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1. Introduction 

Many surveys include questions that invite 
respondents to “choose all that apply” or “pick any” from 
a series of items.  A recent Yahoo! internet search on the 
phrases “survey” and “choose all that apply” yielded over 
2000 hits, many from online surveys. Issues of statistical 
validity of voluntary-response surveys notwithstanding, 
this points to the fact that these questions are ubiquitous 
in modern survey methodology. Furthermore, the United 
States Office of Management and Budget has mandated 
that federal surveys ask questions about race and 
ethnicity in a “choose all that apply” format (Federal 
Register, 1997, p. 58781), allowing members of the 
increasingly multiracial population to acknowledge their 
complex ethnicity. Given the frequency with which these 
questions occur, it is vital to have good methods for 
statistical analysis of the data they provide.  

Variables that summarize survey data arising from 
“choose all that apply” questions are referred to as 
multiple-response categorical variables (MRCVs). They 
present a challenge because they cannot be handled in the 
same manner as the usual single-response categorical 
variables (SRCVs), although this has only recently been 
recognized in the literature (Umesh, 1995; Loughin and 
Scherer, 1998). When two or more categorical variables 
are measured, questions naturally arise regarding the 
associations among them. The difficulty with the analysis 
of associations involving MRCVs comes from the fact 
that individual subjects may respond positively to more 
than one item from a list, and these responses are likely to 
be correlated. The result is that tests for independence 
between categorical variables involving MRCVs cannot 
be performed in the “usual” ways. For example, the 
Pearson test statistic for independence is not invariant to 
the arbitrary choice of whether the positive or the 
negative responses are tabulated (Agresti and Liu, 1999; 
Bilder, Loughin, and Nettleton, 2000; Bilder and 
Loughin, 2001). Versions of the Pearson statistic that are 
modified to be invariant to this choice of coding have 
distributions that are not, in general, chi-square (Agresti 
and Liu, 1999; Bilder et al. 2000, Bilder and Loughin, 
2004). 

Ignoring these problems and simply using the usual 
Pearson statistic and its associated chi-square distribution 
provides a test with very poor properties (Loughin and 

Scherer, 1998). Only recently has work been done to 
address these problems. For tests of independence 
between one SRCV and one MRCV, Agresti and Liu 
(1999), Bilder et al. (2000), Decady and Thomas (2000), 
and Bilder and Loughin (2001) describe various 
adjustments to the Pearson statistic and methods to 
approximate the resulting sampling distributions. Agresti 
and Liu (1999) point out that MRCVs can be expressed 
as binary vectors wherein each element of the vector 
indicates whether the corresponding item is chosen as one 
of the responses. Decady and Thomas (2000) cleverly 
note the parallel between an application of an adjusted 
Pearson statistic to MRCVs and the use of the Pearson 
statistic in non-multinomial sampling structures as 
studied by Rao and Scott (1981), although the form of the 
Pearson statistic used by Decady and Thomas is not 
invariant to the 0/1 coding of the binary vectors (a 
different value of the statistic results if the elements 
indicate non-selection of that item). Thomas and Decady 
(2004) and Bilder and Loughin (2004) discuss tests of 
independence between two MRCVs.   

Beyond testing for association, there have been a few 
efforts to model associations involving MRCVs. Agresti 
and Liu (1999, 2001) propose marginal logit models to 
describe the association between a single MRCV and a 
single SRCV. They suggest, but do not explore, 
extensions to multiple MRCVs. Bilder and Loughin 
(2003, 2007) examine these suggestions and propose their 
own modeling procedure. They conclude that a 
generalized loglinear model fit using a marginal 
estimation procedure is the preferred model due to 
computational ease, flexibility, and overall performance.  
Inference using this model makes use of work by Rao and 
Scott (1984) and Haber (1985). In particular, model 
fitting uses a “pseudo” maximum likelihood approach 
based upon an incorrect assumption of a multinomial 
distribution for the observed marginal counts, and then 
adjustments are applied to the sampling distributions of 
the various estimators and test statistics. 

All previous work on MRCVs has been conducted 
under the assumption of simple random sampling with 
replacement, so that measurements on sampled subjects 
can be viewed as a set of independent, identically-
distributed random variables from some infinite 
population. No methods are currently available for the 
common situation of testing and modeling association 
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2. Background  among MRCVs based on data arising from complex 
survey sampling involving, for example, probability 
proportional to size, stratification, and/or clustering. The 
present research combines the results of Rao and Scott 
(1984) and Bilder and Loughin (2007) to extend existing 
modeling and analysis techniques in order to provide 
valid analysis of data from complex survey designs. 
Beyond the measured responses, the only additional 
information that the proposed methods require is a set of 
survey weights that permit unbiased estimation of 
population totals, and a method of calculating the 
variance of these estimates. General tests for association, 
like those developed by Loughin and Scherer (1998), 
Bilder et al. (2000), Thomas and Decady (2004), and 
Bilder and Loughin (2004), are obtained as goodness-of-
fit tests from the proposed models. 

2.1 General notation 

Let U denote a population of N units, and let s be a 
sample of n units selected from U according to some 
probability sampling plan with known first-order 
inclusion probabilities. Let wu, u = 1, …, N, represent 
survey weights. These may be simply the inverse of the 
first-order inclusion probabilities, or they may be more 
complicated to account for nonresponse, post-
stratification, and so forth. Assume that these weights are 
constructed to lead to unbiased estimates of population 
totals.     

