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Abstract

This paper proposes a new method for estimating
variances of complex survey estimators based on
the recent developments in quasi-Monte Carlo meth-
ods. The method can be effectively used to cre-
ate replication schemes in complex surveys with de-
signs more complex than 2 PSU/stratum, while other
methods such as the survey bootstrap carry with them
a substantial computational burden, as well as some-
what larger instability. The new method is based
on quasi-Monte Carlo methods, such as multidimen-
sional Halton sequences. The motivation and main
advantages of QMC are briefly discussed. Several
possible implementations of variance estimators for
complex surveys are offered. A simulation shows
that the QMC methods with additional balancing can
achieve performance comparable to that of the bal-
anced bootstrap.

KEY WORDS: quasi-Monte Carlo, Halton se-
quence, BRR, bootstrap, complex survey data

1. Replication variance estimation in complex
surveys

This paper considers design variance estimation for
complex surveys by using replication, or resam-
pling, methods. In general, those methods create
a series of subsets, or replicates, of the observed
data, and estimate the variance of interest through
variability in the estimates of the same parame-
ter computed from those replicates. Those meth-
ods are strictly applicable when the first stage units
are taken with replacement, and are approximate in
WOR designs with small sampling fractions (Rust
& Rao 1996, Shao 1996, Brick, Morganstein &
Valliant 2000, Shao 2003, Phillips 2004).
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The three major replication, or resampling, meth-
ods used in complex survey inference include: bal-
anced repeated replication (BRR), the jackknife and
the bootstrap. In each of those methods, the PSUs are
carefully reshuffled, so that in r-th replication, some
PSUs are omitted, and some are included (may be
multiple times, as in the bootstrap). The statistic of
interest θ̂(r) for this subsample of data is computed,
and the process is repeated R times. The resulting es-
timator of variance is defined by a standard formula

V̂R[θ̂] =
A

R

R∑
r=1

(θ̂(r) − θ̃)2 (1)

where A is a scaling constant equal to 1 for the boot-
strap and jackknife, 1/4 for the basic BRR. Some
possible variations of (1) include (i) taking R − 1
in the denominator, and (ii) using either the estimate
based on the original sample θ̂ for the estimate of
location θ̃, leading to MSE-type estimator, or the
average of the resampled values θ̃ = 1/R

∑
r θ̂(r),

leading to variance-type estimator. The replication
methods of variance estimation then differ in the re-
sampling designs, i.e., the patterns of included and
excluded PSUs.

In balanced repeated replication (strictly applica-
ble only for designs with nh = 2 for all strata), only
1 PSU per stratum is selected into the subsample
(McCarthy 1969). In jackknife method, (Krewski &
Rao 1981), each of n =

∑
h nh PSUs is omitted,

one at a time. In survey bootstrap (Rao & Wu 1988),
mh ≤ nh units are resampled with replacement from
each stratum.

In designs more complex than 2 PSU/strata, only
the latter two methods are strictly applicable. Cer-
tain extensions of BRR relaxing the 2 PSU/stratum
requirement have been proposed (Gurney & Jewett
1975, Gupta & Nigam 1987, Wu 1991, Sitter 1993),
but they still suffer the limitations of availability of
the appropriate orthogonal or mixed orthogonal ar-
rays. The computational burden of the bootstrap
can be somewhat meliorated by the use of balanced
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bootstrap schemes (Davison, Hinkley & Schechtman
1986, Graham, Hinkley, John & Shi 1990, Nigam &
Rao 1996), but exact second order balancing is only
feasible for a limited range of designs.

This paper proposes to use highly uniform quasi-
Monte Carlo sequences (Niederreiter 1992, Mo-
rokoff & Caflisch 1994) that are routinely employed
in multivariate integration problems in physics, ap-
plied mathematics, as well as choice modeling.
Those methods achieve asymptotic, in the number of
points of the sequence, balance, and that has good
promise in construction of approximately balanced
designs. Application of QMC sequences in bootstrap
problems have been considered by Do & Hall (1991).

2. Quasi-Monte Carlo methods

The term “quasi-Monte Carlo” refers to the set of
methods of generating deterministic point sets and
nets that achieve highly uniform coverage of the unit
cube [0, 1]s. Those methods find most applications in
numerical integration (Niederreiter 1992, Morokoff
& Caflisch 1994) and they also proliferate in econo-
metrics of discrete choice modeling (Train 2001,
Train 2003, Bhat 2001).

