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Abstract

For many designs, there is a nonzero probability of se-
lecting a sample that provides poor estimates for known
quantities. Stratified random sampling reduces the set
of such possible samples by fixing the sample size within
each stratum. However, undesirable samples are still pos-
sible with stratification. Rejective sampling removes un-
wanted samples by only retaining a sample if specified
functions of sample estimates are within a tolerance of
known values. The resulting samples are often said to
be balanced on the function of the variables used in the
rejection procedure. Cube sampling, an alternative to
rejective sampling, attempts to select a balanced sample
with the same first-order inclusion probabilities as the
original design. Through simulation, we compare estima-
tion properties of a rejective sampling procedure to those
of cube sampling for estimating a mean.

KEY WORDS: rejection sampling, cube sampling, strat-
ification, balanced sampling

1. Introduction

When auxiliary data are known for the entire population,
properties of estimators can be improved by incorporat-
ing the auxiliary information in the sample design. In
one classic case, the model

yi = βxi + ei

ei ∼ ind(0, σ2xi)
(1)

is assumed for the population, where y is an analysis vari-
able and x is a known auxiliary variable. To estimate the
total of y, the design of choice is probability proportional
to size (PPS) sampling with first-order inclusion proba-
bilities

πi =

(
N∑

i=1

xi

)−1

nxi, (2)

where n is the sample size and N is the population size.
A second common case uses the model

yij = τi + eij

eij ∼ ind(0, σ2
i ), (3)

for i = 1, . . . , I. When indicators for the I groups are
known, stratified sampling with an optimal allocation
sample size is used. For PPS sampling and stratified

sampling with known xi, samples that produce poor esti-
mators have nontrivial positive probabilities. Stratifica-
tion greatly reduces the sample space from simple random
sampling. However, an excessive number of strata can be
needed when the groups are defined from continuous aux-
iliary variables or a large number of grouping variables are
crossed. For a continuous auxiliary variable satisfying a
linear model, stratification loses some information.

Another way to incorporate information from an auxil-
iary variable in a design is balancing. A sample is bal-
anced for x if

T̂x =
n∑

i=1

π−1
i xi =

N∑
i=1

xi = Tx. (4)

A design is balanced for x if every sample with positive
probability is balanced for x. Balancing for x gives a re-
gression property to Horvitz-Thompson estimators. That
is,

T̂y,reg =
∑n

i=1 π−1
i yi + (Tx − T̂x)β̂

=
∑n

i=1 π−1
i yi

= T̂y,

(5)

where β̂ is an estimator, such as

β̂ = V̂ (T̂x)−1Ĉov(T̂x, T̂y). (6)

If
yi = x′

iβ + ei

ei ∼ ind(0, σ2
i ), (7)

the design variance of T̂y is the design variance of T̂e un-
der perfect balance on x. For highly correlated variables
x and y, the design variance of T̂e can be much smaller
than the design variance of T̂y. Balancing can be thought
of as calibration by design. Balanced sampling has been
proposed by Royall and Cumberland (1981) as a way to
reduce model bias from incorrectly specified polynomial
superpopulation models. Tillé and Deville (2004) inves-
tigated methods of selecting balanced samples.

In practice, finding a balanced design is infeasible for
most data. Very tight balancing can lead to a design with
some joint inclusion probabilities that are zero, called an
unmeasurable design. If a design is unmeasurable, there
does not exist a design unbiased variance estimator. Even
if the design is measurable, some joint probabilities can
be very small due to balancing. Some balancing proce-
dures can lead to small first-order inclusion probabilities
and high variability in weights. Rather than reduce the
sample space to few possible samples, partial balancing
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is done in practice (Tillé 2006 and Fuller 2007). Two eas-
ily implementable methods have been developed to select
a nearly balanced sample: rejection sampling and cube
sampling. We compare design properties of these two
methods using simulations.

2. Balanced Sampling Procedures

Rejection sampling involves discarding any sample that
does not meet a specified balancing tolerance and is the
method used by Royall and Herson (1973). Fuller (2007)
presents a condition for rejecting a sample. A sample is
selected under any design and retained if

(T̂x − Tx)′[V (T̂x)]−1(T̂x − Tx) < γ2 (8)

for some constant γ > 0, where T̂x is the Horvitz-
Thompson total estimator for x,

V (T̂x) =
N∑

i=1

N∑
j=1

(πij − πiπj)xix
′
iπ

−1
i π−1

j , (9)

and πij is the joint inclusion probability of unit i and
unit j. Otherwise, the sample is rejected, a new sample
is selected under the initial design, and condition (8) is
checked for the new sample. If the original design has a
central limit theorem, the left side of (8) is asymptotically
a χ2 random variable with degrees of freedom equal to
the number of auxiliary variables. For application, an
approximate rejection rate can be set using the quantiles
of a χ2 distribution for γ2.