To simplify the exposition, consider the case of two 
MRCVs, Y = (Y1, …, YI) and Z = (Z1, …, ZJ), where Yi is 
the binary response to item i of Y and Zj is the binary 
response to item j of Z. Let the corresponding observed 
values in the population be yu = (yu1, …, yuI) and zu = (zu1, 
…, zuJ ) for u = 1, …, N. Extensions to more than two 
MRCVs are discussed in Section 

The National Health and Nutrition Examination 
Survey (NHANES) provides an excellent opportunity to 
apply the proposed methods. This survey is a large, 
nationwide study of the health and diet of people in the 
United States and is conducted periodically using a 

5. Consider 
subpopulations of U corresponding to different (y, z) 
combinations with U(y, z) = {u: (yu, zu) = (y, z)}. The 
population total count for combination (y, z) is N(y, z) = 

multistage, complex survey sampling design. The 1999-
2000 survey contains numerous questions that can be 
treated as “choose all that apply” questions. The focus 
here will be on questions asking the respondent about 

( )( )u uδ∈ ∈∑ ,y,zU U  where δ(⋅) is an indicator function.  
The sample-weighted estimate of the population total 
count for combination (y, z) is ( , )N y z�lifetime tobacco use (>100 cigarettes, >20 pipes, >20 

cigars, >20 snuff, and >20 chewing tobacco) and types of 
respiratory problems experienced (cough on most days, 
bring up phlegm on most days, experienced wheezing in 
chest, dry cough at night). The exact survey questions and 
data are available on the NHANES website at 
www.cdc.gov/nchs/about/major/nhanes/NHANES99_00.
htm. 

 = 
( )( )u s uw uδ∈ ∈∑ .y,zU  These counts can be represented 

as 2I+J×1 vectors, N and  Without loss of generality, 
assume that the elements of each vector are arranged in 
lexicographic order according to the binary numerical 
value of (y, z). Thus, element k corresponds to the 
combination (y, z) that is the binary equivalent of the 
decimal value k – 1. 

.N�

Table 1 displays survey-design adjusted proportions 
for the number of individuals who responded positively 
to each item. Note that individual survey respondents 
may be represented in more than one table cell because 
they could use more than one type of tobacco and/or have 
more than one type of respiratory problem so that 
common Pearson chi-square tests for independence or 
loglinear models accounting for the survey design can not 
be used. The purpose of this paper is to show how one 
can simultaneously model and estimate the association 
structure between MRCVs in this setting.   

Next, consider the population marginal count for (yi = 
a, zj = b), where a, b ∈ {0, 1}, Mab(ij) = 

( ,u ui ujy a z b),δ∈ = =∑ U  which is estimated by 
( ) ( ,u sab ij u ui uj ).M w y a z bδ∈= =∑� =

N�

 The corresponding 
population and estimated proportions are Pab(ij) = Mab(ij)/N 
and ( ) ( )  respectively, where .u s u  / ,ab ij ab ijP M=� � N w∈= ∑�
Table 2 shows the estimated proportions for the 
respiratory symptoms and tobacco use data from 
NHANES. Note that Mab(ij) = ( )ab ij  and  = 

( )ab ij  for a suitably-chosen 1×2I+J row vector ( )ab ij

( )ab ijM�′b N
′b N� ′b . 

The elements of ( )ab ij  are δ(yi = a, zj = b) = 0 or 1 with 
order corresponding to the 2I+J ordered (y, z) values.  
Thus, we have the representations M = BN and 

 where B is the 4IJ×2I+J matrix 

This paper is organized as follows. Notation and 
preliminary details are given in Section 

b
2, followed by a 

detailed description of the model and associated inference 
procedures. The association between respiratory 
symptoms and tobacco use from the NHANES data is 
analyzed in Section 

,=M BN� � B = 
( )00(11) 01(11) 11( ), , , .IJ

′b b b…    
3. Section 4 presents simulation 

results that assess the performance of the proposed 
inference procedures. The general applicability of these 
methods to other settings are discussed in Section 

Analysis of categorical data traditionally focuses on 
estimating and testing “association” between two or more 
variables. In particular, associations among binary 
variables are typically defined in terms of odds ratios. 
Thus, in the present context, it is natural to represent 

5. 
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association between two MRCVs using pairwise odds 
ratios between different items of the two variables. This 
results in IJ odds ratios, θij = M00(ij)M11(ij)/M01(ij)M10(ij), 
which are easily estimated empirically from Table 2. 
Questions that immediately arise relate to the presence of 
structure among these pairwise odds ratios. For example, 
one may wish to find out whether odds ratios relating 
tobacco use to a particular respiratory problem are similar 
across all types of tobacco use. Similarly, it may be of 
interest to see whether using a certain type of tobacco is 
associated more strongly with some respiratory problems 
than with others. Therefore, the modeling procedures 
used in this paper focus on assessing structure among 
odds ratios between different items of MRCVs. Other 
definitions of association between MRCVs exist and are 
discussed in Section 5. 

2.2 The marginal generalized loglinear model 

The estimated marginal totals,  form an “item-
response table” with structure analogous to 

,M�
Table 2 where 

2×2 sub-tables summarize counts for pairwise 
combinations of items. A loglinear model for M relates 
the log-odds ratios to parameters that can provide a 
parsimonious summary of the association structure 
between the two MRCVs. The base structure of this 
model is the same as the loglinear model of independence 
in a two-way contingency table.  The model is augmented 
to provide parameters for all IJ 2×2 sub-tables 
simultaneously: 

( ) ( ) ( )log( ) ,Y Z
ab ij ij a ij b ijM γ η η= + +   

for i = 1, …, I, j = 1, …, J, a = 0, 1, and b = 0, 1. The γij 
are unknown parameters that control the total counts in 
each sub-table, and ( )  and ( )

Y
a ijη Z

b ijη  are unknown 
parameters that control the row and column marginal 
totals, respectively, in sub-table (i,j), i = 1, …, I and  j = 
1, …, J. As this model contains only parameters for 
marginal counts in each sub-table, it assumes 
independence between each Y-item and each Z-item (all 
log-odds ratios between items of Y and Z are zero). This 
structure is referred to by Agresti and Liu (1999, 2001) as 
“simultaneous pairwise marginal independence” (SPMI). 
Additional parameters can be added to this model to 
allow for associations between items of Y and Z.   