In this work, we shall concentrate on Halton se-
quence obtained as follows. For an integer b > 2,
the radical inverse function in base b is

φb(n) =
∞∑

j=0

aj(n)b−j−1 (2)

where aj(n) are coefficients of the digit expansion of
n in base b,

n =
∞∑

j=0

aj(n)bj (3)

Note that φb(n) ∈ [0, 1). The Halton sequence for a
dimension s is obtained as

xn = (φb1(n), . . . , φbs(n)) (4)

where b1, . . . , bs are pairwise relatively prime inte-
gers greater than 1 (typically the first s primes). It
has been shown (Niederreiter 1992) that the discrep-
ancy (the supremum of the difference between the
fraction of hits by the sequence of length N and the
Lebesgue measure over s-dimensional rectangles in

[0, 1)s) is of the order AN−1 lnsN . That is a ma-
jor asymptotic improvement over the (almost sure)
O

(
(ln lnN/N )1/2

)
rate achievable by the random

Monte Carlo methods. The numbers b are usually
taken to be the first s primes, as that delivers the min-
imum to the leading term A. The bound is conserva-
tive (Morokoff & Caflisch 1994), and the constants
are known to be too generous, but the rates of con-
vergence cannot be improved. There is also an asso-
ciated curse of dimensionality, as lnA ∼ s ln s, i.e.,
A grows exponentially fast with s, and the discrep-
ancy may still be large for small to moderate N and
large s.

Various modification of the Halton sequences
aimed at reducing “autocorrelations” between com-
ponents of the sequence with high b’s; combating
the dimensionality curse; and providing for estima-
tion of the (randomization, or design) standard errors
have been proposed. Owen (1998) reviews the work
on randomized quasi-Monte Carlo, such as random
rotations and permutations of the Halton sequences.
Bhat (2003) applies similar ideas to the empirical re-
search in individual transportation choices.

3. The proposed estimator

We are proposing to use quasi-Monte Carlo methods
to generate resampling designs in replication vari-
ance estimation in complex surveys. The highly uni-
formly distributed elements of quasi-Monte Carlo se-
quences will be mapped to the sampling units, to
achieve asymptotically, in number of replicates R,
balanced resampling designs. The method produces
approximately balanced designs, and can be viewed
as extension of the balanced repeated replication for
arbitrary designs, including those that do not neces-
sarily have nh = 2. It relaxes the limitations on
the number of replicates imposed by the availabil-
ity of mixed orthogonal arrays, although to achieve
exact balance, other conditions may need to be im-
posed. We believe computations are somewhat more
straightforward with the current software than con-
structions of the mixed arrays.

Alternatively, the quasi-Monte Carlo based resam-
pling designs can be viewed as a way to balance the
bootstrap replication schemes, in a way more flexi-
ble than the existing methods (Nigam & Rao 1996)
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that, similarly to BRR, utilize the traditional bal-
anced incomplete block design approaches such as
those based on Hadamard matrices, and are currently
described in the case of equal number of PSUs per
strata.

In what follows we shall assume for simplicity a
stratified single stage sampling design with L strata
and nh units taken in stratum h, possibly with differ-
ent probabilities of selection.

A successful replication design must satisfy cer-
tain balance conditions. Wu (1991) showed how
those balance conditions are related to estimation of
bias and variance, and that violations of those bal-
ancing conditions generally lead to biases of those
estimates. The first order balance condition states
that all units in a given stratum appear equal num-
ber of times in the resampling plan, i.e., the num-
ber of times a unit is included in the replication de-
sign should be constant for all units within strata, al-
though may differ between strata. The number of
replications R would then have to be proportional to
the least common multiple of nh’s:

R ∝ nh, ∀h = 1, . . . , L (5)

If there is substantial variability in the number of
units per stratum, this condition may be hard to sat-
isfy. The second order balance condition states that
all pairs of units need to appear an equal number of
times in the replication scheme. This condition is
even harder to satisfy. R would need to be propor-
tional to all products nh(nh − 1) and cross-products
nhnh′ , h, h′ = 1, . . . , L, for units within and be-
tween strata, respectively.

Those balance conditions are ensured by the use
of orthogonal arrays in case of BRR, and hold by
the law of large numbers in bootstrap. Nigam &
Rao (1996) identified certain classes of designs for
which second-order balanced bootstrap schemes can
be constructed, but in general the problem is difficult.

We consider several possible uses of quasi-Monte
Carlo sequences to generate replication designs.

