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Abstract 

 

In this paper different multivariate structural time 
series models are described and applied to estimate the 
monthly unemployment rate of the Dutch Labour 
Force Survey. The estimation results are compared in a 
model evaluation. Compared to the generalized 
regression estimator, the time series approach results in 
a substantial increase of the precision because this 
approach uses sample information observed in 
previous time periods and other domains to improve 
the monthly estimates. 
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1. Introduction 

Generalized regression (GREG) estimators are widely 
applied by national statistical institutes since they are 
always approximately design unbiased. They have, 
however, relatively large design variances in the case 
of small sample sizes. In this situation, model based 
small area estimators can be used to improve the 
precision of the estimates, since they have smaller 
variance than the GREG estimator. Model 
misspecification, on the other hand, can result in 
seriously biased estimates. The application of model 
based procedures for official statistics therefore 
requires careful model selection and evaluation. 

In this paper, structural time series models are used to 
produce model based estimates for the monthly 
unemployment rate of the Dutch Labour Force Survey 
(LFS). With these models, sample information from 
other time periods and from other domains is borrowed 
to improve the estimates. Key references to the use of 
structural time series models in the context of small 
area estimation are Pfeffermann and Burck (1990), and 
Pfeffermann and Bleuer (1993). The unemployment 
rate is defined as the ratio of the total unemployment 
and the total labour force. 

In section 2 the Dutch LFS is summarized. In section 3 
the multivariate structural time series model is 
described for the monthly unemployment rate for six 
demographic domains. In section 4, estimation results 

for 8 different models are described. Model evaluation 
techniques are used to compare the models in section 
5. Some general remarks are made in section 6.  

2. The Dutch Labour Force Survey 

The objective of the Dutch LFS is to provide reliable 
information about the labour market. The LFS is based 
on a stratified two-stage cluster design of addresses. 
Strata are formed by geographical regions. 
Municipalities are considered as primary sampling 
units and addresses as secondary sampling units. All 
households residing on an address, up to a maximum 
of three, are included in the sample (there is generally 
one household per address in the Netherlands). 

In this paper, the data of the LFS from January 1996 
until December 2006 are used. Until September 1999, 
the LFS was a continuous survey. In October 1999, the 
LFS changed to a rotating panel design, where the 
respondents are re-interviewed four times at quarterly 
intervals. The data from these re-interviews are not 
used in this paper. A structural time series model that 
makes advantages of the rotating panel design, is 
described in Van den Brakel and Krieg (2007).  

The weighting procedure of the LFS is based on the 
GREG estimator (Särndal et al., 1992). The weighting 
scheme consists of a combination of different social-
demographical categorical variables. Because the 
monthly sample size of the Dutch LFS is too small to 
publish reliable monthly figures using the GREG 
estimator, moving averages over the preceding three 
months are published.  

3. A structural times series model for six domains 

Let tθ  denote the population parameter at time t, e.g. 
the true unemployment rate for month t. Direct 
estimators, like the GREG estimator, assume that tθ  is 
a fixed but unknown parameter. Under this design-
based approach, an estimator for tθ  for cross-sectional 
surveys only uses the data observed at time t. Data 
from the past are only used in the case of partially 
overlapping samples in a panel design, but not in the 
case of repeatedly conducted cross-sectional designs. 
Scott and Smith (1974) proposed to consider the 
population parameter tθ  as a realization of a stochastic 
process that can be described with a time series model. 
Under this assumption, data observed in preceding 
periods t-1, t-2, ..., can be used to improve the 
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estimator for tθ . In the context of small area 
estimation this is called borrowing strength in time. 
Sample information from different domains can be 
used to further improve the domain estimates, which is 
known as borrowing strength in space. The common 
approach is to allow for random area and random time 
effects in a linear mixed model, and apply a composite 
estimator like the BLUP or EBLUP, see e.g. Rao and 
Yu (1994). Pfeffermann and Burck (1990) and 
Pfeffermann and Bleuer (1993) proposed to model the 
correlation between the model parameters of the 
domains in a multivariate structural time series model. 
Under this approach, it is also possible to borrow 
strength in space by assuming that model parameters 
for different domains are equal.  

