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Abstract 

 

Post-stratification, or sample balancing, or raking, is widely 

utilized in survey research to weighting a sample data to 

Census or other known population quotas. Cross-tables of 

counts are used in Deming-Stephan iterative proportional 

fitting to find the weights for adjusting data to known 

margins. A bi-criteria objective for finding weights with 

minimum variance yields a solution with maximum 

effective sample size. This model can be expressed as a 

ridge regression, which is applied to the original data, 

without its collapsing to cross-tables. Linear and nonlinear 

parameterization models are studied. The explicit regression 

solution allows to study the weighting analytically, that 

helps to interpret and improve the sample balance results. 

 

Keywords: Sample balance, post-stratification, raking, 

weighting, generalized regression, ridge regression, 

nonlinear optimization, iteratively re-weighted least squares. 

"A false balance is abomination to LORD, but a just weight 

is his delight" - Proverbs, 11:1. 

I. Introduction 

          In the words of the originator of sample balancing, W. 

Edwards Deming: “In social and economic surveys that are 

carried out by sampling, … the sample is to be adjusted to 

certain totals that are known from other sources” (Deming, 

1964). Sample balance, also known as raking, or post-

stratification, is necessary in social and economic surveys 

because the obtained composition of the respondents' 

characteristics cannot be totally controlled to match 

adequately the known proportions in the population. Sample 

balance is often employed in panel comparisons, to ensure 

that observed effects are not due to demographic 

differences. After adjusting the data can be used in any 

statistical evaluations. 

          The method of sample balancing was introduced in 

(Deming and Stephan, 1940; Stephan, 1942), where the Chi-

squared criterion and iterative proportional fitting were 

applied to adjust the counts' contingency table to the given 

desired margins. The method has been developed in various 

approaches (Ireland and Kullback, 1968; Darroch and 

Ratcliff, 1972; Holt and Smith, 1979; Feinberg and Meyer, 

1983; Little and Wu, 1991; Conklin and Lipovetsky, 2001; 

Bosch and Wildner, 2003). The original technique has been 

further extended, particularly, in model-based regression 

and propensity scores (Rubin, 1979; Rubin and Zanutto, 

2002; Judkins et al., 2005), in calibration and generalized 

regression (GREG) estimations (Deville and Sarndal,1992; 

Sarndal et al., 1992; Deville et al., 1993; Sarndal, 1996; 

Yung and Rao, 2000; Zhang, 2000; Singh, 2003; Beaumont 

and Alavi, 2004; Andersson and Thorburn, 2005). 

          In practical applications besides adjusting to the given 

margins the main concern consists in getting the effective 

sample size close enough to the base size of data. The 

farther are the sample cross-table subtotals from the 

required margins, the higher is inflation of particular 

segments of the weighted responses, and the smaller is the 

effective base in comparison with the unweighted base. The 

effective base is a useful criterion for assessment the 

goodness of weighting. It serves to reduce the likelihood of 

an applied statistics to yield significant results only because 

of the weighting. Decreased effective base leads to wider 

confidence intervals around the estimated parameters, they 

could be incorrectly identified as being insignificant, so it 

causes a reduction of statistical power in the ability of 

statistical tests to detect true differences in the population. 

          I consider a bi-criteria objective for sample balancing 

performed simultaneously with minimization of the weights' 

variance, so with maximum of the effective base. Applying 

Chi-squared criteria to such an objective yields a ridge 

regression solution (Hoerl and Kennard, 1988; Lipovetsky, 

2006, 2007). Varying parameter of the ridge regression 

suggests a trade-off between a better fitting to margins and a 

higher effective base. Researcher can decide which level of 

adjustment and effective base satisfies the requirements of 

the problem in each particular case. For small values of the 

ridge parameter some of the weights could get negative 

values, but with the parameter increase all the weights 

become positive. It is possible to get all the positive weights 

at any stage of the multi-objective profiling via the 

nonlinear parameterization for the weights. Estimation is 

presented in iteratively re-weighted Newton-Raphson 

procedure (Becker and Le Cun, 1988; Bender, 2000; 

Bishop, 2006; Lipovetsky, 2006). Among several others the 

logistic parameterization of the weights is the most convenient 

and it permits to obtain the weights in any desired range of 

their values. 
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   II. Sample Balancing by Cross-Table Counts 