There are IJ odds ratios to be modeled, and these are 
laid out in a factorial arrangement. Bilder and Loughin 
(2007) propose adding association parameters in an 
ANOVA-like fashion – a constant, main effects for each 
factor, and interactions between factors – that relate the 
odds ratios to the items of the MRCVs in a structured 
way. For example, adding a λab term that is constant 
across all i and j results in a “homogeneous association” 
model with the same odds ratio for each sub-table. 
Additional terms can be added that allow the log-odds 

ratios to vary due to Y and/or Z main effects. Section 3 
provides examples where these types of model 
formulations are used. Alternative parameterizations for 
the association structure can be considered as needed for 
the application.   

Regardless of the parameterization, the generalized 
loglinear model can be written as log( ) =M Xβ  where X 
= 00(11) 01(11) 11( )( , , , )IJ

′′ ′ ′x x x…  is a suitably-chosen 4IJ×r 
design matrix, β  is a r×1 vector of parameters, and 
log(M) is the vector whose elements are 

( ) ( )log( ) .ab ij ab ijM = x β  Similar to Haber (1985) and Bilder 
and Loughin (2007), the model is fit directly to the 
estimated population marginal totals,  as if they were 
actually multinomial counts, and adjustments are made to 
inference procedures to account for the failure of this 
assumption due to both the sampling design and the 
correlation of responses to different items by the same 
respondents. The estimating equations are 

,M�

ˆ .′ ′=X M X M�  
The model-predicted cell counts in the item-response 
table are denoted by ( ) ( )

ˆˆ exp( )ab ij ab ijM = x β β̂ where  is 
the estimated parameter vector. The model-fitting 
procedure is generally robust against sparse data among 
the (y, z) response combination vectors. This is important, 
as sparseness is a problem that plagues other approaches 
to modeling MRCVs (see Bilder et al., 2000 and Bilder 
and Loughin, 2007). 

2.3 Model-comparison statistics 

Let  and  be the model-predicted 
population totals under some null and alternative 
hypothesis models, respectively, and assume the null 
hypothesis model is nested within the alternative model. 
Similarly, let  and  be the model-based 
estimated population probabilities. A Pearson statistic to 
compare the two models is   

(0)
( )

ˆ
ab ijM (1)

( )
ˆ

ab ijM

(0)
( )âb ijP (1)

( )âb ijP

( )

( )

2(1) (0)
( ) ( )2

(0), , ,
( )

2(1) (0)
( ) ( )

(0), , ,
( )

ˆ ˆ

ˆ

ˆ ˆ
.ˆ

ab ij ab ij

i j a b
ab ij

ab ij ab ij

i j a b
ab ij

P P
X n

P

M Mn
N M

−
= ∑

−
= ∑�

 

Because the item-response table counts do not have a 
multinomial distribution and data arises under complex 
survey sampling, X2 does not have an asymptotic chi-
square distribution. Instead, Appendix A shows that the 
asymptotic distribution is a linear combination of 
independent 2

1χ  random variables.   
For analyzing associations between SRCVs from 

complex sampling designs, Rao and Scott (1984) propose 
first- and second-order adjustments to a statistic like X2 
that allow approximate inference to be based on a single 
chi-square distribution. The first-order adjustment 
matches the mean of the test statistic to the mean of the 
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reference distribution. Applying this adjustment to X2 
here results in a test statistic of the form 

A variety of models are fit providing different 
descriptions of the association structure among items 
between the two MRCVs. 2 2

11 ˆ ,H
hRS h ˆ ,hγX HX γ=  where = ∑  for h = 1, …, H, are the 

coefficients in the linear combination for the asymptotic 
distribution of X2. This statistic is judged against a 

Table 3 summarizes the 
goodness-of-fit statistics comparing these models to a 
saturated model. Clearly, independence does not hold in 
these sub-tables. Simply adding λab to the SPMI model 
allows for homogenous association across sub-tables and 
results in a model that fits the data reasonably well. 
Adding main effects for tobacco use and/or respiratory 
symptoms result in only slight improvements relative to 
the homogeneous association model, although the model 
that includes both main effects clearly fits well relative to 
a saturated model.    

2
Hχ  

distribution. The second-order adjustment matches both 
the means and the variances of the test statistic and the 
reference distribution. This leads here to a test statistic 

2 2
1

2ˆ ˆ( ) ,H H
h

2
νχ12 hRS h hX Xγ γ=  which is compared to a == ∑ ∑  

distribution with ν = 2 2ˆ ˆ( ) .H H
1 1h hh hγ γ= =

Also for SRCVs from complex sampling designs, 
Thomas, Singh, and Roberts (1996) show that an F-
distribution approximation to a further modified version 
of X2 generally holds the correct size of the test better. 

