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Abstract

Previous work regarding lowering prediction error in
model-based sampling strategies has different shortcom-
ings. For example, optimal strategies often require inten-
sive computation, also depend on the population model
and the predictor. The spatial systematic design can-
not work properly under an anisotropic population, or
population with non-homogeneous variance. Intuitively,
one would like to select units that account for as much
population variability as possible. Ideally, it can be done
by carefully examining the population covariance matrix,
in which the information of the population variability is
contained. The object of this study is to construct a
model-based sampling design which makes use of various
multivariate analysis techniques to explore the informa-
tion contained in the population covariance matrix. The
properties of this designs will be discussed and compared.
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1. Introduction

The inference problems in sampling can be categorized
into two approaches, the design-based approach and
model-based approach. In the design-based approach,the
vector of the values of the population variable of interest,
y = (y1, y2, . . . , yN )′, is considered as a constant vector
and the inference is established based on the design prob-
ability only. On contrast to the design-based approach,
the model-based approach consider y as a realization of
a random vector Y with density function f(y; θ), and
the inference is based on the population stochastic model
as well as the design probability. One major difference
between these two approaches is the existence of an opti-
mal sampling strategy. Under the model-based approach,
Basu (1969) has showed an optimal sampling strategy is
available and the optimal selection of sampling units de-
pends on the observed values of the population variable of
interest obtained during the survey. Furthermore, Zacks
(1969) described a theoretical optimal sampling strategy
under a given or Bayesian population model and a fixed
sampling size n. This optimal strategy is an n stage adap-
tive one, that is, the sampling units are selected in a way
such that the selection of the next unit should depend on
the observed values obtained in all the previous stages as
well as the population model.

Such an n stage adaptive strategy is in fact very compli-
cated and computational consuming. Sacks and Schiller

(1988) proposed an optimal conventional sampling strat-
egy under a given population model, however, the selec-
tion of sampling units by this conventional strategy does
not take the observed value into account. For making
use of the observed values obtained during the survey,
Chao and Thompson (2001) proposed a two-stage opti-
mal adaptive strategy under a given population model to
further improve the optimal conventional strategy pro-
posed by Sacks and Schiller (1988) and compromise with
the optimal n stage strategy. Chao (2003) also described
the extension of this two-stage optimal strategy to a
Bayesian population model.

The optimal strategies that were proposed by different
authors in the past have certain common disadvantages,
despite the fact that they can often locate the optimal
sampling units. First of all, the computational load re-
quired can be extremely intensive to determine the opti-
mal sample especially for a large population size and/or
a complicated population model. These optimal strate-
gies also assume an exact population model such as a
given or prior population distribution, but such informa-
tion might not be available in practice. In addition, the
optimal sample varies from case to case in terms of dif-
ferent population distributions and prediction inferences.
All these disadvantages restrict practical applications of
these optimal strategies.

The purpose of this research is to construct a flexible
sampling strategy for a better prediction result. The idea
to select sampling units that can provide lower predic-
tion mean-square is rather straightforward. Intuitively,
units that have high variance themselves, strong covari-
ance with other unselected units, also lower within cor-
relation are preferred. With a careful evaluation of pop-
ulation covariance matrix, it is possible to select such
units for a better prediction purpose. Multivariate anal-
ysis plays an important role in evaluating the covariance
matrix of a random vector. Chao (2004) proposed two
sampling selection methods motivated by one of the well-
known multivariate analysis techniques, Principal Com-
ponent Analysis, which objective is to summarize most of
the variability using the principal components with the
highest variances. Hence these methods could selected
an appropriate sample to account for as much possible
population variability.

