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Abstract

We consider problems of inference from survey data for
proportions when sample individuals have been asked to mark
all responses that apply to them, the table with mutually exclu-
sive categories is sparse, the number of individuals to whom
none of the listed categories apply is missing and the cate-
gory proportions are to be compared across population strata.
We consider an example from the Kansas Farm Survey which
is described in Loughin and Scherer (1998), where the reader
may find the data presented in tabular form. We use a Bayesian
product multinomial-Dirichlet model to fit the count data both
within and across farmer’s education levels. We estimate the
proportions of individuals with each choice; show how to esti-
mate the most frequently indicated choice; and show, using the
Bayes factor, how to test that these proportions are the same
over different levels of farmers’ education. Our Bayesian pro-
cedure uses a sampling based method with independent sam-
ples.

KEY WORDS: multiple category choices; surveys; Bayes
factor; Monte Carlo integration; sparse table

1. Introduction

A common type of multiple choice survey question provides
respondents with a list of categories from which they are asked
to mark all that apply to them. Analyses of survey responses
to this type of question should give careful consideration to
several concerns of which we mention only a few. First, in
general, the list may be structured so that some combinations
of categories and responses are intentionally excluded. For
example, the response ”none of the categories listed applies
to me” might be excluded by questionnaire design. Second,
for even a modest number of categories, say c, the investigator
may not have a large enough budget for obtaining “adequate”
numbers of responses for each of the possible 2c combina-
tions or sequences of responses, especially rare ones. Thus,
he might have reason to expect that the contingency table
in which the totals for each response sequence are tabulated
would be sparse. Third, as with any survey data, nonresponse
is likely to be a problem. Finally, the analysis should account
for important design features such as stratification and cluster-
ing.

In this paper, we initiate the study of Bayesian analyses of

∗The findings and conclusions in this paper are those of the authors and do
not necessarily represent the views of the National Center for Health Statistics,
Centers for Disease Control and Prevention.

the data resulting from questions of the above types. We con-
sider the statistical problems of estimating the proportions of
individuals who select each category under a general hypoth-
esis and determining the most popular category. We also con-
sider the problem of testing the hypothesis of the equality of
the category proportions across strata which is solved using
the Bayes factor. For stratified random sampling, we examine
the situation where:

(1) the categorical variable has c levels;

(2) the population has been stratified into r sub-
groups;

(3) the response sequence corresponding to the
case that none of the choices offered applies
is excluded;

(4) there are no nonrespondents in the usual sense
— that is, the only reason for no response is
that none of the choices applies; and

(5) the contingency table for response sequences
is sparse so that the use of the chi-squared test
for homogeneity is questionable.

Key features of the data and the format in which they are of-
ten reported (which we subsequently refer to as the m-table)
are illustrated by a situation where r = 3 and c = 2, for levels
A and B of a categorical variable. [See Table 1.] For each
stratum, the n-table contains the counts for the collection of
mutually exclusive and exhaustive response sequences. How-
ever, the m-table entries contain the counts for each instance
in which the response level was A or B or both. That is to say,
the m-table counts do not include anything for the (0, 0) se-
quence but the counts for A and B are both incremented when
the response sequence is (1, 1).

2. Bayesian Methodology

For r strata and c categories, {πj`|j = 1, . . . , r and ` =
1, . . . , L} will denote the n-table cell probabilities and
{pjk|j = 1, . . . , r and k = 1, . . . , c}, the m-table cell proba-
bilities. If Ejk denotes the event that category k is chosen in
stratum j, we assume {Ejk|k = 1, . . . , c} is a set of indepen-
dent events. We also assume that the response sequences for
each stratum are the same, so that

πj` =
c∏

k=1

pIk`

jk (1− pjk)(1−Ik`)
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Table 1: Illustration of the n-table and the m-table for two categories and three strata.

Stratum n-table m-table

Sequence Level

(0, 0) (1, 0) (0, 1) (1, 1) A B

1 n11 n12 n13 n14 m11 m12

2 n21 n22 n23 n24 m21 m22

3 n31 n32 n33 n34 m31 m32

For j = 1, 2, 3, note that mj1 = nj2 + nj4 and mj2 = nj3 + nj4.

where pjk = Pr{Ejk} and

Ik` =

 1, if category k is selected
in response sequence `

0, otherwise

Note here that the indicator variables are notational devices
and not random variables. In addition, we have that

pjk =
L∑

`=1

πj`Ik`.

Thus, one might expect to be able to use either the n-table or
the m-table to make inferences for the p’s or the π’s.