          Consider a data matrix X of N by n order with the 

elements xij presenting an i-th observation (i =1, 2,…, N – 

number of observations) by a j-th variable xj (j =1, 2,…, n – 

number of variables). Besides the design matrix X, the 

values of the desired margins are given (census, or other 

totals for population characteristics). Suppose there are kj 

bins of margins for each variable xj, so all the margins can 

be stacked into one vector y of size m:  

                       ∑
=

=
n

j

jkm
1

.                                      (1) 

Let the variable xj be measured in the kj point scale, or the 

values of xj are segmented into kj bins corresponding to the 

given margins. Each xj can be categorized by kj levels, and 

presented by a set of kj binary variables. Total number of the 

binary variables equals m (1), and the whole set of these 

variables can be incorporated into a matrix Z of N by m 

order. The columns of Z present  binary variables zp with 0-

1 values of the elements zip (p = 1, 2,…, m). The matrix Z is 

singular, because the rank of a matrix of categorized binary 

variables is not higher than m-n. 

          Classical Deming-Stephan sample balance consists in 

fitting the counts nl in the cross-table bins (indexed as l= 1, 

2, …, L) of X matrix variables by the theoretical adjusted 

counts vl using Chi-squared criterion            
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restricted by the conditions of equivalence of the sample 

adjusted totals by each variable to the given margins. 

Adding these restrictions to the objective (2) and 

minimizing such a conditional objective by the parameters vl 

yields a solution which can be presented in an explicit 

closed form – more detail are given in (Conklin and 

Lipovetsky, 2001). The weights can be estimated in the 

algorithm of iterative proportional fitting as well. Total of 

the weights equals the sample base, or the weights can be 

normalized by the relation: 
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          With obtained weights wi the effective base is 

evaluated as: 
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where the last equality holds only for the normalized 

weights (3). If the effective base is noticeably less than the 

sample size, EB<<N, it is possible to add a simple heuristic 

weights tuning that increases EB. The procedure consists in 

powering the weights 
q

ii ww =~
 (and normalizing them by 

(3)), with the parameter q diminishing from 1 with a small 

step. When q is decreasing this transformation makes the 

new weights iw~  to be distributed more evenly, closer to 1, 

which gives a lift to the effective base. However, because of 

this tuning the equalities of the fitted totals by each variable 

to the given margins alter into the approximate relations. In 

practice, a trade-off between a better fitting to margins and a 

higher effective base allows to find an appropriate solution 

satisfying the needs of the research. 

          Adding and subtracting the constant of the base size, 

the effective base for any set of weights can be represented 

as follows:  
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where the mean value of the weights is: 
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Dividing (5) by N yields a quotient EB/N of the effective to 

sample base, which is defined as one minus the ratio of the 

centered and non-centered weights' second moments. This 

quotient EB/N has a form similar to the coefficient of 

determination R
2
 well-known in regression analysis, and 

shows similar properties. Particularly, if the residual sum of 

squares in the numerator at the right-hand side (5) is close to 

zero, this R
2
 is close to one, or the effective base is reaching 

the sample base. For a set of weights satisfying (3) their 

mean (6) equals one, so the residual sum of squares in the 

numerator (5) is taken from 1=w . Minimization of this 

residual sum of squares corresponds to finding the minimum 

variance var(w) estimator for the sample weighting. 

III. Raking by Bi-Criteria Objective 

          As it was described above, a data consists of a matrix 

Z of N by m order of the binary categorized variables and a 

corresponding vector-column y of size m of the given counts 

of margins by all these categories. A vector-column w of 

unknown weights wi of the base size N is the aim of the 

estimation. Relation between the given y and theoretical ŷ  

margins is presented in a simple linear form: 

                       εε +′=+= wZyy ˆ ,                       (7) 

where wZy ′=ˆ  is a theoretical vector of margins 

estimated by the weighted binary variables, prime denotes 

transposition, and ε  is a vector of deviations between the 

given and theoretical margins. The model (7) reminds an 

ordinary linear regression – however, with the number N of 

the coefficients wi significantly bigger than the number m of 

the variables zp, and than the number m of the values by the 

dependent variable of margins y. 
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          Consider a Chi-squared criterion, similar to (2) but 

applied directly to minimizing the deviationsε  (7) by 

fitting the given margins with the weighted binary data: 
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which is a weighted least squares objective. The notation 

pŷ  is used for the elements of a theoretical vector 

wZy ′=ˆ  (7). In the denominator (8) pz~  are the total 

counts of the binary variables in the columns of matrix Z, so 

they are the elements of the vector of m-th order: 

                                NZz 1~ ′= ,                                    (9)  

where 1N denotes a uniform vector-column of size N. In 

Chi-squared criterion (8) the choice of elements in the 

denominator can be different, but the metric (9) has special 

optimal features considered farther. 

