple random sample 
from the pseudo-population as has been done in 
previous studies.  The simulations were run in R 
provided by the R Core Development Team 
(2005). 
 
5.4 Simple Random Sampling 
In the finite population setting, most of the 
research done thus far regarding the effect of 
skewness on confidence intervals has simulated 
simple random sampling.   
 
The approach of simple random sampling is 
included in this work to provide a validation for 
the simulation methodology and for the Cochran 
rule of thumb.  To start with, a large sample of 
approximately 26,000 records, representing a full 
year file was drawn without replacement from 
the pseudo-population of 128,000 records.  Then 
random subsamples of different sizes were 
drawn from the large sample full year file 
representation.  For each fixed subsample size, 
the process of randomly subsampling the large 
sample was repeated 10,000 times.  For each 
repetition of the subsampling process, the 
different intervals of interest were constructed 
and a count incremented for each confidence 
interval that covered the true pseudo-population 
mean.  In one case, a subsample size starting at 
20 and increasing to 1,000 by 10 was drawn.  In 
another case, subsamples starting at 50 and 
increasing by 50 to 2,000 were drawn from the 
large sample. 
 
5.5 Stratified Sampling 
The effect of stratified sampling on confidence 
interval coverage is studied using simulations 
similar to the simple random sampling case.  The 
common stratification from the public use file 
HC-036 provides a stratification for all records in 
the pseudo-population.  The overall sample size 
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of approximately 26,000 was used again.  To 
allocate this sample size to the strata, the strata 
sample sizes from the MEPS 2001 data were 
used because the overall sample size was 
determined by that file.  Given the sample size 
allocated to each stratum, a simple random 
sample within each stratum was selected from 
the pseudo-population.  Since most national 
surveys such as MEPS are cluster samples the 
next step for future work should be to investigate 
cluster sampling within strata.  ` 
 
The approach of writing confidence intervals 
from stratified sampling is important to evaluate 
for national samples and this work uses 
simulation to investigate the impact of stratified 
sampling on confidence intervals using the same 
pseudo-population.  To start with, a large sample 
of approximately 26,000 records, representing a 
full year file is drawn by stratified sampling, 
without replacement, using simple random 
sampling within strata, from the pseudo-
population of 128,000 records.  This is facilitated 
by the �pps� function in R, see Gambino (2003).  
After the stratified sample was selected, two 
methods of evaluating subdomains were 
investigated.   
 
First, random subsamples of different sizes were 
drawn from the large sample full year file 
representation.  For each fixed subsample size 
the process of randomly subsampling the large 
sample was repeated 10,000 times.  For each 
repetition of the subsampling process the 
different intervals of interest were constructed 
and a count incremented for each confidence 
interval that covered the true pseudo-population 
mean.  In one case a subsample size starting at 
20 and increasing to 1,000 by 10 was drawn.  In 
another case subsamples starting at 50 and 
increasing by 50 to 2,000 were drawn from the 
large sample. 
 
Secondly, for certain fixed subdomains, such as 
crosses of sex, race-ethnicity, and region a 
stratified sample of approximately 26,000 was 
repeatedly drawn from the pseudo-population.  A 
simulation of 10,000 repetitions of stratified 
sampling is reported in the Results section.  
Confidence intervals from each sample were 
constructed for each subdomain determined by 
the crossed variables.  Then a count was 
incremented for each subdomain interval that 
covered the true pseudo-population mean. 
 
6. Results 

 In several repeats of the simple random sample 
simulation, the total sample of 26,000 had a 
Fisher G1 value of 10 to 11 indicating, according 
to Cochran�s rule, a sample size of over 2,000 
would be necessary for a normal confidence 
interval with nominal value 0.95 to cover 94% of 
the time. This agreed with the observed results 
from Yu and Machlin.  It was observed that the 
underlying pseudo-population has a Fisher G1 of 
13.9, so the simple random samples are 
consistently underestimating the skewness 
coefficient of the pseudo-population.  
 