2.1 The Likelihood Function

Under the null hypothesis that for each stratum j
the {pjk for k = 1, . . . , c} are not the same, let n

∼
′
j

=

(nj1, nj2, . . . , njL) def= (nj1, n∼
′
j(1)

), π
∼
′
j

= (πj1, πj2, . . . , πjL)

and Nj = n
∼
′
j
1
∼

where j = 1, . . . , r and 1
∼

is an L-vector of

ones. nj1 will denote the n-table count for stratum j for the
sequence (0, 0, . . . , 0)1×c and Ik1 = 0 for k = 1, 2, . . . , c. We
assume independence over strata and that

n
∼j
|π
∼j

, Nj ∼ Multinomial(Nj , π∼j
) for j = 1, . . . , r.

For p
∼
′

j

= (pj1, . . . , pjc), using the formulas for expressing

the π’s as functions of the p’s, we then have that factor j of the
likelihood is

p(n
∼j
|p
∼j

, Nj) = p(nj1, n∼j(1)
|p
∼j

, Nj)

=
(nj1 +

∑L
`=2 nj`)!

nj1!
∏L

`=2 nj`!
×

c∏
k=1

{
p

∑L
`=2 nj`Ik`

jk (1− pjk)nj1+
∑L

`=2 nj`(1−Ik`)
}

Defining
⇀
n
′
1 = (n11, n21, . . . , nr1), n

∼
′
(1)

=

(n
∼
′
1(1)

, . . . , n
∼
′
r(1)

), p
∼
′ = (p

∼
′

1

, p
∼
′

2

, . . . , p
∼
′

r

) and

N
∼

= (N1, N2, . . . , Nr), we have the combined data distribu-
tion

p(
⇀
n1, n∼(1)

|p
∼
, N
∼

) =
r∏

j=1

p(n
∼j
|p
∼j

, Nj)

=
r∏

j=1

[
(nj1 +

∑L
`=2 nj`)!

nj1!
∏L

`=2 nj`!

×
c∏

k=1

{
p

∑L
`=2 nj`Ik`

jk (1− pjk)nj1+
∑L

`=2 nj`(1−Ik`)
}]

Note that both p
∼

and
⇀
n1 (and, hence, N

∼
) are unknown.

2.2 Estimation of Cell Proportions and The Most Popu-
lar Choice

Here we assume that p
∼

and N
∼

are independent and that for

j = 1, . . . , r and k = 1, . . . , c

pjk
ind∼ U(0, 1)

Pr{nj1} = 1 for nj1 ≥ 0

Our use of uniform and improper priors does not cause a
problem when estimating cell proportions and determining the
most popular choice because the posteriors are proper. In what
follows it will sometimes be more convenient to work with Nj

rather than nj1 or vice versa.

2.2.1 Joint Posterior Density: Unrestricted Model

By Bayes Theorem, the joint posterior density

π(p
∼
,
⇀
n1|n∼(1)

) ∝

r∏
j=1

[
(nj1 +

∑L
`=2 nj`)!

nj1!
∏L

`=2 nj`!

c∏
k=1

{
p

∑L
`=2 nj`Ik`

jk (1− pjk)nj1+
∑L

`=2 nj`(1−Ik`)
}]

Section on Survey Research Methods

2787



When analyzing data from the Kansas Farm Survey, we used a
sampling-based method to obtain samples from the joint pos-
terior density. The posterior conditional density for p

∼
is a

product of the densities

pjk|nj1, n∼(1)
∼ Beta{

L∑
`=2

nj`Ik`+1, nj1+
L∑

`=2

nj`(1−Ik`)+1}

This is easily sampled once samples of
⇀
n1 are obtained from

π(
⇀
n1|n∼(1)

) =
∏r

j=1 π(nj1|n∼j(1)
), by construction, and

π(nj1|n∼j(1)
) ∝ .

(nj1 +
∑L

`=2 nj`)!
nj1!

c∏
k=1

{
{nj1 +

∑L
`=2 nj`(1− Ik`)}!

(nj1 +
∑L

`=2 nj` + 1)!

}

Since the terms on the right-hand side of this relationship are
those of a convergent series, lim

nj1→∞
π(nj1|n∼j(1)

) = 0; so,

there must exist a value of nj1 beyond which the distribution
has negligible probability to the right. We use this idea in ap-
proximating the distributions of the nj1.