Actually other multivariate analysis techniques are also
of potential possibility to select sampling units for a bet-
ter prediction result. In this research, we firstly utilized
another well-known multivariate technique, Cluster Anal-
ysis, to divide the units into several groups such that the
units within the same group are as similar as possible.
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After the population has been partitioned, we select the
with-cluster sample with the design proposed by Chao
(2004) which could identify units that account for more
population variability. The algorithm of proposed design
is described in Section 2. The proposed method is exam-
ined by simulation results in terms of the sampling loca-
tions and the empirical relative efficiencies to Simple Ran-
dom Sampling Without Replacement (SRSWOR). For
better visual evaluation, the sampling locations with a
small population size selected by the proposed sampling
methods are illustrated in Section 3. Simulation study
shows that they can always provide more precise pre-
diction results than SRSWOR. Some of the simulation
results are presented in Section 4. Comments on the cur-
rent findings and the future research are addressed in
Section 5.

2. Sampling Design

Let Y be the population random vectors with mean vec-
tor µ = (µ1, µ2, . . . , µN )′, and covariance matrix

Var(Y) = Σ = {σij}i,j=1,...,N ,

where

σij =

{
Var(Yi) if i = j

Cov(Yi, Yj) if i 6= j.

The objective is to select n sampling units out of the
N population units to predict the population quantity
of interest T (Y) with some unbiased predictor T̂ (d). In
particular, we consider the prediction of population total
T (Y) =

∑N
i=1 Yi, and the best unbiased predictor, T̂ =

E[T |d] in this research.
One of the basic principles of sampling is to select

sampling units that are as less similar as possible. The
essence of Cluster Analysis is to partition the population
in the way that the units within a cluster are as similar as
possible. Hence, a sample selected by some design within
each cluster can be representative of the population as
a whole. Then, within each cluster we select the units
which could account for more variability with the design
proposed by Chao (2004).

The proposed sampling design utilizing Cluster Anal-
ysis and Principal Component Analysis is a straightfor-
ward approach.

1. Partition the population into g ≤ n clusters, denoted
as u1, . . . ,ug, ui ∩ uj = ∅ and ∪ui = u.

2. Select ni sampling units, denoted as si, within clus-
ter ui with the design proposed in Chao (2004), such
that ni ∝ Ni and rounded to the nearest integer. If
the rounded ni = 0, then ni = 1.

3. The final sample of size n is the collection of si.

The only population information required in the pro-
posed sampling method is the population correlation ma-
trix R has to be given. The population is clustered by

treating D = 1N×N − R as the distance matrix, where
1N×N is a N × N matrix with all elements equal to 1.
In addition, the algorithm used in Cluster Analysis to
divide the population into several disjoint groups is the
K −means method (e.g. Johnson and Wichern 1998).

3. Sampling Locations

The sampling locations selected by sampling designs pro-
posed in Section 2 are illustrated under two different pos-
sible population locations in this section. The population
random vector Y is assumed to follow a multivariate nor-
mal distribution

Y ∼ N(µ,Σ) (1)

where

µ = (µ1, . . . , µN )′, Σ = {σij}, i, j = 1, . . . , N.

In this section, the population and sample sizes are set
to be N = 25 and n = 6, respectively. A Gaussian-
shaped spatial covariance function (Cressie 1993) is used
to generate Σ, σij = σ2 exp(−||h||2/a2), where h is the
Euclidean distance between unit i and j. The parameter
a determines the strength of covariance in the study re-
gion. The larger a is, the stronger the covariance between
population units is, and vice versa.

First we consider the possible population units are the
cross points of a 5×5 rectangular grid. Figure 1 illustrates
the sampling locations selected by the design described
in Section 2 with n = 5 and the number of cluster g is 3.
The correlation matrix R is calculated by Σ. In Figure 1
it is clear the design provides different results because the
clustering algorithm gives different kinds of partitions. It
seems the design can successively select the units spread
evenly on the rectangular grid. Figure 2 illustrates the
sampling locations when the population units are ran-
domly distributed. In this situation the results are more
stable.
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Figure 1: The possible population locations and sampling
units selected by the design proposed under regularly dis-
tributed population locations
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Figure 2: The possible population locations and sampling
units selected by the design proposed under randomly
distributed population locations

4. Simulation Study

The performances of the design proposed is evaluated in
this section by the Empirical Relative Efficiency (ERE) to
SRSWOR. The ERE of a design to SRSWOR is defined
as the ratio of the mean-square prediction error obtained
with SRSWOR to that obtained with the design, so that a
value greater than 1 indicates the proposed design is more
efficient. In this study the mean-square prediction error
is estimated with simulation by producing K realizations
of the model and design and calculating

E(T − T̂ )2 =
1
K

K∑

j=1

(Tj − T̂j)2,

where Tj and T̂j are the true and predicted population
total of the jth realization. For each case, K = 15, 000
realizations are simulated for each case.