The first method that we will refer as “stratified
QMC” generates an L-dimensional Halton sequence,
with each component mapped to a stratum in the
original sampling design. If xhk = φbh

(k) is the
h-th component of the k-th element of this Halton
sequence, then the unit with the number [nhxhk + 1]

will be included into k-th replicate, where [·] is the
integer part operator. If mh > 1 units need to be in-
cluded in the resampling scheme, the series can be
wrapped back after the first R units have been se-
lected: r =

(
(k − 1) mod R

)
+ 1. This scheme

fixes mh to be constant across strata, and thus the
sequence length and the number of replications are
related as N = Rmh, mh = const w.r.t. h

The aforementioned balance conditions have cer-
tain geometric interpretations. To achieve the first
order balance, the projections of the Halton sequence
within L-dimensional unit cube on the interval [0, 1]
corresponding to h-th stratum should throw the same
number of points into each interval corresponding to
a PSU. The second order balance condition between
strata means that all projections of the Halton se-
quence within L-dimensional unit cube on the unit
square h-th and h′-th strata should throw the same
number of points into each rectangle corresponding
to two PSUs of those strata. The consequence of
those conditions is that the length of the Halton se-
quence N should be proportional to the least com-
mon multiple of n1, . . . , nL to ensure the first order
balance. If the design is such that the number of PSU
per stratum varies between 2 and k, then R ∝ (k!)2

to satisfy the second order condition. Note that those
are the necessary conditions only, but the balance
will hold asymptotically in N (or R) from the gen-
eral theory of Halton sequences.

To overcome the monotonic “autocorrelation” pat-
terns for which Halton sequences with large b’s are
notorious, the components of the Halton sequence
can be “scrambled”, by permuting the digits in bases
bk, or “shuffled”, by permuting the resulting series.
Owen (1995, 1998) and Hess, Polak & Daly (2003)
present results showing good performance of the re-
sulting sequences without deterioration of discrep-
ancy.

Stratified QMC method will be prone to high di-
mensionality curse as mentioned above. First, the
upper bound for discrepancy increases almost expo-
nentially with L. Second, the length of the sequence
to achieve balance in all dimensions must be propor-
tional to the product of the first L primes, and that
grows very fast with L: for values up to L = 5, the
minimal balancing lengths are 2, 6, 30, 210, 2310.
Unfortunately, that’s exactly the typical survey situa-
tion, with high number of strata L and small number
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of PSU per stratum.
To arrive at other types of replication designs

based on QMC ideas, we would want to restrict
the dimensionality of the Halton sequence to en-
sure fast convergence onto tight discrepancy bounds.
One way to do that is to represent the data as two-
dimensional array, with PSUs being the rows of it,
and individual replications, the columns. In this 2D
situation, one can generate the Halton sequence and
map the pairs into the two-dimensional plot repre-
senting the data. Thus if the PSUs are numbered 1
through n = n1 + . . . + nL the k-th element of Hal-
ton sequence, xk = (x1k, x2k), associates the PSU
with number [x2kn + 1] with the replicate number
[x1kR + 1]. This method will be called “data matrix
QMC”.

The balancing condition on the length of the se-
quence to achieve uniform coverage over the rectan-
gular array is that N is proportional to 2 · 3 = 6,
which is a much milder condition that does not de-
pend on the design parameters. On the other hand,
to approximately achieve the first order balance, the
length of the sequence should be proportional to the
number of replicates, and also proportional to the to-
tal number of replicates taken: N = R(m1 + . . . +
mL). Finally, the necessary condition imposed by
the design is (5).

The variations of this scheme can be as follows. If
there is substantial variability in the number of units
mh taken from each stratum, one can represent the
h-th stratum with a horizontal strip in the data array
of the relative height proportional to mh rather than
nh. Just like in the stratified QMC case, the resulting
Halton sequence can be shuffled (apparently it suf-
fices to only shuffle one of the two dimensions) be-
fore being mapped to the data matrix. In the context
of survey sampling, it might also be argued that shuf-
fling is beneficial for privacy protection purposes,
as it disguises the unit IDs with associated random
component better than a fully deterministic method
does. Finally, the first order balance can be forced
on the design by ordering the Halton sequence by its
unit-coordinate and allocating the first m1R/n1 units
to the first PSU, the next m1R/n1 units to the next
PSU, etc. Shuffling and balancing can be combined
together.

In all of those replication designs, an internal scal-
ing (Wu 1986, Rao & Wu 1988) is implemented

through the sets of replicate weights (Rao, Wu &
Yue 1992). When applied in practical data collection
situations, the typical reservation holds that the post-
stratification and non-response adjustments would
need to be performed separately for each replicate.