The cube method was developed by Tillé and Deville and
is described in Tillé (2006). The cube method attempts to
select a balanced sample with predetermined first-order
inclusion probabilities. If the first-order inclusion vector
does not lead to a balanced design, an additional step of
minimizing a cost constraint is used. Unlike the rejection
procedure, higher order initial inclusion probabilities are
not prespecified. The cost minimization step maintains
the specified initial first-order inclusion probabilities.

As a way to understand the cube procedure, Tillé (2006)
describes sampling geometrically. The set of all possible
samples is defined to be the set of vectors for vertices
of an N dimensional unit cube. For example, if N = 3,
the vertex (0, 1, 1) denotes a sample containing units two
and three. Using the balancing equation (4) and desired
πi for i = 1, . . . , N , a balancing plane is created. Any
sample where the balancing plane intersects a vertex of
the unit N dimensional cube is a balanced sample. The
design is balanced if every point of intersection between
the balancing plane and the unit cube is a vertex of the
unit cube.

The cube sampling procedure begins by selecting a vector
on the balancing plane. Using a balancing martingale,
a random walk from the initial point to an edge of the

unit cube is done. Tillé refers to the random walk step
as the flight phase. If the edge point at the end of the
random walk is a vertex of the unit cube, the sample
is selected. Otherwise, a cost minimization procedure is
used to convert the fractional components of the edge
vector to integers. The integer components of the edge
vector are not changed in the cost minimization step.
Tillé refers to the cost minimization step as the landing
phase.

Other procedures besides rejection and cube sampling
can be used to obtain nearly balanced samples. Stratifi-
cation can use boundaries determined by the size of the
x variables (Fuller 1981). A time consuming procedure
of enumerating all possible samples and assigning proba-
bilities could be implemented for small populations. The
main drawback with sample enumeration and balancing
through stratification is the lack of clear extensions to
a large number of auxiliary variables. The decision for
the number of variables to use in the rejection and cube
sampling procedures is the same as deciding how many
variables to include in a regression estimator.

Software has been developed for selecting cube sam-
ples. For rejection sampling, standard software pack-
ages can be used to select a sample and compute (8).
A loop needs to be written to complete the procedure.
Programs for selecting cube samples have been writ-
ten for SAS and R. See Rousseau and Tardieu, 2004
for SAS and Tillé and Matei (2005) for R. A faster
SAS-IML macro has been developed and is available
at http://www2.unine.ch/Jahia/site/statistics/op/edit/
pid/10891. The R program available in the sampling li-
brary was used in the simulations in this paper. Because
the cost minimization step of cube sampling is computa-
tionally intensive, for more than 20 balancing variables, a
variable suppression step is recommended for the landing
phase.

3. Inclusion Probabilities

Both rejection sampling and cube sampling require ini-
tial first-order inclusion probabilities as inputs. The ac-
tual first-order inclusion probabilities are different than
the initial values for rejection sampling. For rejection
sampling, units closer to the population mean will have a
higher selection probability than units far from the mean.
Cube sampling has explicit control on the first-order in-
clusion probabilities.

To illustrate differences between initial and final inclusion
probabilities, samples of size 20 from a population of 100
units were simulated. The population of x-values was
generated as random variables from a standard normal
distribution. The rejection procedure used simple ran-
dom sampling as the initial design. First-order inclusion
probabilities were estimated using a Monte Carlo simula-
tion of size 100,000 (Figure 1). The lines are smoothing
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spline fits. An approximate 90% rejection rate was used
for the rejection sampling. From rejection sampling the-
ory, first-order inclusion probabilities are approximately
a quadratic function of the distance xi− xN for an equal
probability initial sample design. Changes to the first-
order inclusion probabilities from 0.2 are not detected for
the cube sample design.

The joint inclusion probabilities for the rejection sam-
pling procedure differ from those of the initial design. A
pair of units i and j are likely to have a high joint in-
clusion probability if xi + xj − 2xN is close to zero for
an equal probability initial sample design. The joint in-
clusion probabilities were estimated for the simulation of
samples of size 20 from 100 (Figure 2). The initial joint
inclusion probability for simple random sampling is 0.038.
The rejection sampling joint inclusion probabilities are
approximately a quadratic function of xi + xj . The cube
sampling joint inclusion probability field appears to have
sharper angles than the rejection joint inclusion probabil-
ities. The high joint inclusion probabilities for the cube
are associated with pairs of units that are on the far op-
posite sides of xN .

