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Abstract

In this paper we consider nonstationary time series, char-
acterized by time-varying memory. We model the tem-
poral changes of the memory parameter (or Hurst pa-
rameter) in the time domain, by using a moving win-
dow approach. Our estimation procedure incorporates a
data-driven scheme for optimal bandwidth selection. The
proposed methodology is illustrated on hydrological and
financial data sets.
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1. Introduction

The study of long-memory time series has been the
object of intense research in the past decades. A
second-order stationary process Xt is said to be
long-range dependent (or to have long memory) if
Cov(Xt, Xt+k) ∼ C(k)|k|2H−2, where C is a slowly
varying function at infinity, and H ∈ R\ {0} is the
so-called Hurst or memory parameter. A comprehensive
study on long memory is given in [1], including detailed
descriptions of several estimators of H, in both the
time and frequency domains. Rigorous theoretical
considerations on the estimation of H in the frequency
domain are given in [7, 8].

More recently the study of nonstationary time series
has received much attention. This interest is both
theoretical and applied, a main motivation being the
observed temporal nonstationarity in many real life
processes. One way to describe nonstationarity is by
allowing the memory parameter to change with time.
This seems to be a realistic assumption, as illustrated in
[2], where a test for a change of the long-memory param-
eter is proposed. For the estimation of time-dependent
memory parameter H [3] use the R/S method, and
[10] propose a statistical tool for the local analysis of
self-similarity (LASS). [4] argue that detrending moving
average (DMA) provides more accurate results than the
standard wavelet transform of the higher order power
spectrum technique.

In financial framework, one can interpret H as a mea-
sure of memory length, or influence of the past on in-
vestors in the stock market, since H contributes to the
autocorrelation funcion of the series. By imposing a con-
stant Hurst parameter on such processes, investors would
always take the same amount of past information into ac-
count when making their investment decisions. This view
of the world is neither reasonable, nor supported by em-
pirical data. In this paper we propose a nonparametric
method for the estimation of time-varying memory pa-
rameter in the time domain.

Our main contribution is that of providing an auto-
matic scheme for optimal bandwidth selection, based on
minimization of the variance of Ĥ(t) for each t. The pa-
per is organized as follows. Section 2 gives the theoretical
framework, followed by a detailed description of a data-
driven scheme for optimal bandwidth selection in Section
3. Two applications on hydrological and financial data
sets are presented in Section 4. Concluding remarks are
made in Section 5.

2. Theoretical framework

Let x1, . . . , xT be observations from an underlying pro-
cess xt with common mean µ = E(xt), variance σ2

x =
Vxt = E (xt − µ)2 , and correlation function ρ(i, j) =
corr(xi, xj). Consider the sample mean estimator xT :=
1
T

∑T
t=1 xt. It holds

V(xT ) =
σ2
x

T
(1 + δT (ρ)) , (1)

with δT (ρ) =
1
T

∑
i 6=j

corr(xi, xj).

If xt is i.i.d. then δT (ρ) = 0 and we have the classic
result of i.i.d. statistics, that the variance of the sample
mean decays to zero with a rate of T−1. Of course,
we do not expect that observations in time are inde-
pendent, thus in general δT (ρ) 6= 0. For a covariance
stationary process, the correlations ρ(i, j) solely depend
on the time lag |i − j|, thus δT (ρ) can be simplified to
δT (ρ) = 2

∑T−1
k=1 (1− k

T )ρ(k), with ρ(k) = corr(xt, xt−k).

If limT→∞ δT (ρ) = c ∈ R then the variance of the
sample mean still goes to zero with rate T−1. However,
in practice one often finds a slower convergence rate, i.e.
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V(xT ) = o(T−α) with −1 < α < 0, which is in fact one
definition for persistent long range dependence with long
memory parameter d = 1+α

2 (H = d+ 1
2 ).1

We model the variance decay explicitly as V (xt) =
σ2
xt
αeε, with standard assumptions on the error process

ε (namely zero mean and common finite variance σ2
ε). By

taking logs we get

log V(xt) = log σ2
x + α log t+ ε. (2)

So an estimate for α is given by the OLS slope estima-
tor of

logS2
t = log c+ α log t+ ε, (3)
t = tmin, tmin + 1, . . . , tmax < T,

where S2
t is the sample variance of all calculated rolling

sample means, with t = tmin, . . . , tmax observations per
sampling (see Section 3 for details).