          Combined minimization for both the Chi-squared 

criterion (8) and the minimum variance of the weights (5) 

can be presented in the multi-criteria objective:            
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Here α and β are share parameters of the fitting margins and 

minimum variance objectives, respectively, and wi are the 

unknown weights. Dividing in (10) by α and using one 
quotient parameter αβ /=q , yields this objective in the 

matrix form: 

( ) ( ) ( ) ( )NN wwqwZyDwZyF 111 −′−+′−′′−= −
 (11) 

where 1N is the uniform vector as in (9), D and D
-1
 denote 

the m-th order diagonal matrix and its inversion defined via 

the total counts (9):  

        )~/1(,)~( 1 zdiagDzdiagD == −
.            (12)  

The condition for minimization yields a system of linear 

equations: 

( ) ( ) 0122/ 1 =−+′−−=′∂∂ −
NwqwZyZDwF  

(13) 

which is a matrix equation: 

     ( ) NN qyZDwqIZZD 111 +=+′ −−
,             (14) 

where IN denotes a uniform diagonal matrix of the N-th 

order. For q close to zero this system corresponds to fitting 

margins objective, and with q growing the system expresses 

the main input from the effective base with the solution of 

all weights equal one. 

          Up to the last item at the right-hand side (14), this 

system can be recognized as a ridge regression normal 

system of equations with the ridge parameter q. In contrast 

to the ridge regression with a covariance matrix of the order 

defined by the number of predictors, the system (14) 

contains the matrix ZZD ′−1
 of the N-th order defined by 

the number of observations. The rank of such a matrix 

ZZD ′−1
 can not be higher than m-n (1), and it is usually 

significantly lower than the number of the observations in 

the matrix Z. However, the regularization item qIN added to 

its diagonal guarantees that the matrix in the left-hand side 

(14) becomes non-singular and invertible.   

          To solve the system (14), a matrix analogue of the 

Sherman-Morrison formula, also known as Woodbury 

identity (Harville, 1997; Lipovetsky and Conklin, 2005a; 

Bishop, 2006) can be applied: 

( ) ( ) AqIAAA
q

I
q

qIAA mNN
′+′−=+′ −− 11 11
, (15) 

where for the matrix (14) 
2/1−= ZDA  and 

ZDA ′=′ − 2/1
. The matrix Im denotes a uniform diagonal 

matrix of the m-th order. The formula (15) presents 

inversion of the N-th order matrix via the inversion of the 

smaller m-th order matrix. Using (15) in (14) yields the 

solution of the matrix equation in the explicit form: 
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where z~  is the vector of counts (9). This formula can be 

easily used for finding weights, but it can be simplified 

farther. In the third item of the final expression (16) it is 

possible to use the transformation: 

( ) ( ) DqDZZqIZZqDZZ m

11 −− +′−=′+′ . (17) 

Substituting (17) into (16) and using (12) yields: 

( ) ( ) zqDZZZyDDqDZZZ

yZDqyZDqw N
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1111
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which reduces to the following expression: 

( ) )~()~(1
1

zyzdiagqZZZw N −+′+= −
.     (19) 

It is the explicit presentation for the weights found in 

minimization of the objective (10)-(11).  

          Due to the solution (19) the weights are distributed 

around 1, and depend on the difference of the given margins 

y and counts z~  by the categorized variables. For 

0~ =− zy  all the weights are 1=iw . For fitting only by 

the margins, without the effective variance, the parameter 

q=0, then a solution (19) exists if the matrix Z'Z is non-

singular, so the matrix Z of categorized binary variables 

should be arranged without redundant levels, to reduce its 

rank from m (1) to m-n. However, even with a small q close 

to zero, the solution (19) exists with a total Z matrix of all m 

Section on Statistics and Marketing

2315



  

margins (1), and produces results practically coinciding with 

those obtained in the regular sample balancing (2).  