GREG estimates dtY , for the true unemployment rate 

dt ,θ  of domain d and month t based on monthly 
samples are produced for the following six domains: 
(1) Men, 15-24 year, (2) Women, 15-24 year, (3) Men, 
25-44 year, (4) Women, 25-44 year, (5) Men, 45-64 
year, (6) Women, 45-64 year. So each month a vector 

T
ttttttt YYYYYY )     ( 6,5,4,3,2,1,=Y  is observed, 

which can be modelled as 

ttt eθY +=  ,    (3.1) 

with T
ttttttt )     ( 6,5,4,3,2,1, θθθθθθ=θ a vector with 

true monthly unemployment rates for the six domains 
and T

ttttttt eeeeee )     ( 6,5,4,3,2,1,=e the 
corresponding survey errors for each domain estimate.  

With a structural time series model, the population 
parameter can be decomposed in a trend, a seasonal, 
and an irregular component, i.e.: 

tttt εSLθ ++= ,   (3.2) 

where T
ttttttt LLLLLL )     ( 6,5,4,3,2,1,=L  denotes 

the trend, T
ttttttt SSSSSS )     ( 6,5,4,3,2,1,=S  the 

seasonal, and T
ttttttt )     ( 6,5,4,3,2,1, εεεεεε=ε  the 

irregular components. For the trend components the 
smooth trend model is assumed, which is defined by 
the following set of equations: 
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The parameters dtL ,  and dtR ,  are referred to as the 
trend and the slope parameter respectively. The 
seasonal components are modelled as 
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In the models considered in this paper, it is assumed 
that the seasonal effects are uncorrelated, i.e. 

0',, =ddSς . The irregular components dt ,ε  contain 
the unexplained variation and are modelled as 
independent white noise processes. Combining 
equation (3.1) and equation (3.2) yields: 

tttttttttt νSLεeSLeθY ++=+++=+= , 

with T
ttttttt )     ( 6,5,4,3,2,1, νννννν=ν  the sum of 

the survey errors and the irregular component of the 
true population parameter. The components dt ,ν  are 
modelled as white noise processes: 
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This structural time series model can be put in state 
space representation. Subsequently the Kalman filter 
can be applied to obtain optimal estimates for the 
model parameters, see Durbin and Koopman (2001). 
The analysis is conducted with Ssfpack beta 3 
(Koopman e.a., 1999) in combination with Ox 
(Doornik, 1998). Note that a more recent version of 
Ssfpack is used than the 2.2 version described in 
Koopman et al. (1999).  

4. Estimation results for different models 

In this section different models are considered, which 
are special cases of the general model formulation 
given in section 3. 

Model 1 assumes a univariate trend model for each 
domain, i.e. 0, =dtS  for all t and d and 0',, =ddRς  
for all 'dd ≠ .  

In Figure 1 the filtered estimates of model 1 are 
compared with the GREG estimates for domain 6. The 
filtered estimates are used because they are based on 
the complete set of information that would be available 
if the model were used to produce an estimate for 
month t for regular publication purposes. The 
irregularities in the series of the GREG estimates are 
considered as survey errors under the time series 
model, and are therefore flattened out in the model 
estimates. Some of these irregularities, however, are 
seasonal effects. This implies that the model is 
misspecified and the estimates are biased. The standard 
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errors of these estimates, plotted in Figure 3, do not 
reflect this bias, and are therefore not a good measure 
for the accuracy of this model.  

Figure 1: GREG estimates and filtered estimates of 
model 1 for domain 6  
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Model 2 assumes a univariate model for each domain 
that contains a trend and a seasonal component. Thus 

0',, =ddRς  for all 'dd ≠ . 

In Figure 2 the filtered estimates of model 2 are 
compared with the GREG estimates for domain 6. The 
filtered estimates partly follow the fluctuations in the 
GREG series, since they are considered as time 
dependent seasonal effects under model 2. 
Nevertheless a substantial part of the irregularities in 
the series of the GREG estimates are flattened out, 
since they are considered as survey errors under the 
time series model. 

Figure 2: GREG estimates and filtered estimates of 
model 2 for domain 6  
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GREG Model 2  
In Figure 3 the standard errors of the filtered estimates 
of model 1 and 2 are compared with the standard errors 
of the GREG estimates. The standard errors of the 
filtered estimates are substantially smaller, since the 
time series models borrow strength from the past. The 
standard errors of model 1 are smaller than the 
standard errors of model 2. Nevertheless model 2 has 
to be preferred because a model with seasonal 
components is more realistic. Table 1 shows the means 
of the standard errors for the other domains.   