∑ ∑    

Standardized Pearson residuals for the homogenous 
association and tobacco and respiratory main effects 
models are given in 

Following Rao and Thomas (2003) and incorporating this 
into the MRCV setting, the adjusted statistic is F = Table 4

2 1
11 ˆ( H

h )RS hX H γ− ∑ = . The F statistic can be approximated 
by an ,H HF ν  random variable for a first-order adjustment 
where ν is the degrees of freedom resulting from the 
estimation of  (for example, ν = 4IJ – 1 under 
probability-proportional-to-size sampling). For a second-
order adjustment, F can be approximated by an * *,H H

( )Cov M�

F
ν

 
random variable where ( )* ˆ1 2H H a= +  and 

. Note that the absolute value 
of the standardized Pearson residuals is the same within 
each cell of a 2×2 sub-table. As in the analysis of 
ordinary loglinear models, these residuals have 
approximate standard normal distributions when the fitted 
model is correct. The homogenous association model 
does have a few values a little larger than expected, but 
the tobacco and respiratory main effects model does not. 
For this reason, the tobacco and respiratory main effects 
model is chosen for further investigation of the data.   

2 2 2
1 1ˆ ˆˆ ( )H H

h hh ha H γ γ= =⎡ ⎤= −∑ ∑⎣ ⎦ 1.  
Measures of deviations from a model can be found 

through standardized Pearson residuals. Using the 
corresponding diagonal element of the asymptotic 
covariance matrix for the residuals in Appendix A, the 
standardized Pearson residual is 

 ( ) ( ) ( ) ( )
ˆ( ) (ab ij ab ij ab ij ab ijM M AsVar M M

∧

−� � ˆ ) .−

Restricting attention to ANOVA-type models is 
convenient, but by no means necessary. For example, 
notice that there is a stronger association between 
cigarette use and the first two respiratory problems than 
between any other combination of tobacco use and 
respiratory problems. When one parameter is added to the 
homogeneous association model indicating whether or 
not a count is from one of these two sub-tables, 

   

Once a model has been found that fits adequately, model-
based odds ratios can be used to interpret the association 
between items of different MRCVs. Specifically, a 
model-based estimated odds ratio for the (i, j) sub-table is 

2
2RSX  

results in a goodness-of-fit p-value of 0.6150. The largest 
standardized Pearson residual is 1.98 in absolute value. 
Because this model is not nested within the tobacco and 
respiratory main effects model, a hypothesis test is not 
easily performed to compare them. Of course the usual 
caveats apply for testing hypotheses that are suggested by 
the data, but the point is that flexibility exists within these 
models to describe a wide variety of potential association 
structures.  

11( ) 00( ) 01( ) 10( )
ˆ ˆ ˆ ˆ ˆ .ij ij ij ij ijM M M Mθ =  Confidence intervals for 

the true odds ratio can also be found from the model 
using asymptotic normality for the estimator and the 
corresponding standard error for ˆlog( )ijθ  as derived in 
Appendix A.    

3. Application to the NHANES data 

Returning to the tobacco and respiratory main effects 
model, 

The target population for the lifetime tobacco use 
section of the NHANES was United States residents age 
20 and older. In addition to survey weights that are 
available for each individual in the NHANES, fifty-two 
jackknife replicates are provided to aid in the estimation 
of variances and covariances. For instance, the estimated 
covariance matrix for  is 

Table 4 provides the model-estimated odds ratios 
and corresponding 95% confidence intervals. Also, the 
table gives the empirical odds ratios, ,emp ijθ =�  

11( ) 00( ) 01( ) 10( ) ,ij ij ij ijM M M M� � � �  and the corresponding 95% 
confidence intervals using the asymptotic normality of 
the estimator (see Appendix N� A for derivation). All odds-
ratio confidence intervals are above one indicating a 
positive association between each type of tobacco use and 
the presence of each respiratory problem. Overall, the 
strongest estimated association appears to be with 
cigarette use and the respiratory problems. This 

( )( )
2 52

( ) ( )2
1

(52 1)
52 =

− ′= −∑V N N NA A
A

� � � � − N�  

where ( )  is a vector of population total estimates that 
excludes the Ath replicate. 

N A
�
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information may be useful then for public health purposes 
and treatment programs.        

4. Simulation study 

The actual NHANES sampling design is quite 
complicated, so it would be extremely difficult to 
duplicate exactly in a simulation study. Instead, a simpler 
sampling design – specifically, unequal probability 
sampling – is used here for a simulation study in order to 
evaluate the performance of the proposed model 
comparison statistics and odds ratio inference procedures 
in a controlled setting. 

Motivated by Rai, Srivastava, and Gupta (2001), the 
general approach to the simulations is as follows. 
Simulation settings are first chosen and each is used to 
create a population with certain known characteristics. 
Specifically, a vector of multinomial joint probabilities is 
constructed corresponding to all 2I+J possible binary 
response vectors, (y, z). These probabilities are chosen to 
reflect various marginal dependence structures between 
items of different MRCVs and within items of each 
MRCV. Past research involving MRCVs under simple 
random sampling have indicated that the level of 
dependence within the MRCVs can affect the 
performance of model-comparison tests (see, e.g., Bilder 
et al., 2000). Two different marginal dependence 
structures are examined in the simulation study, 
representing both high and low dependence between 
items within each MRCV. These marginal specifications 
are translated into the multinomial joint probabilities 
using the algorithm of Gange (1995). The population is 
then formed by simply multiplying the multinomial 
probabilities by N = 100,000 and rounding to the nearest 
integer to form counts for the 2I+J possible responses. Due 
to the rounding, the actual population size may be slightly 
smaller or larger than 100,000.   

