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Abstract

This paper extends the general result of the optimal
estimator (Montanari 1987) to the two-phase sample
design. We do this for several different combinations
of auxiliary variables that can be available with the
two-phase sample design. For each combination of
auxiliary variables, we define an appropriate model and
associated estimator. We then find parameters which
minimize the survey variances, i.e., which make the
estimators “optimal.”
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1. Introduction

The application of auxiliary information in survey
estimation is important because its role in reducing the
variance of survey estimators. This paper discusses a
general method to improve estimators of two-phase
surveys when auxiliary information is available. The
paper extends the optimal estimator (Montanari 1987)
to the two-phase sample design (s.d.). Within the
context of the generalized regression estimator [GRE]
(Cassel et.al. 1976) for the one-stage s.d., there are
several choices for defining the regression parameters.
The optimal estimator is defined as the solution that
minimizes the sample variance.

We begin by discussing similar research and
developing notation. Next we discuss the types of
auxiliary variables and the construction of the
estimators that use them. Once the estimators are
developed we discuss their interpretation, bias and
estimation. The paper concludes with an empirical
example that compares the optimal estimators we
propose with their calibration counterparts.

1.1  Background

Solutions to the regression parameters of the general
regression estimator can be found in several ways.

Calibration estimators that take advantage of available
auxiliary information for two-phase s.d.s are discussed
by Sarndal et.al. (1992; p. 359), Hidroglou and Sérndal
(1995, 1998), Dupont (1998), and Ash (2003). Estevao
and Sérndal (2002), which we will refer to as E&S,
apply calibration with auxiliary variables for ten
different combinations of the two-phase s.d. Wu and
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Luan (2003) present optimal calibration estimators for
a two-phase s.d. as calibrating with known totals of a
modeled value of the variable of interest.

Kiregyera (1980, 1984), Roy (2003) and others use
ratio or chain estimators to take advantage of auxiliary
information in conjunction with two-phase s.d.s. Foran
overview of chain estimators see Singh, Upadhyaya,
and Chandra (2004).

Tripathi and Ahmed (1995) discuss the optimal
estimator for the case we will later call (2¢) or “All and
Second”. Sahoo and Panda (1999) discuss the optimal
estimator for the case we will refer to as (2b) or
“Overall and Second”. Ahmad et.al. (1995) also discuss
the optimal estimator in the context of multi-phase
sampling.
1.2 Notation
Let U be the universe which includes N units. We
index the units of U as k or /and select a sample s, of
n, units from U. The first phase selection probabilities
are defined as 7, = P(k e s;) and =, = P(K & (€ S,).
Similarly we select the second phase sample s, of n,
units from s, and define the selection probabilities for
the second phase as 7, = P(k € s,| k € ;) and 7, =
P(k&7€es,| k &1 €es). We are interested in
estimating the total of some variable of interest y, i.e.,
Ty = 2% which we can estimate as 1y ~ 2.7 72k

keu kes l
Since our discussion concerns two-phase s.d.s we have
two indexes for the expectation, variance and
covariance. Let E,, v, and cov,, be the expectation,
variance and covariance, respectively, of the first stage
s.d. Similarly let E,, v, and cov, be the expectation,
variance and covariance, respectively, of the second
phase s.d. If a subscript is not used, then the
expectation, variance or covariance is with respect to
both phases or simply the overall s.d. We also assume
that the inverse of the probabilities of selection can be
used to produce unbiased estimators of the totals.
1.3 Auxiliary Information
In general, auxiliary information is something we know
for all units of the universe. Similarly, an auxiliary
variable (AV) is a variable that is known for all units in
the universe. We denote AVs as either x, z, or v.
Hidroglou and Sarndal (1995) characterized auxiliary
information for a two-phase s.d. as being specific to one
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of three different levels: (1) Y. x, is known , (2) X, is
keU

known for all k € s, or (3) x, is known forall kes. A
given AV can be known for any combination of these
three levels. The combinations we examine are listed
in Table 1.