Figure 3: The standard errors of the GREG estimates 
and filtered estimates of model 1 and 2 for domain 6 
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The domains can be classified in two groups with more 
or less equal seasonal effects. The seasonals of  
domain 1 and 2 follow a similar pattern; the smoothed 
estimates, obtained with the fixed interval smoother, 
are shown in Figure 4. The difference in February, 
however, is quite large. The seasonals of the other 4 
domains also follow a similar pattern; the smoothed 
estimates are shown in Figure 5.  

Figure 4: Seasonal effects of domain 1 and domain 2, 
smoothed estimates of model 2 
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Figure 5: Seasonal effects of domain 3, 4, 5, and 6, 
smoothed estimates of model 2 
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The difference between domain 3 and domain 4 for 
October is quite large. The model finds constant 
seasonal effects for domain 1, 2, and 3, i.e. 0,, =dtSη . 
Though the seasonals change gradually over time for 
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domain 4, 5 and 6, only the last year is presented in 
Figure 5 in order to make the figure readable.  

Model 1 and 2 only borrow strength in time. Now 
models are considered that also borrow strength in 
space by allowing non-zero correlations between the 
slope parameters of the smooth trend models for the 
different domains.  

Model 3 allows for separate correlations between the 
slope parameters of the six domains. This model does 
not produce reliable estimates for the monthly 
unemployment rates. Figure 6 shows that the smoothed 
estimates of the unemployment rate of e.g. domain 3 is 
very different from the GREG estimates. Extremely 
biased estimates are obtained with this model. Similar 
results are obtained for the other domains. The 
numerical estimation procedure fails to find a valid 
maximum likelihood estimate for the covariance 
matrix of the slopes, since this covariance matrix is not 
positive semidefinite. As a result the estimated 
correlations vary too much and are conflicting with 
each other. We do not further elaborate on model 3 and 
also exclude this model from the model evaluation in 
section 5.  

Figure 6: Smoothed estimates of model 3 and GREG 
estimates for domain 3 
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To avoid these problems, simpler models are 
considered were the correlations between the slope 
parameters are restricted.  

Model 4 assumes that the correlations between the 
slopes of all domains are equal. The correlation is 
estimated as =',, ddRς  0.86 for all d and d�. Figure 7 
shows the influence of this correlation on the estimates 
of domain 6. The correlation between the slope 
parameters results in a small adjustment of the trend. 

Model 5 allows for different correlations. The 
estimated correlations are bounded to take values 
between bounds 1b  and 2b , 10 21 <<< bb , which 
are chosen in such a way that the estimated covariance 
matrix for the slope parameters is positive 
semidefinite. The lower and upper boundaries equal 
0.805 and 0.915 and are derived through a grid-search. 

Figure 8 shows that the estimation results of model 4 
and model 5 are very similar.  

Model 6 allows for non-zero correlations between 
domain 1 and 2, between 3 and 4, and between 5 and 6. 
This implies that three bivariate models are assumed 
for the two gender classes within each age-class.  
Conflicting correlations are avoided because a two 
dimensional covariance matrix is always positive 
semidefinite. The correlations are estimated as 

=2,1,Rς 0.65, =4,3,Rς 0.95, =6,5,Rς 0.79. 

The filtered estimates obtained under the models 4, 5 
and 6 for domain 6 are compared in Figures 8 and 9.  

Figure 7: Filtered estimates of model 2 and model 4 
for domain 6 
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Figure 8: Filtered estimates of model 4 and model 5 
for domain 6 

0.03

0.04

0.05

0.06

0.07

0.08

1998 1999 2000 2001 2002 2003 2004 2005 2006

Year

U
n

em
pl

oy
m

en
t  r

at
e

Model 4 Model 5  
Figure 9: Filtered estimates of model 4 and model 6 
for domain 6 
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The estimates obtained under model 4 and 5 are very 
similar. The estimates of the last years, obtained under 
model 6, are slightly larger than the estimates obtained 
under model 4. The estimates obtained with model 6 
are very similar to the univariate model 2.  