Typically, the points
(
log t, logS2

t

)
are scattered

around a line with slope α. For short memory processes
α̂ ≈ −1, whereas for long memory in the data α̂ 6= −1.2

Table 1: Characterization of time series memory: Rela-
tion between α, H, and d

type of memory α H = 1 + α
2 d = H − 1

2

short memory = −1 = 1
2 = 0

anti-persistent < −1 < 1
2 < 0

persistent > −1 > 1
2 > 0

As mentioned in the Introduction, our assumption is
that H, and consequently α, may change with time. A
moving window approach is used in order to capture these
possible changes. Thus, at any time point t, we only use
the observations in a centered window of length 2b+1. As
with all nonparametric techniques, the choice of optimal
window width (or, equivalently, of b) is crucial. In the
next section we propose an automatic procedure for the
choice of bopt, based on minimizing V(α̂).

3. A data-driven scheme for optimal bandwidth
selection

In order to get data for the estimation of V(xt), we use
the method described in [1], Chapter 4, consisting of the
following steps:

1. Let kmin and kmax be chosen constants, and let
2bmax + 1 be the maximum number of observations
we base the estimations on. We estimate α̂(t) (and
thus Ĥ(t) as well) with data from the symmetric in-
terval around Xt: [Xt−bmax , Xt+bmax ].

1The relationship between the convergence rate α, the Hurst
parameter H, and the memory parameter d is given in Table 1.

2In practice on almost exclusively find persistent long memory
processes, i.e. processes with Hurst parameter H > 1

2
.

2. For different integers k in (2 ≤)kmin ≤ k ≤
kmax(≤ 2b+1

2 ), and a sufficient number of subseries
mk of length k, we compute the sample means
x1(k), . . . , xmk

(k) and the overall mean x(k) =
1
mk

∑mk

j=1 xj(k).

3. For each k, take the sample variance of the
sample mean xj(k), j = 1, . . . ,mk as s2(k) =

1
mk−1

∑mk

j=1(xj(k)− x(k))2.

Note that mk is the number of intervals (boxes) needed
to estimate the mean at a subsample size of k. We set
mk := [ 2d+1

k ] for each k, where [x] denotes the integer
part of x. Thus we get mk non-overlapping boxes with
length k, that will use (almost) all the observations in the
overall sample.

The parameter kmin determines the minimum sub-
sample size of xk. If kmin is too small, the estimator
will be very erratic, leading to a high variance, as well as
biased estimates of the slope due to possible short term
dependence in the data. The parameter kmax determines
the maximum subsample size of the xk. If kmax is too
large, mk will become small and similar problems as
with kmin arise.

As a rule of thumb, we set kmin = (2d + 1)
1
3 and

kmax = 2d+1
k.min = (2d+ 1)

2
3 , based on the following heuris-

tic reasons. Both kmin and kmax should get bigger, the
bigger the number of observations gets. Moreover, if we
have kmin observations for every estimation of the mean,
we should also have at least kmin observations to esti-
mate the variance of the sample mean with the maxi-
mum number of observations kmax = 2d+1

kmin
, so that we

get kmin boxes, with each box containing kmax observa-
tions. Finally, the exponent 1

3 is chosen both as a good
approximation of what is reasonable given the length of
the interval 2d + 1, and mathematical convenience. The
optimal window length is then selected as

bopt = argmin
d, kmin(d), kmax(d),mk(d)

V(α̂), (4)

and is obtained by numerical optimization on a grid.

Pseudo-code for numerical optimization

Step 1 Start with xj for j = bmax + 1.

Step 2 Compute V(α̂) for different values of d.

Step 3 Save the d for which V(α̂) is minimal.

Step 4 If j < T − (bmax + 1), j=j+1 and go to Step 2;
otherwise stop.

Since we take symmetric intervals around Xt, the maxi-
mal bandwidth we can use is determined by how close we
get to the edges of the time series. For instance, suppose
we observe {Xt}T=3000

t=1 , and start with the point x700. In
this case b may not exceed 699, because we do not have
any data prior to x1 (the same argument holds at the
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end of the series). We therefore face a tradeoff between
estimating α̂t for as many time points t as possible, but
on the other hand we want to have large bandwidths to
detect long memory. Another problem is that the objec-
tive function takes its minimum value almost every time
at b = bmax, if bmax is too low from the start.