Table 1: Combinations of Auxiliary Information

X is known  x, is known
Code Name é} Xy isknown forallkes, forallkes
111 All 1 1 1
101 Owverall 1 0 1
110  First 1 1 0
011 Second 0 1 1

As in E&S, the coding in the first column of Table 1
refers to the availability of each of the three levels of
auxiliary information, where 1 indicates “yes”, the
auxiliary information is available, and 0 indicates that
“no”, itis not. The second column is a shorthand name
for the combination that we sometimes use. For
example, if x, is an overall (or equivalently 101) AV of

a two-phase s.d., we know Zxk and x, for all k € s.
keU

Table 2: Two-Phase Sample Designs that Use
Auxiliary Information

Case Code Label from E&S
(0) None 000 C4

(1) All 111 A2

(1b) Overall 101 B2

(1c) First 110 Ad

(1d) Second 011 Cc2

[000/011, 011/011]  [C3, C1]

(2a) All & First 111/110

(2b) Overall & First 101/011

(2c) All & Second 111/011 Al

(2d) Overall & Second 101/011 B1

(2e) Firstand Second ~ 110/011 A3

Several combinations of auxiliary information are not
mentioned in Table 2 — the trivial case of having no
auxiliary information (000) and having an AV with
only one level (001, 010 and 100). These cases cannot
lead to regression estimators because an AV is only
useful in constructing a GRE when at least two levels
are known.

With multiple AVs there are several combinations of
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AVs we can consider. These combinations, or cases as
E&S referred to them, are listed in Table 2.

We only list one combination involving three different
AVs of different types — the complete list is too long
and we only provide the solution for this case. The
third column of Table 2 identifies the ten cases from
E&S and relates them to the organization of our paper.

2. Constructing the Estimators

To begin the construction of our two-phase optimal
estimator, we first assume a model g, The model is
based on the available AVs. In all the models we
assume that the random error of the model, denoted as
e,, has a mean of zero and a constant positive variance.
The general form of the GRE (Cassel et.al.1976) for the

Loz -1
two-phase s.d. is Tyreg = ZU Hy *ZSZ T Tak 8 where e,

=Y, - 4. We assume that g, is a linear function of the
AVs available.

Table 3 specifies the model for several cases of the two-
phase s.d. The first column of Table 3 identifies the
estimators and the second column defines the
appropriate model. The GREs based on the model are
listed in the third column of Table 3. This construction
makes the estimator model-assisted, in that we use a
regression model, but the estimator remains design
unbiased. With the regression estimators established,
the third column defines the regression residuals e,, and
e, for each case.

The next task is the choice of regression parameters.
One solution is to find parameters that minimize the
sample variance as Montanari (1987) suggested for the
one-stage s.d. To define our optimal regression
parameters we mimic the result of Lemma 1 of
Montanari (1987; p.196) and as in Montanari we get
estimators which have recognizable values and
interesting interpretations.

of Ty

where Axelson (2000) notes

The
as var('f

variance may be written

y,reg ) =V +V,

A =Va"1(E2(fy,reg)‘51) and v, = El(var2 (fy’reg)‘sl) are
often referred to as the first and second phase variance
components. Using the regression residuals e, and e,,,
an approximate variance for the two-phase s.d. (Sérndal
and Swensson 1987), (Sarndal et.al. 1992; eq. 9.3.6) is

V(fy,reg ) = Z Z(ﬂlké ~ Tk Ty )(elk [T )(eu /7y )

kreu

+Ey Z Z(”Zkk‘ _”Zkﬂzé)<ezk /7w ok )(ezzg‘/”u N

kles,
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The next result will help simplify the solution of the
regression parameters by allowing us to express the
two-phase variance as a quadratic form.

Result:

By ZZ(”zkc ~ 7o &ak /7o (820 /721 ) | = €3 Wty
kles
where W, isan N x N symmetric matrix and e, is the
N x 1 vector of second phase residuals e,,.