Model 7 allows for non-zero correlations between 
domain 1 and 2, between 3 and 4 and between 5 and 6, 
as defined in model 6. Based on the estimates for the 
seasonal effects obtained under model 2, it is also 
assumed that the seasonal effects for domain 1 and 2 
and for domain 3, 4, 5 and 6 are equal, i.e. 2,1, tt SS =  
and 6,5,4,3, tttt SSSS === . Figure 10 compares 
the estimates of model 6 and model 7. Due to the 
assumption of equal seasonal effects, the estimates of 
these effects are more stable under model 7. Therefore, 
the series of model 7 follows a slightly smoother 
pattern. If the assumption of equal seasonal effects is 
not true, however, the estimates under model 7 are 
slightly biased. 

Figure 10: Filtered estimates of model 6 and model 7 
for domain 6 
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Model 8 allows for separate correlations between the 
slopes which are forced to lie between upper and lower 
boundaries in the same way as described in model 5. 
As in model 7, it is assumed that 2,1, tt SS =  and 

6,5,4,3, tttt SSSS === . Figure 11 compares the 
estimates of model 5 and model 8.  

Figure 11: Filtered estimates of model 5 and model 8 
for domain 6 
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The standard errors of the GREG estimates and the 
filtered estimates for the different models are 
compared in Table 1. 

The first result is that the standard errors of the filtered 
estimates under model 1 and 2 are much smaller than 
the standard errors of the GREG estimates. This 
illustrates that borrowing strength from other time 
periods can increase the precision of the estimates 
substantially. The standard error does not reflect the 
bias due to model misspecification. Model 1 has the 
smallest standard errors, but as we will see in section 
5.1, this model will result in severely biased estimates 
since it ignores seasonal effects.  

The standard errors can be further reduced by using 
information from other domains (compare model 2 
with models 4 through 8 in Table 1). The additional 
gain, however, is relatively small compared to the 
reduction in the standard errors that is obtained with 
the models that borrow strength from the past. 

Model 6, where three bivariate models are assumed, 
has larger survey errors than model 4 and 5, where all 
domains are correlated. Models that allow for more 
flexible correlation patterns result in smaller standard 
errors. The reduction of the standard error under model 
4 and 6 is smaller compared to the reduction obtained 
under model 5. The correlations under model 5 are 
bounded in a rather artificial way, to avoid the severely 
biased estimates obtained with model 3.  

Borrowing information from other domains by 
assuming that the seasonal patterns are equal for 
different domains, yields a further reduction of the 
standard error (compare model 6 with model 7 and 
model 5 with model 8). 

Table 1: Standard error of filtered estimates (x 1000), 
mean over 2006 
  Model  

Domain GREG 1 2 4 5 6 7 8 

1 18.9 8.1 8.7 8.0 7.8 8.5 8.0 7.2 
2 23.9 9.1 10.5 9.2 9.0 10.1 8.9 7.1 
3 6.0 3.0 3.0 2.8 2.7 2.8 2.8 2.6 
4 8.0 3.5 4.2 3.9 3.8 3.9 3.2 3.0 
5 7.0 2.7 3.3 3.0 2.9 3.2 2.8 2.3 
6 10.1 4.1 5.4 5.1 5.0 5.3 3.9 3.5 

 
5. Model evaluation and model selection 

In Brown e.a. (2001), model diagnostics for small area 
estimation models are proposed. These diagnostics are 
appropriate for linear mixed models. Some of the 
diagnostics can also be used for the multivariate time 
series models that are applied in this paper. They are 
used together with diagnostics which are specific for 
time series, see e.g. Durbin and Koopman (2001). All 
tests are done at a 5% significance level.  
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The model estimates for the first two years are 
excluded from the model evaluation because the model 
estimates from the first periods cannot be used due to 
the diffuse initialisation of the model.  

5.1 Coverage 

For the GREG-estimates, 95% confidence intervals can 
be computed. If the model estimates are similar to the 
true population value, the interval should not cover the 
model estimates in around 5% of the cases. A non-
coverage rate of (much) more than 5% indicates that 
the model estimates are not very similar to the true 
population values, e.g. because they are biased. If 
(much) less than 5% of the model estimates are outside 
the confidence interval, then they are actually too close 
to the GREG estimates.  
The smoothed estimates are used to calculate the 
coverage rates, because they are the most accurate 
estimates under the time series model. Table 2 shows 
the non-coverage rate for all domains and all models. 