2.2.2 Joint Posterior Density: Restricted Model

When pjk = pk, we respecify p
∼
′ = (p1, p2, . . . , pc) so that

π(p
∼
,
⇀
n1|n∼(1)

) ∝

r∏
j=1

[
(nj1 +

∑L
`=2 nj`)!

nj1!
∏L

`=2 nj`!

]

×
c∏

k=1

{
p

∑r
j=1

∑L
`=2 nj`Ik`

k (1− pk)
∑r

j=1[nj1+
∑L

`=2 nj`(1−Ik`)]

}

and

(i) pk|
⇀
n1, n∼(1)

∼ Beta(νk + 1, γk + 1)

where νk =
∑r

j=1

∑L
`=2 nj`Ik`

and γk =
∑r

j=1

{
nj1 +

∑L
`=2 nj`(1− Ik`)

}
.

but

(ii) π(
⇀
n1|n∼(1)

) ∝[∏r
j=1

(nj1+
∑L

`=2 nj`)!

nj1!

]
×∏c

k=1

{
[
∑r

j=1{nj1+
∑L

`=2 nj`(1−Ik`)}]!

(
∑r

j=1{nj1+
∑L

`=2 nj`}+1)!

}
From (ii) it is clear that, for the restricted model, the nj1 are
correlated. When analyzing data from the Kansas Farm Sur-
vey, we used the Gibbs sampler to draw values for the nj1

from the distribution determined from (ii) and, again, used the
composition method to draw values for the pk.

2.3 Testing The Equality of Strata Proportions

Let pM1(n∼(1)
) be the marginal likelihood of n

∼(1)
under the

unrestricted model, M1. Let pM0(n∼(1)
) be the marginal like-

lihood of n
∼(1)

under the restricted model M0 : pjk = pk for

each k and j. The Bayes factor is

BF = pM0(n∼(1)
)/pM1(n∼(1)

)

For use of the Bayes factor in hypothesis testing, since we
must work with marginal densities for n

∼(1)
, we need a proper

prior on
⇀
n1. Therefore, we take the nj1 to be independent with

probability mass function

p(nj1) =
1

a
(0)
j + 1

for nj1 = 0, . . . , a
(0)
j for some integer a

(0)
j determined from

the posterior distribution for nj1 such that

a
(0)
j = max{nj1|π(nj1|n∼j(1)

) ≥ .001}

We also use Beta(αk, βk) as a more flexible choice than uni-
form priors for the pjk, in the unrestricted model, and pk, in
the restricted model.

Upon specifying the joint densities under each model and
integrating to obtain the marginals for n

∼(1)
we have that, under

the unrestricted model, M1,

pM1(n∼(1)
) =

∑
⇀
n 1∈N

[
r∏

j=1

{
1

a
(0)
j + 1

(nj1 +
∑L

`=2 nj`)!

nj1!
∏L

`=2 nj`!

×
c∏

k=1

{
(
∑L

`=2 nj`Ik` + αk − 1)!{nj1 +
∑L

`=2 nj`(1− Ik`) + βk − 1}!
(nj1 +

∑L
`=2 nj` + αk + βk − 1)!B(αk, βk)

}}]
,

where B(α, β) = Γ(α)Γ(β)
Γ(α+β)

, N = {⇀
n1|0 ≤ nj1 ≤ a

(0)
j for j =

1, . . . , r}; and, under the restricted model, M0,

pM0(n∼(1)
) =

∑
⇀
n 1∈N

[
r∏

j=1

{
1

a
(0)
j + 1

(nj1 +
∑L

`=2 nj`)!

nj1!
∏L

`=2 nj`!

}

×
c∏

k=1

{
{νk + αk − 1}![γk + βk − 1]!

[νk + γk + αk + βk − 1]!B(αk, βk)

}]
,

where νk and γk are as previously defined in (i) of section 2.2.2.
Direct computation of the Bayes factor is certainly possible but

it was expected to be very time consuming since the cardinality of
N is very large. For this reason, we opted for using Monte Carlo
integration upon observing that the Bayes factor can be expressed as
a conditional expectation; that is,

BF = E

{
W0(

⇀
n1)

W1(
⇀
n1)

∣∣∣ n
∼(1)

}
,

where the expectation is taken with respect to the conditional distri-
bution

⇀
n1|n

∼(1)
under model M1. Here

W0(
⇀
n1) =

c∏
k=1

{
{νk + αk − 1}![γk + βk − 1]!

[νk + γk + αk + βk − 1]!

}
and
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W1(
⇀
n1) =

r∏
j=1

c∏
k=1

 (
∑L

`=2 nj`Ik` + αk − 1)!{nj1 +
∑L

`=2 nj`(1 − Ik`) + βk − 1}!