Figure I, shows coverage rates for the normal 
interval, the Cox lognormal interval, and the 
simple gamma interval.  The simple gamma 
interval had the shape parameter estimated from 
the total sample as opposed to the subsample.  
The dotted horizontal line is the 94% line and the 
normal coverage rate does not approach the line 
until the subsample size starts to reach 2,000, 
which appears to agree with Cochran�s rule of 
thumb.  The gamma coverage rate is consistently 
above the 94% line.  The lognormal based 
intervals are initially good and this agrees with 
previous results from Zhou and Gao, for 
example.  However, as the subsample size 
approaches 4,000 the lognormal coverage rates 
become worse than the normal and as the sample 
size increases the lognormal intervals get 
consistently worse.  In one simulation in which 
the sample size was increased to 8,000 the 
coverage rate for the lognormal intervals 
dropped to 60%.  This would seem to indicate 
that the underlying distribution of the 
expenditure data is not really lognormal but for 
smaller sample sizes the lognormal intervals 
cover at the desired rate because the intervals are 
really wide intervals.  

(insert Figure I here) 
Figure II represents coverage rates of the 
confidence intervals under stratified sampling.  
For stratified sampling the Empirical Bayes 
confidence intervals were used for the lognormal 
distribution.  Note that for this kind of sampling, 
the coverage of the lognormal intervals does not 
start to deteriorate.  Again, we see that the 
normal interval is not satisfactory at 1,000.  The 
gamma interval coverage is good from small 
sample sizes.  However, for stratified sampling 
the Empirical Bayes lognormal intervals appear 
to perform well, even for sample sizes up to 
1,000. 

 (insert Figure II here) 
The use of the gamma distribution clearly 
improved the coverage rate for the gamma 
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intervals in the simulations.  At this point, it 
cannot be ascertained from the simulations if the 
noted improvement is due to accounting for 
skewness of the data; if the improvement is a 
direct result of changing the nuisance parameter 
in the interval; or if it is possibly because of 
some combination of the two.  In any event, the 
gamma intervals clearly outperformed the 
normal intervals in this simulation. 
 
7. Conclusions and Directions for 
Future Research 
 
The simulations indicate that normal confidence 
intervals can have quite poor coverage for 
samples less than 2,000, but the gamma 
distributional assumptions do improve on 
confidence interval coverage.  Among the fixed 
subdomains the gamma interval had better 
coverage than the normal intervals in every case.  
The lognormal based intervals covered well for 
random subsample sizes less than 500, but 
coverage for these intervals deteriorated when 
subsample sizes approached 1,000.  There were 
indications of serious coverage problems for the 
lognormal intervals.  On the other hand, the 
gamma based intervals had good coverage for all 
random subsample sizes and good coverage in 
most subdomains.  In addition, the width of the 
gamma intervals converged to the width of the 
normal intervals for larger random subsample 
sizes.  
 
The simulations carried out as part of this 
research raise several interesting areas for 
possible future research: 1) estimation of the 
shape parameter of the gamma distribution, 2) 
determining the distribution of the gamma 
interval with an estimated shape parameter, 3) 
other problems beside skewness in the data and 
4) the effect of multistage selection within strata 
on the coverage rates. 
 
Estimation of the shape parameter for the gamma 
appeared to work satisfactorily in the 
simulations.  However, the method of estimation 
is an ad hoc approach that needs improvement.  
The next research will focus on empirical Bayes 
construction of gamma intervals.   
 
The exact small sample distribution of a gamma 
interval with an estimated shape parameter is a 
statistically interesting problem reminiscent of 
the Student t distribution.  It is not clear how 
widely useful this distribution would be to the 
unsophisticated end user, but a better gamma 

interval would result.  There may be the 
possibility of estimating this type of distribution 
with a bootstrap approach. 
 
It can be conjectured that other distributional 
problems besides skewness are probably related 
to the semi-continuous nature of the data.  In this 
study, the zero expenditures were eliminated and 
many analysts are only interested in estimating 
the nonzero expenditures.  However, confidence 
intervals for expenditure data including the zero 
expenditures are also of interest so extending the 
work in this direction would be useful. 
 
From the Bayesian perspective it would be 
interesting to base the Empirical Bayes 
confidence intervals on a gamma distribution. 
 
From a survey practitioner�s point of view, the 
complex sampling within strata may be the most 
interesting question.  The current simulations 
only looked at simple random sampling within 
strata, but cluster sampling is known to have an 
impact on interval estimation as well as point 
estimates.   
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Figure II 
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