Given the first and second-order inclusion probabilities,
the Horvitz-Thompson estimator using the initial inclu-
sion probabilities under rejection sampling is biased while
the Horvitz-Thompson estimator under cube sampling
is unbiased. However, the standard Horvitz-Thompson
variance estimator is biased for both procedures. Us-
ing Monte Carlo methods, the inclusion probabilities can
be estimated so that nearly unbiased Horvitz-Thompson
estimators can be used. However, for a large population
size, simulating enough samples to give a precise estimate
of the joint inclusion probability for each pair of units can
be impractical. A small sample and a model for the first
and second-order inclusion probabilities can be used in-
stead of directly estimated inclusion probabilities. An
alternative approach is to use a regression estimator and
the variance of the regression estimator since balancing is
similar to regression through design. Fuller (2007) gives
conditions for the consistency of the regression estimator
and variance estimator for rejection sampling. We inves-
tigate the regression estimator with another simulation.

4. Simulation

A population of size 100 was generated from the model

yi = xi + 0.55x2
i + xiei

ei ∼ iidN(0, 0.4), (10)

where the xi are fixed values in the range of 0 to 4 (Figure
3). The population was held fixed after initial selection.

The regression estimator is

yreg = zN β̂, (11)

where z is a vector of auxiliary variables containing the
design variables and xi,

β̂ =

(
n∑

i=1

ziφiπ
−2
i z′i

)−1 n∑
i=1

ziφiπ
−2
i yi, (12)

zN is the population mean of zi, and φi are constants
similar to the finite population correction factors. The zi

depend on the initial design used for rejection sampling.

We consider the cases of Poisson sampling and stratified
random sampling with two units per stratum selected as
initial designs. Strata were determined by setting the
boundary so that the within stratum sum of sorted xi was
roughly equal for all strata. The sample size was set to
be 20, so ten strata were formed. The stratum sizes were
35, 15, 11, 9, 8, 7, 5, 4, 3, and 3. The rejection procedure
uses a stratified two-per stratum sample selection with
equal inclusion probability within a stratum. Only the x
variable is used in the rejection balancing step. For cube
sampling, the vector of balancing variables is the vector of
stratum indicators and x. The z vector for stratification
contains H = 10 stratum indicator variables,

zhi =
{

1 unit i in stratum h
0 otherwise (13)

for h = 1, 2, . . . , 10, and xi.

Initial selection probabilities for Poisson sampling with
sample size 20 were set to the values in the initial strat-
ified sampling design. The vector of balancing variables
is (1, πi, xi, (1−πi)−1πi). The first variable controls pop-
ulation size estimators, the second variable controls sam-
ple size, the third variable balances on x, and the fourth
variable is necessary so that the regression estimator is
design consistent. The rejection rate was set at 90% for
stratified sampling and 90% and set at 95% for Poisson
initial sampling.

For Poisson sampling, φi = (1 − πi). The variance esti-
mator for yreg is the variance estimator of e, the mean
of êi = yi − z′iβ̂, based on the initial design. For Poisson
sampling, the variance estimator used is

V̂ (yreg) = (n− k)−1nz′NM−1
zz

∑n
i=1 ziπ

−4
i

×(1− πi)3ê2
i z

′
iM

−1
zz zN ,

(14)

where

Mzz =
n∑

i=1

ziπ
−2
i (1− πi)z′i, (15)

and k is the number of variables in z.

For stratified random sampling with two-per stratum,
φi = (Nh − 1)−1(Nh − 2). The variance estimator used
for stratified sampling is

V̂ (yreg) = (H − 1)−1H
H∑

h=1

[(1− fh)1/2{0.5Wh

+(zN − z)M−1
zz φhW 2

h (zh1 − zh2)}
×(êh1 − êh2)]2,

(16)
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where Wh = nh/Nh, φh is φi for units in stratum h, zhi

is the auxiliary variable vector i in stratum h,

êhi = yhi − yh − (zhi − zh)β̂, (17)

yh and zh are stratum means of yhi and zhi, respectively,
and H = 10 is the number of strata.

Horvitz-Thompson estimators were constructed using ini-
tial inclusion probabilities. The variance estimators used
for cube sampling were the same as for rejection sam-
pling. Confidence intervals were constructed using a nor-
mal approximation for the distribution of the regression
estimator. The number of samples selected was 30,000
for each Monte Carlo simulation.

The variance of the Horvitz-Thompson mean under Pois-
son sampling with a sample size of 20 with no balancing
is 0.080. Results reported in Table 1 are standardized
by the Horvitz-Thompson variance. Thus the variance
of the Horvitz-Thompson estimator for cube sampling is
0.080(0.142) and the bias of the Horvitz-Thompson es-
timator is

√
0.080(−0.0020). The regression estimator

is superior to the Horvitz-Thompson estimator for both
rejection and cube sampling. The gain from using the
regression estimator is larger for rejection than for the
cube method, likely due to the cube method achieving
tighter balance than the rejection method. The biases
in the regression estimators are negligible relative to the
variances.