          As it was mentioned in relation to the Chi-squared 

criterion (8), the metric (9) has a special property that makes 

its choice to be very valuable – the solution (19) yields the 

total weights satisfying the relation (3). It guarantees that 

the mean weight (6) equals one, 1=w , so the effective 

variance in (10) is centered around the mean weight. Indeed, 

multiplying the transposed uniform vector N1′  from the left 

by the normal system (14) yields: 

NNNNN qyZDwqwZZD 11111 11 ′+′=′+′′ −−
.   (20) 

Due to the definition (9), there is a vector-row zZN
′=′ ~1 , 

so its product by the matrix D
-1
 (12) yields the uniform 

vector-row of the m-th order: 

              mN zdiagzZD 1)~/1(~1 1 ′=′=′ −
.                     (21) 

With (21) the relation (20) can be represented as: 
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where the properties NNN =′ 11  and total wZy ′−=ε  

of the deviations (7) equals zero (known in regression 

modeling) are used. Thus, the objective (10) does not need 

conditioning by (3), and its solution (19) does not need 

additional normalizing by (3). This feature is important 

because an additional normalizing by (3) needed for any 

other than (9) metric (for instance, of the uniform weights 

1~ =pz , when the Chi-squared (8) is reducing to the regular 

un-weighted least-squares objective) diminishes the 

effective base (5). By the solution (19), the centered second 

moment of the weights is: 

( ) 212 ||)~()~(||||1|| zyzdiagqZZZw −+′=− −
,   (23) 

and variance of the weights equals this expression divided 

by number of observations. 

          The theoretical vector of margins (7) estimated by the 

weights (19) is: 

( ) )~()~(1ˆ
1

zyzdiagqZZZZZwZy N −+′′+′=′= −
. (24) 

Using transformation (17) with definitions (9) and (12) the 

expression (24) can be reduces to: 

( ) )~()~()~(ˆ
1

zyzdiagqZZzdiagqyy −+′−= −
. (25) 

The vector of residuals (7) of the estimates from the given 

margins is defined by the second item (25), so the minimum 

of Chi-squared residual in the criterion (10)-(11) is: 
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For the total objective (11), adding the Chi-squared (26) and 

second moment of the weights (23) with the factor q, yields 

the expression for the objective minimum: 
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          All the formulae (19)-(27) permit to consider 

analytically the sample balancing procedure and evaluate 

changes in a the characteristics due to the varying margins. 

For instance, differentiating weights (19) by the margins 

yields the estimate of the weights change due to a small 

change in the vector y: 

      ( ) yzdiagqZZZw ∆+′=∆ −1
)~( .               (28) 

So a unit change 1=∆ py  in a p-th component of the 

vector of margins inducts the weights change equal the 

elements of the p-th column of the transfer matrix 

( ) 1
)~(

−+′ zdiagqZZZ . Also, using matrix spectral 

decomposition (Lipovetsky and Conklin, 2005b), it is easy to 

find the derivatives of the sample balancing characteristics 

due to the change in the parameter q. For instance, 

differentiating the weights (19) by q yields:  
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2
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(29) 

          The derivatives help to estimate the rate of relaxation 

of the closeness to the given margins with a simultaneous 

lift in the effectiveness of the weights variance, produced by 

the increasing parameter q. So q is a parameter of trade-off 

between better correspondence to the given margins versus 

more efficient weights of the higher effective base. As it 

was discussed above in relation to the effective base (5)-(6), 

the quotient EB/N of the effective to sample base can serve 

as a coefficient of determination:  
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which is reaching 1 for the most effective weights' variance. 

It is convenient to introduce another coefficient of 

determination for the margins fitting in Chi-squared 

objective (8) which also is a weighted least squares 

objective:  
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where the original value of the objective
2

origχ  is taken 

using the sample counts z~ . Both coefficients 
2

EBR  and 

2

mrgR  can be profiled by the parameter q for finding an 
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acceptable level of adjustment to margins at a sufficiently 

effective base. 