We begin by defining Ws, asan N x N diagonal
matrix which we define for each sample s,. The
elements of Ws, are ry my, (7y ~ 7507y, ) ifkand 0 € s,
and zero otherwise. Then

E ZZ(”zkf *”Zk”ﬂ)(ezk 7ok )(62/:/7[2(")
kles
= El(eyzws1 €2 ) i) [El(wsl )}ez

Given every Ws is symmetrical and

El{wsl ] - Z p(sl)wsl , the result follows because the

S

sum of diagonal matrices is symmetrical.

With this result we can write the two-phase variance
without the first phase expectation as
V(fy,reg ) =e,We, +e;W,e, where W, isaN x N matrix

- -1 -1
with (ﬁlké—ﬂlkﬂlf)ﬁlkﬂ'u (ﬁlkkfﬁlk). Now the
regression parameters that minimize the sample

variance are the solution to %{fy] =0,

Example: If we have an AV that is 101, we know

Zxk and x, is known for all k € s,. We can use the
keU

model 4, =x, B, +e, and write the regression estimator
~(1b ' -1 - ' R .
S Ty(l '=Tp, +Zﬂ1klﬂzi(yk -xA) which has estimated
ies

regression residuals &y, =y, —x, 4, and € = Y — X5, .
With the residuals we can write the variance as the
quadratic form

v(fy(lb)) = (Y=XB,) Wy (Y=XB)+(Y-XB,) Wy(Y-X5,)
, where X is defined as the N x p matrix of x, and Y
are defined as the N x 1 matrix of y,. Then solving

%vm(l)) =0 we get

’ ’ 71 ! I H H
B =[X'WyX+X'W, X| [ X'W, Y+ X'W, Y] . Within the
result we recognize the two-stage variance and
covariances, i.e.,
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By = [vl('i'x)+v2('i'x)]71[covl(‘i'x,fy)+cov2 ('T'X ,fy)] .

The parameters for the other cases in Table 4 were
found with the same method.

2.1  Bias of Estimators

The optimal regression estimator is not unbiased
because the estimator of the parameter S is nonlinear.
We can express the bias of the one phase s.d. optimal

estimator and this is useful to understanding the bias of
the estimators (1a), (1b), (1c) and (1d).

In the one stage s.d., the optimal estimator is

~ -1 -1

Tt =2 T Ve +[2Xk X7, XkJﬁx where we
kes keU kes

estimate

the regression parameter as

B :[\7(?x)]’1 cov(T,.Ty). We can express the bias of this

estimator in terms of the first and second order terms of
its Taylor series expansion, i.e.,

bias(fy"’pt ) - E(fy -Ty )_ E(i—x _TX)[V(TX)]_l COV(:FX 'fy)

,z[v('i'x)]’l cov(‘i’x ,c()v('i'>< ,'I:y )) D
+Zcov('i'>< ,\7('i'x ))[v('i’x )]72 cov('i'x,'fy )+ R(3)

The first line of (1) represents the first order terms and
likewise the first two terms of the second line represent
the second order terms. R(3) represents the third and
higher order terms. To consider the bias more closely
we note the following two conditions.

Condition 1: E(fy)=Ty and E(T,)=T,
Condition 2:

[v('i’x )]71 cov('i’x Ty ) = [cov( T, ,\7( T, ))]_l cov('i’X ,cf)v('i'x T, ))

Under Condition 1, the first order terms of the bias is
equal to zero and under Condition 2 the second order
terms of the bias are equal to zero. Since we expect our
estimators to be design unbiased, we know that the bias
does not include any first order terms. We cannot claim
that Condition 2 is true for all cases, because it depends
on 3 and 4" order selection probabilities which are
difficult to evaluate. However wheny, =  X,, for some
vector of constants a, we can show that Condition 2 is
also true and in that case we only have third order and
higher terms contributing to the bias.