Implementation of the proposed procedures is
available with the use of existing software support-
ing Halton sequences and replication weights. Stata
software (Stata Corp. 2005) is an obvious choice,
as it has the widest range of design-based estima-
tors for survey data, including the replication esti-
mators, as well as a set of tools for generating Hal-
ton sequences (Drukker & Gates 2006). Another
package that has both the complex survey pack-
age and the modules for Halton sequences is R
(Maechler 2006, Lumley 2007).

4. Simulation study

A simulation study was performed on a small arti-
ficial population. Five strata of Nh = 1000 units
each were created with the following (model) distri-
butions:

X1i ∼ Γ(2, 1), E1i ∼ N(0, 1),
X2i ∼ Γ(2, 1), E2i ∼ N(0, Xhi),
X3i ∼ Γ(2, 1), E3i ∼ t(4 + 3/(Xhi + 1)),
X4i ∼ Γ(2, 3), E4i ∼ N(0, Xhi),
X5i ∼ Γ(2, 9), E5i ∼ N(0, Xhi),
Yhi = Xhi + Ehi, h = 1, . . . , 5 (6)

where h = 1, . . . , 5 enumerates the strata, i =
1, . . . , Nh, the units within strata, and Xi and Ei are
independent of one another and across observations.
The population parameters of interest are the mean of
Xhi (with model expectation of 6) and the regression
coefficients (with model expectations of β0 = 0 and
β1 = 1 for intercept and slope, respectively). The
coefficient of variation of Xi is 1.45.

SRS of size nh = 18 were taken from each strata,
and means X̄ and regression coefficients b0, b1 were
estimated. The following variance estimators were
considered: linearization estimator; jackknife; the
bootstrap estimator through the method of weights
as described in Rao et al. (1992); the first order bal-
anced bootstrap where each unit is sampled the same
number of times (Davison et al. 1986, Gleason 1988,
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Table 1: Performance of variance estimators.

Estimator IQR Stability Coverage, % Satterthwaite
d.f.= n− L Effective d.f.

S.e. [X̄] = 0.6500
Linearized (0.5256, 0.7143) 0.0482 92.5 94.4 9.43
Bootstrap (0.5253, 0.7126) 0.0509 92.8 94.7 8.84
Balanced bootstrap (0.5214, 0.7173) 0.0504 92.1 94.4 9.02
Stratified QMC: Method 1 (0.3895, 0.5866) 0.1074 83.9 91.8 4.70

Method 2 (0.5194, 0.7154) 0.0510 92.3 94.4 8.89
Data matrix QMC: Method 3 (0.4389, 0.6143) 0.0719 87.2 91.3 7.73

Method 4 (0.7934, 1.0281) 0.2501 97.9 98.8 12.67
Method 5 (0.4092, 0.5746) 0.0906 84.7 89.9 7.22
Method 6 (0.5212, 0.7155) 0.0522 92.3 94.4 8.56

S.e. [bX ] = 0.0682
Linearized (0.0430, 0.0690) 0.1170 84.6 96.8 3.27
Jackknife (0.0487, 0.0810) 0.1520 90.0 99.5 2.50
Bootstrap (0.0466, 0.0716) 0.0929 89.0 97.5 4.33
Balanced bootstrap (0.0473, 0.0717) 0.0932 88.8 97.5 4.19
Stratified QMC: Method 1 (0.0340, 0.0602) 0.1676 78.6 95.1 2.50

Method 2 (0.0471, 0.0716) 0.0949 89.4 96.7 4.15
Data matrix QMC: Method 3 (0.0379, 0.0596) 0.1350 80.7 94.3 3.23

Method 4 (0.0480, 0.0727) 0.0935 89.9 97.4 4.14
Method 5 (0.0375, 0.0590) 0.1379 80.8 94.1 3.29
Method 6 (0.0469, 0.0716) 0.0937 89.6 96.7 4.25

Method 1: stratified QMC. Method 2: stratified shuffled QMC. Method 3: data matrix 2D QMC. Method 4: shuffled
data matrix 2D QMC. Method 5: balanced data matrix 2D QMC. Method 6: balanced shuffled data matrix 2D QMC.