 

IV. Nonlinear Parameterization for Positive Weights 

          In practice researchers often encounter with the 

sample total counts too different from the assigned census 

margins. Such a discrepancy can easily produce some 

weights with negative values. In these cases the linear ridge-

regression solution (19) requires to increase the parameter q 

high enough to reach all the weights non-negative. In the 

ridge regression it is not a problem, but at a price of losing 

the needed level 
2

mrgR  of margins fitting. To obtain positive 

weights a special parameterization for the weights can be 

used. For instance, the positive weights can be presented by 

the exponent: 

                            )exp( ii vw = ,                                  (32a) 

or the non-negative weights can be given by the quadratic 

dependence: 

                            
2)( ii vw = ,                                       (32b) 

where iv  are the unknown parameters. The logistic 

parameterization is:  
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where minw  and maxw  are the given constants of the 

minimum and maximum values of the desired weights. For 

any iv , the weights iw  always belong to the range from 

minw  to maxw . 

          Numerical minimization of the objective (10) by the 

parameters iv  of the positive weights can be efficiently 

achieved by the Newton-Raphson or another optimizing 

technique available in modern statistical packages. Consider 

the Newton-Raphson algorithm for the objective (10) which 

can be approximated as: 

             )()()( )0()0( vv
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F
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where v
(0)
 is an initial approximation for the vector v which 

consists of the unknown parameters iv . An extreme value 

of a function can be found from the condition of the first 

derivative equals zero, so taking the derivative of (33) 

yields: 
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Solution of the equation (34) for the vector v is: 
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where a matrix of the second derivatives, or Hessian, is 

denoted as H, so 
1−H  is the inverted Hessian, and the 

vector of the first derivatives is the gradient F∇ . The 

obtained expression (35) is used in the iterations for finding 

each (t+1)-st approximation for the vector 
)1( +tv  via the 

previous vector 
)(tv  at the t-th step. 

          The first derivative of (10) by each parameter kv  is: 

      

{

} ,)1(2

)(~2
1 1

1

k

k

k

m

p

kp

N

i

iippp

k

dv

dw
wq

zwzyz
v

F

−+

−−=
∂
∂

∑ ∑
= =

−

      (36) 

that corresponds to the derivative in matrix form (13) 

multiplied by the derivative of each weight by its parameter. 

The second derivative by any two parameters (r and k, 

running by the observations i=1, 2,…, N) is as follows: 
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where rkδ  is Kronecker delta. Hessian (37) in the figure 

parentheses contains an expression coinciding with that in 

figure parentheses of the first derivatives (36). The first 

derivative reaches zero at the optimum, so Hessian can be 

reduced to the first part (37) which in matrix notation is: 
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GqIZZDGH
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                         (38) 

All the notations in (38) are the same as in (7), (12)-(14), 

and G denotes the N-th order diagonal matrix of the weight 

derivatives by the parameters. Vector of the first derivatives 

(36) can be also represented in matrix notation as:  

( ))1()()2( 1

NwqwZyZDGF −−′−−=∇ −
.   (39) 

          Substituting the expressions (38)-(39) into (35) yields 

the expression for minimization the objective (10)-(11): 

( ) ( ) .1 11111

)0(

wGqyZDqIZZDG

vv

NN

−−−−− −++′+

=
 (40) 

The second item in (40) contains the expression coinciding 

with the solution of the system (14) that can be denoted as 

linear solution: 

  ( ) ( )NNlin qyZDqIZZDw 1111 ++′= −−−
.             (41) 
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In explicit form this solution is given in (19). Then the 

recurrent equation (40) for any t-th and the next steps of 

approximation can be represented as: 

        )( )(1)()1( t

lin

tt wwGvv −+= −+
,                        (42) 

where the linear solution linw  is known (41), and 
)(tw  is a 

current vector of weights defined by one of the functions 

(32). Formula (42) presents the iteratively re-weighted 

Newton-Raphson procedure for minimizing the objective 

(10) in a nonlinear parameterization (32), and it usually 

quickly converges. 

          Consider application of the process (42) for a 

parameterization (32). For the exponential function (32a), 

the inverted matrix of derivatives (38) is: 
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and for the quadratic function (32b) it is: 
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For the logistic function (32c) its diagonal matrix of the 

inverted derivatives is: 
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where the constants minw  and maxw  define the range w∆  

of the desired weights. Beginning, for instance, with the 

parameters Nvi /1)0( = , finding the initial weights (32) and 

the related 
1−G  matrix (43), and applying them in (42) it is 

easy to obtain the next approximation for the parameters, 

then nonnegative weights, and to continue until the process 

converges. 