The studied cases are essentially the same as those in
Section3, only with a larger study region and population
size. The population size used in this section is N =
81. The population quantity of interest is the population
total.

T (Y) = 1′NY =
N∑

i=1

Yi,

where 1N is a vector of length N in which all elements
are 1. The predictor used is the Best Linear Unbiased
Predictor (BLUP). ( Simulation results regarding other
spatial population model and predictor to be used are not
discussed in this article.)

In this simulation, value of parameter a ranges from
1.0 to 4.0, and values of population parameters µi = 0, ∀ i
and σ2 = 1 are used. We consider two possible popula-
tion units, the cross points of a 9 × 9 rectangular grid
and the randomly distributed population locations. The
ERE of the proposed design to SRSWOR under the two
different cases plotted in Figure 3 and 4, respectively.
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(a) The ERE with respect to a from 1 to 4 under g = 2, 4, 6,
8, and n = 30
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(b) The ERE with respect to the sample size from 1 to 50 under
a = 1, 2, 3, 4, and g = 5

Figure 3: Empirical Relative Efficiency to SRSWOR on
a region with regular distributed population locations.

Figure 3(a) illustrates the ERE of the proposed sampling
design to SRSWOR for g = 2, 4, 6, and 8 under a from
1 to 4 when sample size n is equal to 30. The values of
ERE greater than one indicating that the proposed de-
sign is more efficient than SRSWOR in terms of providing
lower mean-square error. It can be seen that the values
of ERE are usually greater than one and get better as a
increases since the proposed design can take advantage
of the stronger covariance. No matter what value of g is
chosen, the performance does not make much difference.
Figure 3(b) is the ERE of the proposed design to SR-
SWOR with respect to sample size from 1 to 50 under a
= 1, 2, 3, and 4 when the number of clusters is five. In
this case the proposed design performs better with larger
sample size but the results are not stable.

The simulation conditions are the same as in which the
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(a) The ERE with respect to a from 1 to 4 under g = 2, 4, 6,
8, and n = 30
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(b) The ERE with respect to the sample size from 1 to 50 under
a = 1, 2, 3, 4, and g = 5

Figure 4: Empirical Relative Efficiency to SRSWOR on
a region with random distributed population locations.

population units are regularly distributed at the study re-
gion as in Figure 3(a) and (b) and the ERE are plotted
in Figure 4(a) and (b). The proposed design performs
clearly better than SRSWOR under g = 4, 6, and 8 re-
gardless of a selected. However the performances are not
very stable when the population is divided into two clus-
ters. Note that the instability might result from which
the number of clusters is not fitting; hence it is also im-
portant to choose an appropriate number of clusters in
the proposed design. In addition, the performances of
the proposed design are always better than SRSWOR re-
gardless of sample size.

5. Discussions and Future Research

The proposed designs usually can provide more efficient
prediction results than SRSWOR. Although the result is
not optimal, the computation required is much less and
easier than the optimal sampling strategies proposed the
past. In addition, they do not depend on the exact pop-
ulation distribution and the predictor to be used. The
population correlation matrix is the only population in-
formation required in the design. In fact, only the co-
variance pattern has meaningful impact on the sampling
selection but not the exact values of the entries in R.
The correlation matrix can be replaced by the empiri-
cal correlogram in practice, and such information is of-
ten available in a spatial sampling situation. Hence, the
proposed designs are more flexible and robust than the
theoretical optimal designs. We still need to examine the
performance of the proposed design when the population
variance are not homogeneous and when the population is
an anisotropic one. The performance of the proposed de-
sign is not vary stable in the simulation study and hence
further modification of the design is certainly necessary
and worthy for the future research. Related work and
results are expected to be proposed in the near future.
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