Next, unequal probability sampling without 
replacement is applied to each population for a fixed 
sample size and using the Hanurav-Vijayan algorithm 
(Fox (1989), Golmant (1990), and Watts (1991)). Sample 
sizes range from 50 to 500, representing small to 
moderately sized surveys. Three different sets of 
inclusion probabilities were created for each population, 
representing 1) equal probabilities (simple random 
sampling), 2) moderate differences in probabilities, and 
3) large differences in probabilities. The moderate 
differences are created by randomly assigning population 
units into one of five equally sized groups. From there, 
each unit within a group is assigned the same inclusion 
probability. These inclusion probabilities are chosen to be 
proportional to 1, 1.5, 2, 2.5, and 3 leading to the largest 
inclusion probability being three times the smallest. The 
large differences are created by assigning the inclusion 

probability for each unit to be proportional to a 
Uniform(0,1) simulated value.    

For each set of marginal dependence structures and (I, 
J), one population is created and 500 samples of the same 
size are taken from it. Simulated data sets with a ( )ab ij  
= 0 are excluded in order to evaluate the procedures only 
when all model parameters are estimated for each data 
set. This occurred only a few times for the smaller sample 
size simulations and excluded at most 19 out of 500 data 
sets. For each simulated data set used, specified models 
are fit and model comparison statistics are calculated. A 
jackknife estimate of V, 

M�

( )( )
2

( ) ( )2
1( 1)

nn
n =

′= −∑
−

V N N NA A
A

� � � � − N�  

where ( )  are estimated population totals for a 
jackknife resample that excludes the th observation, is 
found for each data set to estimate the covariance matrix 
of  This matrix is used in calculations needed for the 
distributional approximations with model comparison 
statistics and odds ratios (see Appendix 

N A
�

.N�

A). A 
significance level of 0.05 is used throughout for inference 
procedures. The approximate 95% expected range for the 
estimated size of tests is 0.05 ± 1.96[0.05(1-0.05)//500]1/2 
= (0.031, 0.069).   

Table 5 summarizes the estimated size of tests when 
the population satisfies the important special case of 
SPMI and two-way interactions between items within the 
same MRCV are controlled at the levels specified in the 
table. The model under SPMI is fit to the simulated data 
sets and the corresponding goodness-of-fit statistic is 
found. As seen from the table, the first-order adjusted 
statistics reject too often when strong pairwise association 
exists between items within an MRCV. The second-order 
adjusted statistics generally hold the correct size, but can 
be a little conservative at times, especially for F. All of 
these results hold over the different sampling plans.     

Additional simulations were also performed and led to 
similar results. For example, model-comparison tests 
were examined for populations created under 
homogenous association (all sub-table odds ratios are 
equal) and Y-main effects (heterogeneity of sub-table 
odds ratios across levels of Y). The patterns of rejection 
rates for the various tests are similar to those observed 
here under SPMI. Also, data were simulated so that a 
three-way interaction could be imposed among the items 
within Z. Again, very similar results are found in this 
setting.     

When SPMI is not satisfied in the population, it is of 
interest to examine how well the models estimate odds 
ratios between items of different MRCVs. For two types 
of deviations from SPMI, Table 6 provides the bias and 
mean square error for the point estimates and the 
coverage and mean length for 95% confidence intervals. 
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These summary measures are averaged over sub-tables 
with equal θij values to facilitate direct comparisons 
between empirical-based and model-based measures. 
Overall, the model-based procedure’s mean square errors 
for estimating odds ratios are uniformly smaller than 
those from the empirical odds ratio and its confidence 
interval mean lengths are up to 50% shorter under the 
observed conditions. The biases are similar and coverage 
levels are close to the nominal level for both procedures. 
These results hold over the different sampling plans, but 
the mean square error and confidence interval mean 
length increase as the variability among the inclusion 
probabilities increases. Additional simulations performed 
under other settings showed similar results.  

5. Discussion 

The simulations show that there is a distinct 
advantage to modeling associations in MRCVs rather 
than simply analyzing associations through a series of 
isolated 2×2 contingency tables. Tests for interesting 
structures are available with the models, and the 
variability of the estimates is reduced due to the 
simultaneous estimation.    

It is important to note that the applicability of these 
methods reaches beyond the scope of questions asked 
directly as “choose all that apply” or “pick any” from a 
set of item responses. Because an MRCV is merely a 
special kind of correlated binary data vector, the 
statistical analysis methods that have been developed in 
this paper can be applied much more broadly to certain 
marginal summaries of any sequence of binary random 
variables. In particular, series of “yes/no” questions from 
surveys that cover closely related topics, but are not 
necessarily posed as “choose all that apply”, can be 
combined into a binary vector to form a MRCV and 
modeled along with other such vectors. In fact, both 
questions of the example analyzed in Section 3 were 
presented in this format. Additional examples of surveys 
containing questions of this form include other NHANES 
questionnaires, the Harvard School of Public Health 
College Alcohol Study, the U.S. Census Bureau and 
Bureau of Labor Statistics’ Current Population Survey, 
and the National Center for Health Statistics’ National 
Survey of Family Growth.   

The models discussed here also may be used when 
there are more than two MRCVs present. Bilder and 
Loughin (2007) show how these models are used in the 
simple random sampling case. The main idea is to 
construct sub-tables for each combination of items from 
different MRCVs. For example, to model three MRCVs, 
there will be IJK different 2×2×2 sub-tables 
summarizing counts within the item-response table, 
where K is the number of items for a third MRCV, say W. 
The base model representing complete marginal 

independence starts with parameters for the overall sub-
table count and each one-dimensional margin of every 
2×2×2 sub-table. Additional parameters are added as 
needed to specify structures for the three forms of two-
way association (WY, WZ, and WZ) and the three-way 
association. Asymptotic distributions for model 
comparison statistics, standardized Pearson residuals, and 
other statistics can be derived in a similar manner as 
given in Appendix A of this paper. Of course, as the 
number of MRCVs increase, the item-response table and 
corresponding models become more complicated. When 
there is only one MRCV and one SRCV, models similar 
to those in Agresti and Liu (1999) can be constructed as 
well. The item-response table in this case would consist 
of J different I×2 sub-tables.     