(nj1 +
∑L

`=2 nj` + αk + βk − 1)!


Since we already have available samples from the posterior densities

of the components of
⇀
n1, for a large sample

⇀
n

(h)

1 , h = 1, . . . , M ,
we can obtain a simulation consistent estimator of BF as

B̂F =
1

M

M∑
h=1

eW (
⇀
n

(h)
1 ) ,

where W (
⇀
n

(h)

1 ) = ln{W1(
⇀
n

(h)

1 )} − ln{W0(
⇀
n

(h)

1 )}.
When analyzing the Farm Survey Data, we worked with the log-

arithms of the Bayes factor for which we obtained approximate nu-
merical standard errors (NSE’s) using a first-order Taylor series ex-
pansion which yielded NSE[ln(B̂F )]

.
= SW /

√
M, where S2

W =∑M
h=1{W (

⇀
n

(h)

1 )− W̄}2/(M − 1) and W̄ = 1
M

∑M
h=1 W (

⇀
n

(h)

1 ).

3. Analysis of The Kansas Farm Data

Our data were the replies to the question: What are your primary
sources of veterinary information? Farmers were allowed to pick all
the sources (professional consultant [A], veterinarian [B], state or lo-
cal extension service [C], magazines [D], feed companies and rep-
resentatives [E]) that applied to them. The data did not include the
number of farmers to whom none of the choices applied and farm-
ers were classified by education level: high school or less, vocational
school, 2-year college, 4-year college, other. The inference problems
of interest were: the number of farmers who said “no” to all choices,
the probabilities of each choice, the most frequent choice and deter-
mining if the distribution of information sources differs by education
level.

We now outline our approach for finding the most popular choice.
For the unrestricted model, given j = 1, . . . , r, let ρjk denote the
ascending order rank of pjk for k = 1, . . . , c. (Then, ρjk′ = c
if ρjk′ = max{pjk|k = . . . , c}.) If p

∼

(h) for h = 1, 2, . . . , M

are M samples from the posterior distribution of p
∼

, let r
(h)
jk denote

the ascending order rank of p
(h)
jk among p

(h)
j1 , . . . , p

(h)
jc for each h

and j. A 95% credible interval (CI) for ρjk is determined from
{r(h)

jk |h = 1, 2, . . . , M}. The category that is the most popular is
the one corresponding to the CI which lies to the right of all of the
other intervals.

Tables 2, 3 and 4, respectively, provide for each education level
estimates of the number of farmers who said “no” to all choices, the
probabilities of each choice, and the most frequent choice. In the
order of the farmer’s education levels listed in the first paragraph of
this section, the nj1 for j = 1, . . . , 5 denote the estimated numbers
of farmers for whom none of the veterinary information sources of-
fered as questionnaire choices was applicable. In Table 3, subtables
(a) - (e) provide results under the unrestricted model. In general, the
posterior standard deviations are much smaller under the restricted
model. Under the unrestricted model, note that the estimated propor-
tions can be very different by education level; look, for example, at
the estimates for source C in this table. In Table 4, note that, except
for one case, all the CI’s for each education level overlap under the
unrestricted model indicating that there is no most popular choice.
However, it is clear that for “2 year college” source A is least popu-
lar. Under the restricted model, it appears that choice D is the most
popular one.

The Loughin and Scherer (1998) bootstrap procedure [denoted by
LS] and the log-Bayes factor procedure [denoted by LBF] for test-
ing the hypothesis of equality of proportions exhibit a certain consis-
tency with respect to each other when applied correctly or incorrectly.
We now indicate this in our discussion of the numerical results. The
LS method gives a p-value of 0.047 with a numerical standard error
of 0.003; thus, it is marginally significant. The sample-based value
for the LBF was 12.21 with a numerical standard error of 0.0268
showing very strong evidence in favor of the restricted model. [See
Kass and Raftery (1995) for a discussion of Bayes factors.] When
examining a reduced table which involved only the counts for re-
sponse sequences in which farmers replied that one, and only one, of
the sources provided veterinary information, the chi-squared p-value
of 0.479 showed no evidence against the restricted model and the
LBF value of 4.79 indicated strong (but not very strong) evidence
in favor of that model. There also seems to be a consistent pat-
tern when the testing procedures are incorrectly applied to m-table
cross-classifications. The chi-squared value reported by Loughin and
Scherer was 0.602 (no evidence) and the corresponding LBF value
was 12.44 (very strong evidence).
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Table 2: Estimates of the number of farmers with ‘no’ on all choices by model