Table 2: Monthly non-coverage rate (in %)  for 
smoothed estimates  
 Model 

Domain 1 2 4 5 6 7 8 

1 4.6 1.9 2.8 2.8 2.8 3.7 4.6 
2 8.3 6.5 7.4 6.5 7.4 6.5 5.6 
3 3.7 1.9 0.9 0.9 0.9 1.9 2.8 
4 5.6 4.6 4.6 4.6 4.6 5.6 5.6 
5 8.3 3.7 3.7 3.7 3.7 5.6 5.6 
6 6.5 5.6 4.6 4.6 4.6 4.6 4.6 

Total 6.2 4.0 4.0 3.9 4.0 4.6 4.8 

Total refers to the rates averaged over the six domains. 

 Model 1 is the only one where the non-coverage rate 
of the total is larger than 5%. In the second domain, the 
non-coverage is relatively large for some other models.  

In a similar way the coverage rates of linear 
combinations of the monthly unemployment rates can 
be calculated. For example the mean of the 12 months 
for each calendar year to evaluate whether the model 
estimates are biased in these periods. It is also 
interesting to compute the coverage rates for the mean 
for each month over the different years (all Januaries, 
Februaries etc) to check whether the seasonal patterns 
are modelled adequately. The rates are calculated for 
the separate domains. In case there are two or more 
model estimates outside the confidence interval, this is 
considered as suspicious, since there are only nine 
years and twelve months available.  
For all domains and all models, the yearly coverage for 
the smoothed estimates is 100%. Table 3 shows the 
seasonal non-coverage rate. As expected, the seasonal 
effects are not described well in the first model. 
Furthermore, the confidence interval of October does 
not cover the model estimate of model 7 and 8 for 
domain 3. Figure 5 shows that the difference between 

domain 3 and the other domains is quite large for this 
month.  

Table 3: Seasonal non-coverage rate (in %)  for 
smoothed estimates  
 Model  

Domain 1 2 4 5 6 7 8 

1 17 0 0 0 0 0 0 
2 8 0 0 0 0 0 0 
3 42 0 0 0 0 8 8 
4 17 0 0 0 0 0 0 
5 8 0 0 0 0 0 0 
6 17 0 0 0 0 0 0 

 

5.2 Bias 

Another way to look at possible bias is to plot the 
direct estimates against the smoothed model estimates 

dt ,
�θ . If the model estimates are unbiased, the 

regression line should be close to the line dtdtY ,,
�θ=  

(see Brown e.a.). Therefore, 0β  and 1β  for the 
regression dtdty ,10,

�θββ +=  are estimated together 
with their standard errors. For all models and all 
domains, the OLS estimates for 0β  and 1β  are not 
significantly different from 0 and 1 respectively. 
Therefore, there is no reason to reject one of the 
models based on this evaluation test. Because the 
results of paragraph 5.1, in particular Table 3, show 
that model 1 is biased, it seems that this test is not very 
distinctive for bias in seasonal patterns.  

5.3 Tests for normally distributed prediction errors 

The one-step forecast errors or prediction errors te  are 
defined as the difference between the one-step 
forecasts and the GREG estimates. These errors should 
be normally distributed. To check this, it is tested 
whether the skewness S and kurtosis K  fit the 
normality assumption, see e.g. Durbin and Koopman 
(2001). The skewness is not significantly different 
from 0 for all domains and all models, except for 
domain 6 under model 8, where it is 0.504.  

The kurtosis is not significantly different from 3 for all 
domains and all models except domain 4 under model 
1, where it is 3.95, and domain 6 under model 4, 5, and 
8, where it is 4.11, 4.03 and 4.65, respectively.  

5.4 Heteroscedasticity 

Another model assumption is that the variance of the 
prediction errors is constant in time. A test statistic for 
heteroscedasticity is given by  

∑∑
==

=
78

25

2
132

79

2

t
t

t
t eeH . 

Under the null hypothesis of homoscedasticity, H  is 

54,54F -distributed (Durbin and Koopman, 2001). The 
test detects heteroscedasticity in the prediction errors 
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for domain 1 and domain 5 under all models, domain 3 
under model 7 and 8, and for domain 6 under model 8. 

5.5 Test for independent prediction errors 

To check whether the prediction errors are serially 
independent, the sample autocorrelation functions are 
computed for time lags h=1,2,�,26. Since the sample 
autocorrelation functions of white noise are normally 
distributed with expectation 0 and variance 1/n, no 
more than 5% of the sample autocorrelations of the 
prediction errors should be outside the bounds 

189.0± . The number of sample autocorrelation 
functions outside the bounds is given in table 4. 