4. Applications

In this section we illustrate the methodology previously
described on hydrological and financial data. Again, our
goal is to accurately estimate the Hurst parameter Ĥ(t)
for every point t, by choosing an optimal b that mini-
mizes V(α̂). We denote by α̂opt and α̂max the estimators
of the slope α in (3) computed with bopt and bmax, re-
spectively. The same notation holds for Ĥopt and Ĥmax

(relationship given in Table 1). Additionally, we compute
the ratio V(α̂opt)

V(α̂max) , for both time series, in order to assess
the efficiency of our method.

4.1 Riverflow data

We look at data for downstream riverflow velocity (in
m/s) sampled with 50 Hz over a period of one minute
[9]. Having T = 3000 observations, we set bmax = 699.
Differencing the data is not necessary, because several
unit-root tests (KPSS, ADF, PP) indicate stationarity of
the process.

Note the hyperbolical decay of the autocorrelation
function in Figure 1, with significant lags up to 3 seconds
(150 lags), indicating long memory behaviour of the pro-
cess. The estimated mean of Ĥopt(t) equals 0.73. We can
also see that H is indeed time-varying (values range from
0.60 – 0.80). Nevertheless Ĥopt(t) ≥ 1

2 for all t, meaning
that this series is a time-varying, but always persistent
long memory process. In Table 2 we can see that with
our procedure, we have overall lowered the variance by
24%.

4.2 Financial data

Here we study EUR/CHF exchange rates with a set of
2040 daily returns from January 4, 1999 to November 6,
2006 ( [5]). Here we set bmax = 599.

Considering the efficient market hypothesis, returns
should be white noise (short memory). Hence we should
get a value of a Ĥt ≈ 0.5.

Figure 2 shows that Ĥopt(t) is not very different to
Ĥmax(t). Looking at the mean of Ĥopt(t), that equals
0.53, we can not clearly infer an overall long term per-
sistence. Again, Ĥopt(t) is time-varying (values range
from 0.43 – 0.62), although in this case the variation
could occur from random effects in the data. Never-
theless we observe the interesting effect that the pro-
cess changes back and forth between anti-persistent long
memory, short memory (possibly white noise) and persis-
tent long memory. Although Ĥopt(t) ≈ Ĥmax(t) we get a

mean optimization gain of 18% (see Table 2).

Table 2: Summary statistics of V(α̂opt)
V(α̂max)

Riverflow EUR/CHF returns
Max. 1.00 1.00

3rd Qu. 0.90 0.93
Mean 0.76 0.82

Median 0.81 0.82
1st Qu. 0.64 0.72

Min. 0.23 0.47

5. Discussion

Estimating the variance of a process correctly is impor-
tant in order to get accurate confidence intervals for
forecasting. For instance, the widely used (short mem-
ory) ARMA models may underestimate the long-term
dependence and the variance of the process, thus yielding
too narrow confidence bands for their forecasts. On
the other hand, ARIMA models are too general to give
reasible forecasts and confidence bands. The method
previously described might provide better insight.

This is an ongoing project (see [6]), detailed theoretical
considerations and assessment of the corresponding fore-
casts will be addressed elsewhere. Our empirical study
proved that the time-varying estimator that we propose is
fast and accurate. It could be used as an exploratory, vi-
sual tool for the analysis of time-dependent data in many
applied fields. An open problem that is worth investigat-
ing concerns the assumptions that need to be made on
the function H(t), in order to get good asymptotic prop-
erties. As seen in Figures 1 and 2, there are situations
when the changes of H in time are quite abrupt, and
where an additional smoothing might be necessary.
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Figure 1: Downstream riverflow velocity in m/s (50 Hz, 1 minute) (left), corresponding autocorrelation function
(center), and Ĥmax(t) (black) versus Ĥopt(t) (red) with bmax = 699 (right).
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Figure 2: Daily log returns of EUR/CHF exchange rate, January 4, 1999 – November 6, 2006 (left), corresponding
autocorrelation function (center), and Ĥmax(t) (black) versus Ĥopt(t) (red) with bmax = 599 (right). Blue horizontal
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