The cube sampling procedure has a slightly smaller vari-
ance than that of the rejection design with a 90% rejec-
tion rule. The rejection procedure with an approximate
95% rejection rate has a slightly smaller variance than
the cube design. Increasing the rejection rate increased
the bias of the regression estimator. The bias of the re-
gression estimator for 95% rejection is significant, but
negligible relative to the variance.

Hajek ratio means were also computed using the initial
first-order inclusion probabilities. The Hajek means dif-
fered little from the Horvitz-Thompson means due to high
control on estimated population sizes and, hence are not
reported.

The Monte Carlo average of the Horvitz-Thompson vari-
ance estimator, V̂ (yHT ), is close to the variance under
the initial design. Tillé (2006) recommends several vari-
ance estimators based on a Poisson sampling approxima-
tion with corrections for known constraints in the design
variance. We found the regression variance estimators in
equations (14) and (16) performed better for this simu-
lation than the third estimator in Tillé (2006, p. 171).
Deville and Tillé (2005) recommend the fourth estimator
on page 171 in Tillé (2006), but that estimator requires
solving a nonlinear equation system, which would have
been computationally expensive to add to the simulation.
Matei and Tillé (2005) recommend variance estimator 1,
which is a regression variance estimator using a Poisson

Table 1: Properties of samples based on Poisson sampling of
size 20

Cube Rej. 90% Rej. 95%
bias(yHT ) -0.002 -0.016 -0.007
bias(yreg) -0.002 0.002 0.005
V (yHT ) 0.142 0.270 0.220
V (yreg) 0.131 0.136 0.129
V̂ (yHT ) 0.995 0.989 0.991
V̂ (yreg) 0.122 0.123 0.121
95% CI rate 94.5% 93.9% 95.5%

Table 2: Properties of samples based on stratified sampling of
size 20

Cube Rej. 90%
bias(yHT ) -0.028 0.014
bias(yreg) -0.013 0.014
V (yHT ) 0.910 0.866
V (yreg) 0.929 0.865
V̂ (yHT ) 1.022 0.998
V̂ (yreg) 0.907 0.881
95% CI rate 94.5% 93.7%

sampling design variance as an approximation. However,
estimator 1 also performs poorly in this simulation setting
due to the sample size and number of auxiliary variables.
Given the strong performance of the regression variance
estimators, we prefer the regression variance estimator to
the Tillé suggested variance estimators.

The variance of the Horvitz-Thompson mean under the
initial stratified design is 0.011. Estimates of Table 2 are
standardized by the Horvitz-Thompson variance. The
gain from balancing on x is not large since stratifica-
tion has curtailed the sample space. Likewise, the re-
gression estimator is not a noticeable improvement over
the Horvitz-Thompson estimator. The rejection sampling
design slightly outperforms the cube sampling design in
terms of variance, likely due to the joint inclusion prob-
abilities in the initial design for rejection sampling.

To assess large sample properties of the balancing proce-
dures, the size of the Poisson simulation was quadrupled.
The population was replicated four times and a sample of
size 80 was selected. The Horvitz-Thompson variance of
a mean under the Poisson design is 0.020. The resulting
relative variances and biases were close to the results for
samples of size 20 (Table 3).

The simulation results agree with the theoretical result
that the regression estimator is an Op(n−1/2) estimator
after rejection of the type used in this paper. From the
simulations, it appears that the regression estimator after
cube sampling possesses similar properties.
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Table 3: Properties of samples based on Poisson sampling of
size 80

Cube Rej. 90%
bias(yHT ) 0.002 -0.006
bias(yreg) 0.002 0.000
V (yHT ) 0.127 0.267
V (yreg) 0.122 0.124
V̂ (yHT ) 0.996 0.994
V̂ (yreg) 0.121 0.121
95% CI rate 96.0% 94.8%

5. Discussion

Rejection sampling and cube sampling produced roughly
equally performing regression estimators. Balancing pro-
vides major gains when the initial design provides little
control on the auxiliary values entering samples. A well
stratified sample design provides many of the benefits
of balancing on a continuous variable. However, further
balancing after stratification can lead to smaller variances
for estimators. In practice, the additional gains from bal-
ancing after large amounts of stratification are likely not
large.

For the simulations, the rejection rate was fixed at 90%
for the larger population. When the population and sam-
ple sizes are increased, the rejection rate can be increased
while still maintaining a large set of possible samples.
From further analysis, the bias of the regression estima-
tor remain negligible for rejection rates near 99%. The
marginal variance reduction due to balancing decreases
as the balancing condition is tightened. It is possible
to have populations where balancing procedures result
in some loss in estimator precision. Therefore, choice of
balancing variables remains important.
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Figure 1: Simulated first-order inclusion probabilities
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Figure 2: Simulated second-order inclusion probabilities

Figure 3: Simulation population
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