Nigam & Rao 1996, Rao & Shao 1999); and all of the
six QMC-based methods described in previous sec-
tion (stratified QMC with and without shuffling; data
array 2D QMC with and without either of shuffling
and balancing). The number of replications for the
bootstrap and for 2D QMC methods was R = 156,
while that for stratified and stratified-shuffled QMC
methods was R = 154, thus ensuring that strata 1, 4
and 5 are balanced, while strata 2 and 3 remain un-
balanced. The number of sampled units for each of
the resampling methods was mh = nh − 3 = 15,
according to recommendations of Rao & Wu (1988).
1000 samples were taken.

The simulations were performed in Stata software.
The code for both simulations and QMC resampling
designs is available from author upon request.

Table 1 gives the simulation results comparing
the different variance estimators in terms of the re-
ported standard errors, stability, and coverage of

the nominal 95% CI. For the simulation size of
10000, the margin of simulation error is 1.96 ×√

0.95 · 0.05/1000 = 1.35%, so the results between
93.65% and 96.35% can be considered acceptable.
Column 4 gives the results for coverage with nomi-
nal degrees of freedom, n−L = 90−5 = 85, which
is essentially the normal distribution, while column
5 gives coverage with the effective Satterthwaite de-
grees of freedom (Rust & Rao 1996). The latter are
reported in the last column, and seem to be quite low
in this design. Fig. 1 represents those results graph-
ically with kernel density estimates of the reported
standard errors distributions, along with the Monte
Carlo standard deviations.

For both estimation of the variances of X̄ and b1,
the balanced bootstrap and the shuffled+balanced 2D
QMC come closest to the true variability. The lin-
earization estimator overestimates the variability of
the sample mean, and underestimates the variabil-
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ity of the regression slope. The basic versions of
QMC without shuffling tend to underestimate the
true variance. The explanation might be that there
is not enough variability in the resampling weights
generated from the basic QMC, or that the Halton
sequences are not balanced enough at those lengths
thus leading to biases of the variance estimates, in
accordance with results of Wu (1991). With the ex-
ception of the shuffled 2D QMC in the sample mean
case, the variation of stability is usually within a fac-
tor of 1.5, so some gains in inference precision would
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Figure 1: Estimates of variance for an artificial pop-
ulation. Top row: v

1
2 [X̄]; bottom row: v

1
2 [b1]. Left

column: linearization, jackknife, the bootstraps, and
stratified QMC. Right column: linearization, the bal-
anced bootstrap, and data-matrix QMC. The vertical
lines are Monte Carlo standard deviations.

be expected from the more stable estimators.
In the sample mean case, the most stable estima-

tors were found to be the linearization (and the jack-
knife equivalent to it), the bootstraps, and the “ad-
vanced” QMC methods (shuffled stratifed, Method
2, and shuffled balanced 2D, Method 6). The down-
ward bias of the basic QMC estimators (stratified,
Method 1; 2D, Method 3) led to substantial under-
coverage of the confidence intervals. The balanced
2D QMC (Method 4), even though also biased down-
ward, overcovers.
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None of the estimators, however, achieve the de-
sired nominal level, with the linearization, both ver-
sions of the bootstrap, and “advanced” QMC com-
ing closest. A correction for Satterthwaite degrees of
freedom of the design (Rust & Rao 1996) brings the
linearization, the bootstraps, and “advanced” QMC
estimators within the simulation error limits of 95%.

In the regression slope case, the stablest estimators
were found to be both versions of the bootstrap and
both original and shuffled versions of the 2D QMC,
all of them beating the linearization and the jackknife
by some 20% stability margin. They are also demon-
strating the best performance in terms of coverage
probabilities, with the shuffled+balanced 2D QMC
taking somewhat of a lead, although all estimators
are very far from the nominal 95%. The explanation
might be in high kurtosis of the explanatory variable
which is known to be responsible for finite sample
biases of the sandwich estimator, see Kauermann &
Carroll (2001). A correction for Satterthwaite de-
grees of freedom of the design again appears to be
overcorrecting for undercoverage.

It is also worth noting that all of the balancing pro-
cedures (balanced bootstrap, balanced data-matrix-
based QMC with or without shuffling) achieve first
order balance: all the units are included equal num-
ber of times.

5. Conclusion

A new procedure for obtaining approximately bal-
anced replication designs based on quasi-Monte
Carlo methods has been proposed. The performance
of certain flavors of the method were found to be su-
perior of the regular bootstrap, and comparable to
those of the balanced bootstrap. It also has an ap-
peal of being computationally feasible through mod-
ern software.

Further work will include a formal establishment
of asymptotic properties of various implementation
of the QMC-based variance estimators, as well as
larger simulation studies with wider ranges of the
QMC settings.
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