The models in this paper focus on estimating and 
interpreting certain marginal associations among 
variables. Other forms of association could be considered 
instead. For example, Berry and Mielke (2003) discuss a 
permutation approach to testing for joint independence 
between multinomial vectors y and z in the case of simple 
random sampling with replacement. Testing for joint 
independence reduces to testing for independence in the 
2I×2J table of y×z responses, which results in testing for 
a much stronger form of independence than SPMI. The 
2I×2J table is likely to be very sparse if I and J are not 
both very small, so that parametric modeling methods are 
likely to be difficult to adopt. Also, extracting interesting 
and interpretable patterns of joint association is 
considerably more difficulty because summary measures 
of association in large two-way contingency tables are 
not nearly as well understood or as easily interpreted as 
the odds ratios used here to represent the marginal 
associations.        

When estimating parameters from ordinary loglinear 
models for SRCV data under complex survey sampling, 
Clogg and Eliason (1987) and Magidson (1987) 
recommend fitting a conditional rate model to the 
observed counts (not adjusted for the survey design) 
while using an average survey weight for each table cell 
as an offset. Hendrickx (2002) examines this model 
formulation along with those from Rao and Scott (1984) 
and shows for a number of examples that the conditional 
rate model produces smaller standard errors for parameter 
estimates. While smaller standard errors are desirable, 
they are a few problems with averaging survey weights 
over individual sampling units and treating them as 
constants. First, Patterson, Dayton, and Graubard (2002) 
choose not to use a conditional rate approach in a latent 
class analysis model due to its inability to account for 
clustering in a survey design. Second, the standard errors 
can be underestimated if the variability in the survey 
weights is not taken into account. For the MRCV 
problem here, a conditional rate model formulation of the 

 

Section on Survey Research Methods

2843



Clogg, C. C., and Eliason, S. R. (1987). Some common 
problems in log-linear analysis. Sociological Methods 
& Research 16, 8–44. 

model was investigated in the simulations. Consistently, 
the model comparison statistics (with first and second-
order adjustments to account for the MRCVs) had 
inflated type I error rates for sampling with moderate and 
large differences in probabilities. Confidence intervals for 
odds ratios had inadequate coverage. These problems 
were more pronounced as the variability in the inclusion 
probabilities increased. Due to these problems, we do not 
recommend the conditional rate model for modeling 
MRCVs.   
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The general approach to deriving asymptotic 
distributions for model parameter estimates and 
associated quantities is similar to those used in Agresti 
(2002, Chapter 14) and Rao and Scott (1984). Let V = 

 and assume that some consistent estimate,  
can be obtained. For example, Sections 

 

( ),Cov N� ,V�
( , )N ′′e GBVB G∼� 0  where G =  Thus, 3 and 4 show how 

a jackknife estimator can be found. The asymptotic 
distribution of the model parameter estimator can be 
derived from the fact that 0
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The Pearson statistic can be used to compare models, 

M0: log(M(βR)) = XRβR, the null or reduced model, 
against model M1: 
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The asymptotic distribution of the empirical log-odds 
ratio can be represented by  

( ) ( )( ) ( ),log log ,emp ij ij ij ijNθ θ ′ ′− g BVB g� ∼� 0  

where , 11( ) 00( ) 01( ) 10( )log ( )emp ij ij ij ij ijM M M Mθ =�  and gij = 
  ,

Standardized Pearson residuals for the cells of the 
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Under Ho: M0 holds, we can determine that the 
asymptotic distribution of X2 is the same as that of 

2
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H
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In all cases, variances are estimated by replacing M and V 
with their respective estimates. The estimated eigenvalues 
are denoted by ˆhγ  for h = 1, …, H.   
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Table 1.  Survey-design adjusted proportions for the NHANES data.   

  Respiratory problems during past year 

  

Coughing most 
days during a 3 
month period 

Bring up phlegm most 
days during a 3 month 

period 
Wheezing or 

whistling in chest 
Dry cough 

at night 
Cigarettes >= 100 times 0.0517 0.0523 0.0962 0.0248 
Pipe >= 20 times  0.0127 0.0134 0.0204 0.0059 
Cigars >= 20 times 0.0168 0.0174 0.0288 0.0092 
Snuff >= 20 times 0.0055 0.0061 0.0129 0.0039 

Li
fe

tim
e 

to
ba

cc
o 

us
e 

Chewing tobacco >= 20 times 0.0064 0.0095 0.0137 0.0036 
 

Table 2.  Item-response table providing survey-design adjusted proportions for the NHANES data.   