Unrestricted Model Restricted Model

EDL PM PSD NSE INT PM PSD NSE INT

n11 10.7 4.29 0.040 (4.0, 20.0) 20.1 5.66 0.064 (10.0, 32.0)
n21 2.9 2.40 0.025 (0.0, 9.0) 3.8 2.24 0.023 (0.0, 9.0)
n31 5.2 3.22 0.032 (1.0, 13.0) 7.2 3.13 0.035 (2.0, 14.0)
n41 46.6 12.48 0.124 (26.0, 74.0) 25.7 6.55 0.070 (14.0, 40.0
n51 1.7 1.75 0.017 ( 0.0, 6.0) 3.4 2.09 0.021 (0.0, 8.0)

NOTE: EDL - education level, PM - posterior mean, PSD - posterior standard deviation,
NSE - numerical standard error, INT - 95% credible intervals. We do not round out to
integers.

Table 3: Posterior Distributions of Sources by Education Level & Model

Source PM PSD NSE INT PM PSD NSE INT

(a) High School (b) Vocational School

A .199 .040 .000 (.127, .284) .147 .078 .001 (.032, .331)
B .388 .051 .001 (.292, .489) .339 .108 .001 (.154, .566)
C .298 .047 .000 (.210, .396) .436 .116 .001 (.221, .671)
D .478 .054 .001 (.374, .584) .437 .116 .001 (.222, .668)
E .408 .052 .001 (.311, .511) .243 .096 .001 (.085, .453)

(c) Two-year College (d) Four-year College

A .053 .036 .000 (.007, .144) .125 .027 .000 (.077, .183)
B .370 .083 .001 (.218, .543) .187 .034 .000 (.126, .258)
C .290 .077 .001 (.153, .453) .255 .040 .000 (.182, .338)
D .474 .088 .001 (.305, .646) .337 .045 .000 (.253, .429)
E .394 .085 .001 (.239, .565) .186 .034 .000 (.125, .257)

(e) Other (f) Restricted Model

A .228 .099 .001 (.069, .445) .139 .020 .000 (.103, .179)
B .285 .108 .001 (.102, .521) .281 .027 .000 (.230, .335)
C .510 .125 .001 (.272, .748) .296 .028 .000 (.244, .352)
D .398 .119 .001 (.181, .643) .408 .031 .000 (.349, .469)
E .399 .119 .001 (.186, .650) .290 .028 .000 (.238, .346)
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Table 4: Posterior Distributions of Most Popular Source by EDL & Model

Source PM PSD NSE INT PM PSD NSE INT

(a) High School (b) Vocational School

A 1.06 0.233 0.002 (1.00, 2.00) 1.30 0.612 0.006 (1.00, 3.00)
B 3.40 0.739 0.007 (2.00, 5.00) 3.20 1.003 0.010 (1.00, 5.00)
C 2.09 0.485 0.005 (1.00, 3.00) 4.14 0.912 0.010 (2.00, 5.00)
D 4.74 0.547 0.006 (3.00, 5.00) 4.15 0.890 0.009 (2.00, 5.00)
E 3.71 0.746 0.008 (2.00, 5.00) 2.20 0.899 0.009 (1.00, 4.00)

(c) Two-year College (d) Four-year College

A 1.02 0.048 0.000 (1.00, 1.00) 1.12 0.370 0.004 (1.00, 2.00)
B 3.37 0.927 0.009 (2.00, 5.00) 2.51 0.690 0.007 (1.00, 4.00)
C 2.44 0.730 0.007 (2.00, 4.00) 3.91 0.473 0.005 (3.00, 5.00)
D 4.53 0.742 0.008 (3.00, 5.00) 4.95 0.231 0.002 (4.00, 5.00)
E 3.66 0.920 0.010 (2.00, 5.00) 2.50 0.696 0.007 (1.00, 4.00)

(e) Other (f) Restricted Model

A 1.63 0.899 0.009 (1.00, 4.00) 1.00 0.000 0.000 (1.00, 1.00)
B 2.20 1.064 0.011 (1.00, 5.00) 2.72 0.783 0.008 (2.00, 4.00)
C 4.39 0.887 0.009 (2.00, 5.00) 3.24 0.784 0.008 (2.00, 4.00)
D 3.39 1.121 0.012 (1.00, 5.00) 5.00 0.054 0.001 (5.00, 5.00)
E 3.39 1.122 0.011 (1.00, 5.00) 3.04 0.804 0.008 (2.00, 4.00)
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