V. Numerical example 

          A real marketing research project of 595 observations 

contains variables of gender (two values) and income (three 

values). This data is used in the cross-tabulation presented 

in Table 1. The sample row- and column- totals and their 

percents are presented too. In the last row and column of 

Table 1 the Census statistics for the demography of this 

study are given. The sample margins for gender (32% and 

68%) should be made closer to the given 40% and 60%, 

while income sample proportions (33%, 64%, and 3%) 

should be pushed to the desired shares of 48%, 43%, and 

9%, respectively. The first row of Table 2 presents results of 

the Deming-Stephan iterative proportional fitting 

(corresponds to q=0 in multi-criteria objective). The gender 

and income proportions are all adjusted (the fitted margins 

in Table 2 coincides with the given in Table 1), so the 

coefficient of determination 
2

mrgR  (31) equals one. 

However, the coefficient of determination 
2

EBR  (30) in the 

first row of Table 2 equals 0.66, or the effective base is 66% 

of the sample base, so the effective size is rather low. 

Descriptive statistics in the last columns of Table 2 show 

that obtained weights vary (around mean=1) in the wide 

range from min=0.39 to max=6.68, with the standard 

deviation std =0.71. 

Table 1. Data Cross-tabulation and Given Margins. 

Vari- 

able 

income 

low 

income 

middle 

income 

high 

row 

total 

row 

 total 

 % 

census  

margins, 

% 

gender 

male 13 172 3 188 32 40 

gender 

female 183 211 13 407 68 60 

column 

total 196 383 16 595 100 100 

column 

total % 33 64 3 100 

census 

margins, 

% 48 43 9 100  

 

          Applying the multi-objective (10)-(11) of adjusting to 

margins with gaining the optimal  effective base produces 

results shown in the second and lower rows of Table 2, with 

the parameter q running from 0.05 to 0.70. Even for small 

values of q up to 0.10 the margins are very close to those 

given in Table 1, but the increase for the effective base is 

quite significant – up to 75.02 =EBR , or 75% of the 

sample size. Weights become distributed in the narrower 

range (around mean=1), and the standard error reduces to 

std=0.57. With farther increase of q to 0.15 and above, the 

margins are fitted with still a high value of the coefficient of 

determination 
2

mrgR , although the structure of the income 

proportions becomes different from the required – the first 

share of low income befalls lower than the next one of the 

middle income share, while due to the Table 1 the first 

given income margin should be the highest one. Thus, if 

structure of the margins should correspond to the structure 

given in Table 1, then a feasible solution is defined by the 

multi-criteria objective parameter q equals 0.10, when the 

effective base comprises 75% of the sample size. 

          However, a researcher might be satisfied with the 

approximate structure of margins fitted, and prefer to get a 

higher effective base. In this case, the two coefficients of 

determination, 
2

EBR  and 
2

mrgR , can be profiled by the 
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growing parameter q for finding a point of intersection 

between the declining curve of margins adjustment 
2

mrgR  

and the rising curve 
2

EBR  of the sufficiently effective base. 

Comparison of the coefficients of determination 
2

EBR  and 

2

mrgR  by Table 2 show that these curves approximately 

intersect at the level q=0.45, where the effective base is 

about 86% of the sample base, and the weights are clustered 

closely to their mean value 1. For a high value q=0.70 the 

effective base can reach 90% of the sample base, when the 

standard error of the weights equals std=0.33, or twice less 

than its value in the regular sample balance.  

Table 2. Sample Balance with Maximum Effective Size: 

Linear Ridge Model. 

Margins Fitted 

 
 Gender 

 % 

Income 

 % 

     R
2 

 

Weights 

descriptive 

statistics 

q male femalelow mid highmrg EB min max std 

0 40 60 48 43 9 1.0 .66 .39 6.7 .71 

.05 39 61 47 44 9 1.0 .73 .33 3.9 .61 

.10 38 62 46 45 9 .99 .75 .38 3.7 .57 

.15 38 62 45 47 8 .97 .78 .42 3.6 .54 

.20 37 63 45 47 8 .96 .79 .46 3.5 .51 

.30 36 64 43 49 7 .92 .82 .51 3.2 .46 

.40 36 64 43 50 7 .88 .85 .56 3.1 .42 

.50 35 65 42 51 7 .84 .87 .60 2.9 .39 

.60 35 65 41 52 7 .81 .89 .63 2.8 .36 

.70 34 66 41 53 6 .77 .90 .66 2.7 .33 

 