   Respiratory problems during past year 

   

Coughing most 
days during a 3 
month period 

Bring up phlegm most 
days during a 3 month 

period 
Wheezing or 

whistling in chest  Dry cough at night 
   0 1 0 1 0 1  0 1 

0 0.4860 0.0196 0.4882 0.0175 0.4556 0.0500  0.4931 0.0125 Cigarettes  
>= 100 times 1 0.4427 0.0517 0.4420 0.0523 0.3982 0.0962  0.4695 0.0248 
           

0 0.8491 0.0586 0.8513 0.0565 0.7819 0.1258  0.8763 0.0315 Pipe  
>= 20 times  1 0.0796 0.0127 0.0789 0.0134 0.0719 0.0204  0.0864 0.0059 
           

0 0.8009 0.0545 0.8029 0.0524 0.7379 0.1174  0.8272 0.0282 Cigars  
>= 20 times 1 0.1278 0.0168 0.1273 0.0174 0.1159 0.0288  0.1355 0.0092 
           

0 0.8806 0.0658 0.8827 0.0637 0.8131 0.1333  0.9130 0.0334 Snuff  
>= 20 times 1 0.0481 0.0055 0.0475 0.0061 0.0407 0.0129  0.0497 0.0039 
           

0 0.8775 0.0650 0.8822 0.0603 0.8100 0.1325  0.9087 0.0338 

Li
fe

tim
e 

to
ba

cc
o 

us
e 

Chewing tobacco 
>= 20 times 1 0.0511 0.0064 0.0480 0.0095 0.0438 0.0137  0.0539 0.0036 

 
Table 3.  Model comparison p-values for various models.   
  P-values 

Ho model Ha model  2
1RSX  2

2RSX   F 1st F 2nd 
SPMI Saturated <0.0001 <0.0001  <0.0001 <0.0001 
Homogenous association Saturated 0.0782 0.1575  0.0801 0.1600 
Tobacco main effect Saturated 0.1407 0.2016  0.1429 0.2041 
Respiratory main effect Saturated 0.1614 0.2322  0.1636 0.2346 
Tobacco & Respiratory main effects Saturated 0.5278 0.4886  0.5283 0.4895 
             
SPMI Homogenous association <0.0001 <0.0001  <0.0001 <0.0001 
Homogenous association Tobacco main effect 0.1666 0.1877  0.1695 0.1908 
Homogenous association Respiratory main effect 0.1209 0.1327  0.1240 0.1360 
Homogenous association Tobacco & Respiratory main effects 0.0869 0.1195  0.0893 0.1223 
Tobacco main effect Tobacco & Respiratory main effects 0.1104 0.1228  0.1134 0.1260 
Respiratory main effect Tobacco & Respiratory main effects 0.1378 0.1619  0.1407 0.1650 
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Table 4.  Fit and diagnostic measures for the homogenous association (HA) and tobacco and respiratory main effects 
(TR) models. For each sub-table, ,ĤA ijθ  = 2.11 and the 95% confidence interval for θij is (1.77, 2.50) for the HA model. 
Highlighted cells correspond to |rab(ij)| > 1.96.      
 
    Respiratory problems during past year 

Coughing most days 
during a 3 month 

period 

Bring up phlegm 
most days during a 3 

month period 
Wheezing or 

whistling in chest 
Dry cough at 

night       
,emp ijθ�  = 2.89 3.31 2.20 2.08  

95% C.I.emp = (2.02, 4.13) (2.30, 4.74) (1.78, 2.73) (1.33, 3.23)  
|rab(ij),HA| = 2.14 3.17 0.42 0.07 Cigarettes  

>= 100 times 
 

|rab(ij),TR| = 1.08 0.54 0.39 0.98  
,T̂R ijθ  = 2.64 3.11 2.27 2.41  

95% C.I.TR = (2.00, 3.48) (2.46, 3.94) (1.79, 2.87) (1.57, 3.70)   
,emp ijθ�  = 2.32 2.56 1.76 1.89  

95% C.I.emp = (1.64, 3.29) (1.83, 3.57) (1.22, 2.54) (1.09, 3.30)  
|rab(ij),HA| = 0.72 1.28 1.33 0.43 Pipe  

>= 20 times  
 

|rab(ij),TR| = 0.91 0.10 0.53 0.20  
,T̂R ijθ  = 2.15 2.53 1.84 1.96  

95% C.I.TR = (1.52, 3.03) (1.86, 3.46) (1.33, 2.56) (1.27, 3.02)   
,emp ijθ�

Li
fe

tim
e 

to
ba

cc
o 

us
e  = 1.94 2.09 1.56 1.98  

95% C.I.emp = (1.48, 2.53) (1.49, 2.94) (1.08, 2.27) (1.28, 3.07)  
|rab(ij),HA| =  0.94 0.04 2.27 0.31 Cigars  

>= 20 times |rab(ij),TR| = 0.42 0.72 0.56 1.30  
,T̂R ijθ  = 1.88 2.22 1.61 1.72  

95% C.I.TR = (1.40, 2.52) (1.65, 2.99) (1.16, 2.24) (1.12, 2.63)   
,emp ijθ�  = 1.53 1.79 1.93 2.16  

95% C.I.emp = (0.85, 2.77) (1.22, 2.62) (1.26, 2.95) (1.17, 3.98)  
|rab(ij),HA| = 1.25 0.90 0.49 0.07 Snuff  

>= 20 times 
 

|rab(ij),TR| = 1.14 1.76 1.29 1.03  
,T̂R ijθ  = 1.89 2.23 1.62 1.72  

95% C.I.TR = (1.38, 2.57) (1.63, 3.04) (1.19, 2.20) (1.11, 2.68)   
,emp ijθ�  = 1.68 2.90 1.92 1.77  

95% C.I.emp = (0.93, 3.05) (1.81, 4.65) (1.30, 2.83) (0.86, 3.66)  
|rab(ij),HA| = 0.77 1.26 0.49 0.49 Chewing tobacco 

>= 20 times 
 

|rab(ij),TR| = 1.71 1.37 0.51 0.47  
,T̂R ijθ  = 2.11 2.49 1.81 1.93  

95% C.I.TR = (1.38, 3.24) (1.59, 3.91) (1.29, 2.56) (1.19, 3.13)  
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Table 5.  Estimated type I error rates for SPMI goodness-of-fit statistics. Shaded cells correspond to estimated type I 
error rates outside of the 95% expected range. For the (I, J) = (2, 2) simulations, P1• (1j) = 0.2, P1• (2j) = 0.3, P•1 (i1) = 0.4, 
and P•1 (i2) = 0.5. For the (I, J) = (3, 4) simulations, P1• (1j) = 0.3, P1• (2j) = 0.4, P1• (3j) = 0.5, P•1 (i1) = 0.2, P•1 (i2) = 0.3,  
P•1 (i3) = 0.4, and P•1 (i4) = 0.5.   