Given what we have learned from Conditions 1 and 2,
we say that the optimal estimator has a small bias when
the estimator is design unbiased and g is a strong
model of y,.
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2.2 More on the Interpretation of the Optimal

Regression Parameters

Similar to Montanari (1987) we can interpret the
parameters of each of the optimal regression estimators
as the covariance of y and the AV(Ss) x, z or v divided
by the variance of the AV(s). For example, the

parameter for case (1a) is 5, =[V(i)]fl COV(irTAy): a

function of the overall two-phase variance and
covariance of x.

The regression parameters for cases (2b), (2d) and (2e)
do not have simple interpretations, but can be
interpreted similarly. Consider case (2b) - “overall and
first,” where we use overall and first stage AVs. If we
define the first phase correlation as

(%)=l cous(7, 7, Jou(F, )] . We then can
rewrite the parameter £, from Table 4 as

A LAA R
{covl(‘i'x AR )] alF R e (F ) reov, (1.7, )}

We now see that the denominator of g, is an expression
for the overall “effective” variance of x. We say that

Vl('t)(l— pz('i"i')) is the “effective” first stage

variance, since if x has an exact linear relationship with
z, a variable that has no first stage variance, then x also
has no first stage variance. The numerator of £, has a
similar interpretation.  The effective first phase
covariance of x and y is reduced by the

term (1—[,01(?)( ,‘fy)]ilpl('f'x ,fz)pl('i'z fy)) asx,zandy

X

become more linearly associated with one another.

Next we interpret g,
modified correlations

( )[v 7cov Z,y)['f]iz and

_ % v
pl(TZ,TX)z[vl(TZ)] covl(TZ,T)[( )] 2
use the tilda (~) to define a total based only on the first
phase sample, i.e., ffzdlkzk. The modified
kes;

correlations are smaller than the usual correlation
because they use the owverall variances in their
denominators. With the modified correlations G,
becomes

)]
e ol A A

First note that the modified correlations are less than or

equal to 1 and strictly less than 1 if the second stage
variance of x is greater than zero. This means that the

We start by defining the two

Here we
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correlations are less than 1 and therefore the effective
covariance of z and y cannot be equal zero.

The interpretation is reasonable: the full knowledge of
x does not translate into full knowledge of z, even if
they are completely correlated. So the “effective” first
phase variance and covariance cannot be completely
eliminated because x and z are completely correlated,
i.e., X = a z for some vector of constants « and no error.

3. Estimators of the Regression Parameters

3.1 Estimation

We suggest estimating the parameters using the
unbiased estimators of the sample covariances. Based
on Sérndal et.al. (1992; p. 348) an estimator of the first
and second phase sample covariances of the totals of y
and x are, respectively,

00\71(1: T )
y X

@)
_Z Z 1kl( T 1%)(y1k/”1k)(xlf,/”ll’)
and
coOz(fy,'i'X)

)

_Z Z”zw( 2k

ki esy

Tk zz)(yzk/”u Zk)( zz/”u zz)

Note that the overall covariances are equal to the sum
of the first and second phase covariances, i.e.,

coV(fy T, ) = coOl(fy . ‘i’x)+c0\72 (fy ,fx) ]

With the residuals in Table 3, we suggest estimating the

variance of Ty ot USINg the weighted residual technique

(Sarndal 1987) applied to the two-phase s.d. Applying
equations (1) and (2), the variance estimator for the
two phase s.d. is

Ty reg Z Z mae (1o =7 Jleak /7 J(eae /710

kles

Z Z wake(72ke 72k 72 (2K 712k Jle2e a0 7ac

kles

3.2 Estimators for the Cases Involving 111

Tables 3 and 4 do not list any of the cases that involve
111. We could provide their unique solution, but
instead note that they would be equivalent to applying
the solutions we have already provided. All we need to
do is understand that a AV that is 111 can be treated as
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two different AVs that are either 101, 110 or 011. With
this knowledge we can use the estimators we already
have.

4. Empirical Example

We now consider an example for the two-phase s.d. that
will allow us to examine the following questions:

Q1. Are the optimal estimators “optimal,” with respect
to the calibration estimators of E&S? We
constructed them by minimizing the variance, so
they should have smaller variances than the
calibration estimators of E&S?