          Consider now the same data with the gender margins 

taken as 70% and 30% (in place of the previous 40% and 

60%). These margins are far from the sample counts, and 

produce results shown in the upper section of Table 3, (the 

part corresponding to Linear model) which is arranged 

similarly to Table 2. As Table 3 shows, for small q the 

linear ridge solution (19) yields some weights with negative 

minimum values, but with q above 0.30 all the weights 

become positive. Note that although for q=0 the solution in 

Table 3 is given with all positive weights, it is an adjusted 

solution that doesn't permit the negative weights, even at a 

price of large standard deviation and huge maximum value 

for weights. The lower section of Table 3 presents the Logit 

parameterization (32c) of the weights with the values 

0min =w  and 2max =w , so all the weights are positive, 

around 1, and within the span from 0 to 2. Standard error in 

the logit model is smaller than in the linear model, and both 

of them reach the effective base above 70% in the vicinity 

of the profile parameter q=0.60. The results in the 

considered examples are typical for sample balance with 

maximizing effective size. 

Table 3. Sample Balance with Maximum Effective Size: 

Linear and Logit Models. 

Margins Fitted 

 

 Gender 

 % 

Income 

 % 

     R
2 

 

Weights 

descriptive 

statistics 

q malefemalelow mid highmrg EB min max std 

Lin 

0 70 30 48 43 9 1.0 .66 .10 13 1.8 

.05 67 33 46 45 9 1.0 .45 

-

.34 5.1 1.1 

.10 65 35 45 47 8 .98 .48 

-

.25 4.8 1.0 

.15 63 37 44 48 8 .97 .51 

-

.17 4.6 .97 

.20 62 38 43 49 8 .95 .54 

-

.10 4.5 .92 

.30 59 41 41 51 7 .91 .60 .02 4.2 .82 

.40 56 44 40 53 7 .86 .64 .12 3.9 .75 

.50 55 45 39 54 7 .82 .68 .20 3.7 .68 

.60 53 47 38 55 6 .78 .72 .26 3.5 .63 

.70 51 49 38 56 6 .74 .75 .32 3.3 .58 

Log 

.05 59 41 41 54 5 .85 .62 .00 1.9 .79 

.10 59 41 41 54 5 .85 .62 .00 1.9 .79 

.15 59 41 41 54 5 .86 .61 .00 1.9 .79 

.20 59 41 41 53 5 .86 .61 .00 2.0 .79 

.30 58 42 41 53 6 .86 .63 .02 2.0 .77 

.40 56 44 40 55 6 .82 .67 .12 2.0 .70 

.50 54 46 39 56 6 .78 .71 .20 2.0 .64 

.60 52 48 38 56 5 .74 .74 .27 2.0 .60 

.70 51 49 38 57 5 .71 .76 .33 2.0 .56 

V.  Summary 

          The work suggests a convenient sample balancing 

procedure with maximum effective sample size. The bi-

criteria objective yields a ridge regression model (14). A 

simple analytical solution for the weights (19) is suggested. 

Solution is obtained by original data categorized to the 

binary variables corresponding to bins of the given margins. 

So the original variables can contain missing values, or any 

other non-relevant values to the margin bins – those levels 

in the categorized variables are redundant and skipped. The 

considered technique automatically yields the weights' mean 

equals one, if in the Chi-squared objective (8), or (10) the 

normalization by the totals in columns of the categorized 

variables is used. Other normalizing schemes produce a 

different from one mean value, that requires additional 

normalization, which in its turn decreases the effective size, 

and leads to a worse margins fitting for a needed effective 

base. The suggested weighting scheme is optimal for 

finding the best margins adjustment with the best effective 

base size. With growth of the profiling parameter q in the 
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solution (19)-(29), the margins fit (31) is decreasing and the 

effective base (30) is increasing, so a trade-off between both 

criteria is utilized. To obtain always non-negative weights 

the non-linear parameterizations (32) are considered in 

Newton-Raphson iteratively re-weighted procedure (33)-

(43). The logistic function (32c) has the best features, 

particularly, permitting to construct the weights within a 

desired range of the values. The considered approach can 

serve numerous practical applications as well as theoretical 

consideration of the sample balance problems. 
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