(I, J) = (2, 2)  (I, J) = (3, 4) 
Odds ratios 

within 
MRCV 

Inclusion 
probabilities n  

2
1RSX  2

2RSX  F 1st F 2nd  

Odds ratios
within 
MRCV 

Inclusion 
probabilities n  

2
1RSX  2

2RSX F 1st F 2nd
Large diff. 50 0.055 0.041 0.043 0.029    Large diff. 100 0.082 0.024 0.082 0.022

Moderate diff. 50 0.044 0.035 0.031 0.025   Moderate diff. 100 0.068 0.058 0.066 0.056
Equal 50 0.052 0.041 0.039 0.037   Equal 100 0.062 0.048 0.060 0.042

Large diff. 100 0.060 0.040 0.052 0.020   Large diff. 200 0.068 0.030 0.064 0.024
Moderate diff. 100 0.062 0.058 0.058 0.036  All 2 Moderate diff. 200 0.076 0.050 0.070 0.050

Equal 100 0.068 0.064 0.060 0.048   Equal 200 0.074 0.058 0.074 0.054
Large diff. 200 0.054 0.032 0.046 0.022   Large diff. 500 0.066 0.028 0.066 0.028

Moderate diff. 200 0.066 0.060 0.048 0.038   Moderate diff. 500 0.048 0.040 0.046 0.034
Equal 200 0.070 0.062 0.050 0.036    Equal 500 0.052 0.040 0.048 0.038

Large diff. 500 0.038 0.026 0.026 0.014    Large diff. 100 0.152 0.048 0.146 0.046
Moderate diff. 500 0.076 0.074 0.052 0.050   Moderate diff. 100 0.126 0.050 0.124 0.046

All 2 

Equal 500 0.032 0.032 0.026 0.026   Equal 100 0.131 0.056 0.129 0.056
Large diff. 50 0.106 0.054 0.081 0.044   Large diff. 200 0.166 0.054 0.162 0.050

Moderate diff. 50 0.065 0.051 0.059 0.035  All 25 Moderate diff. 200 0.154 0.060 0.150 0.056
Equal 50 0.089 0.052 0.083 0.041   Equal 200 0.120 0.044 0.116 0.040

Large diff. 100 0.110 0.060 0.094 0.026   Large diff. 500 0.128 0.040 0.124 0.036
Moderate diff. 100 0.110 0.068 0.100 0.038   Moderate diff. 500 0.122 0.046 0.118 0.044

Equal 100 0.104 0.054 0.086 0.032    Equal 500 0.110 0.038 0.106 0.036
Large diff. 200 0.106 0.058 0.088 0.034          

Moderate diff. 200 0.102 0.062 0.086 0.038          
Equal 200 0.084 0.048 0.072 0.026          

Large diff. 500 0.090 0.048 0.082 0.024          
Moderate diff. 500 0.090 0.048 0.072 0.042          

All 25 

Equal 500 0.092 0.062 0.078 0.032          
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Table 6.  Bias and mean square error for the estimated log-odds ratio.  Confidence interval coverage and mean length is 
included for the true log-odds ratio. The same Pab(ij) values as given in Table 5 are used here.  
  

(I, J) = (2, 2), n = 200, all odds ratios are equal to 2 

Inclusion   Bias  MSE  Coverage  Mean length 
probabilities   Model Empirical  Model Empirical  Model Empirical  Model Empirical
Large diff.   0.037 0.046  0.082 0.278  0.944 0.926  1.012 1.790 

Moderate diff.   0.009 0.014  0.040 0.138  0.970 0.947  0.805 1.438 

Equal   -0.011 -0.005  0.033 0.114  0.956 0.954  0.750 1.348 
 

(I, J) = (3, 4), n = 200, all within MRCV odds ratios are equal to 2, θ1j = 1, θ2j = 3, θ3j = 5 

Y- Inclusion  Bias  MSE  Coverage  Mean length 
probabilities item  Model Empirical  Model Empirical  Model Empirical  Model Empirical 

1  -0.017 -0.032  0.083 0.267  0.936 0.933  1.017 1.769 

Large diff. 2  0.005 0.014  0.077 0.253  0.928 0.925  0.943 1.706 

3  0.017 0.042  0.073 0.289  0.934 0.933  0.927 1.812 

1  0.001 -0.007  0.046 0.136  0.946 0.957  0.834 1.436 

Moderate diff. 2  0.005 0.009  0.039 0.125  0.956 0.952  0.760 1.370 

3  0.003 0.021  0.039 0.153  0.942 0.948  0.747 1.490 

1  -0.002 -0.010  0.040 0.122  0.954 0.955  0.780 1.344 

Equal 2  0.009 0.015  0.035 0.108  0.942 0.955  0.711 1.278 

3  0.013 0.030  0.031 0.134  0.954 0.953  0.700 1.395 
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