Table 4: Number of sample autocorrelation functions 
outside the 95% confidence interval 
 Model 

Domain 1 2 4 5 6 7 8 

1 6 2 1 1 2 3 3 

2 0 0 0 0 0 1 1 
3 7 0 0 0 0 0 0 
4 1 3 2 2 2 0 2 
5 0 1 0 0 1 1 0 
6 1 0 0 0 0 0 0 

Since model 1 does not contain a seasonal component, 
the typical pattern for seasonal autocorrelation should 
be found in the correlograms. Surprisingly, the number 
of autocorrelations that exceed the bounds of the 95% 
confidence interval are smaller than 5% for four out of 
the six domains under this model. The correlogram 
shows a seasonal pattern only for domain 1, 3 and 6. 
The correlograms for domain 2 and 3 are shown in 
Figure 12.  

Figure 12: Correlogram for model 1 and domain 2 and 
3 
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For some of the other models, the autocorrelation is 
suspicious for domain 1. Figure 13 shows the 
correlograms for domain 1 under model 5 and 8. It can 
be seen that there is a cyclical pattern and a large 
autocorrelation for h=1. This pattern is similar for all 
models, except model 1. The cyclical pattern is more 
pronounced in model 8, here more autocorrelations are 
outside the confidence interval.  

Figure 14 shows the correlograms for domain 4 under 
model 7 and 8. The pattern is similar for all models 
except model 1.  

Figure 13: Correlogram for model 5 and model 8 and 
domain 1 
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Figure 14: Correlogram for model 7 and model 8 and 
domain 4 
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5.6 Mean absolute prediction error 

The mean absolute prediction error is computed as 

∑
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A small value for APE implies that the model predicts 
the true population value well. Table 5 shows the APE 
for all models and all domains. 

Table 5: The  APE ( x 100) for all models 
 Model 

Domain 1 2 4 5 6 7 8 

1 1.72 1.72 1.69 1.67 1.74 1.68 1.58 
2 1.96 2.04 2.04 2.03 2.03 2.00 1.97 
3 0.59 0.52 0.51 0.51 0.52 0.53 0.51 
4 0.69 0.73 0.70 0.69 0.70 0.65 0.66 
5 0.56 0.57 0.54 0.54 0.57 0.55 0.53 
6 0.90 0.97 0.92 0.93 0.95 0.85 0.84 

Surprisingly, the APE under model 1 is smaller than 
under model 2 for all domains except domain 1 and 3. 
These are the domains where the sample 
autocorrelation functions are suspicious (see Table 4). 
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Borrowing strength from other domains generally 
reduces the APE, compare e.g. model 4 and 5 with 
model 2. For model 6 however, where strength is only 
borrowed by bivariate models, the APE are similar as 
for model 2. When some seasonal effects are chosen 
equal, the APE are reduced for most domains (compare 
model 6 with model 7 and model 5 with model 8).  

6. Discussion and conclusions 

In this paper different multivariate structural time 
series models are applied to the monthly 
unemployment rate of the Dutch LFS. With these 
models, the precision of the estimates of six domains 
can be improved substantially compared with the 
GREG estimates. The most important improvement is 
achieved by borrowing information from other time 
periods. Further, but substantially smaller, 
improvements are possible by borrowing information 
from other domains by modelling the correlation 
between the parameters of the time series models for 
the domains or by assuming that these parameters are 
equal for different domains.  

Seven different models are evaluated using different 
diagnostic tests. The smallest values of the prediction 
error and the standard error are obtained with model 8. 
There are, however, numerical problems with this 
model which are avoided by restricting the correlations 
of the slope parameters in an artificial way. The model 
evaluation does not indicate that the estimates under 
this model are biased, but detects that the prediction 
errors are heteroscedastic, deviate from normality, and 
are serially correlated. Model 7 might be an 
alternative, since this model results in slightly larger 
standard errors and better evaluation results.  

For all considered models, however, heteroscedasticity 
and autocorrelation for a part of the domains is 
detected. The models could be improved, for example 
by using trigonometric functions for the seasonal 
components (see Durbin and Koopman, 2001) and 
modelling of outliers. Also auxiliary information can 
be used to improve the models, e.g. using information 
about the registered unemployment. Finally a larger set 
of diagnostic tests than considered in this paper is 
required for adequate model evaluation. In the 
continuation of this project we will investigate which 
diagnostic tests are most relevant for model evaluation 
and selection.  
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