Q2. What kind of auxiliary information is best to have
and use?

Q3. Are there any cases where including an AV twice
in the model improves the estimator?

Q4. Are the estimators of the variances reasonable?

We compare the estimators using the populations of
E&S. We constructed the three populations as in E&S,
each with N = 1,000 units. The three populations were
generated so that the two AVs x; and X, were
independent of each other. We generated the AVs x,,
and X, from a gamma (9,10), where a gamma(a, b)
distribution has density f(x) = [I'(a) b®]™* x *-* exp(-x/b)
for x > 0, with E(x) = ab and var(x) = ab% The error
term e, was generated from a normal distribution with
mean zero and variance 25. The variable of interest y,
for the first set of population was a different function
of Xy Xy and e, i.e., Pop 12(0): y, = Xy + Xy + €, POP
1(0): y, = v2xy, + €, and Pop 2(0): y, = V2Xy + €.

We selected 100,000 independent samples of 100 units
from each population. The first phase sample had n, =
500 units and the second phase sample had n, = 200
units. The s.d. of both phases was simple random
sampling without replacement (srswor). Estimates of
the total and variance of the total were calculated. For
each combination of AVs we applied two estimators:
the optimal estimators of Table 3 and calibration
estimators of E&S.

Table 5 describes the empirical results. The first two
columns of Table 5 list the estimators we applied and
the third column identifies whether the estimator was a
calibration (cal) or optimal (opt) estimator. The column
“SimVar” denotes the simulated variance of the
estimator or more simply the variance calculated using
the estimated totals. We did not include the simulated
MSE because the estimators, both the optimal and the
calibration, were all approximately unbiased.

The next three columns of Table 5, “Est Var,” “Est
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VE,” and “Est EV”; respectively, denote the overall,
first and second phase estimates of the variance. The
values of Est VE and Est EV are the mean of the
estimated first and second phase variances [using
equations (1) and (2) and the residuals defined in Table
3] over all the simulations. Est Var is the mean of the
sum of “Est VE + Est EV”, over all simulations.

We now discuss the results of the example with respect
to our three questions.

Al. In most cases the variances of the optimal
estimators were smaller than the calibration estimators.
The two exceptions were cases (1d) and (2d). To
understand this result we note that for cases (1d) and
(2d) the calibration solution for the regression
parameters is the same as used by (1b). This solution

treats both AVs as *“overall” AVs, i.e,
-1
Ba _[ZdldekXikxlk Zdldekxlk Yk and
kes kes
-1
Bxa —£Zd1kd2kxékX2k} ZdldeKXZkyk . This is
kes kes

advantageous since the s.d. of the example is simple —
both phases are srswor. In comparison, the optimal
estimator limits itself to using only the covariances
related to the type of AVs available. For (1d) the
optimal estimator only uses the second phase
covariances and (2d) uses both the overall and second
phase covariances.

Although the calibration estimator for (1d) and (2d)
might do well in this example, we expect that the
optimal estimator would do a better than the calibration
estimators with a more complicated s.d. since it uses all
the information about the sample design via the
covariances.

AZ2. In general the example confirmed what is readily
accepted about using AVs in regression estimators.

- Using models that employ AVs associated with the
variable of interest reduce the variance of the
estimator. The more information an AV contains,
and thereby adds to the model, the more it can
reduce the sample variance. Using an AV that is
111 was better than 101, which was better than both
110 or 011.

- Additional AVs that are also associated with the
variable of interest can reduce the variance further,
if they are not collinear with the other AVs in the
model.

- The model assisted estimators are resistant to model
misspecification; however, using models with AVs
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that have no association with the variable of interest
can increase the variance — making it larger than
doing nothing at all, i.e., estimator (0).

A3. Using an AV that is 111 and therefore includes the
AV twice in the estimator, reduces the variance as
compared with an AV that is 101. When we consider
population 12(0) where y, is defined in terms of both
AVs, we see that estimators (2a) and (2¢) do better than
estimators (2b) and (2d), respectively. The exception is
the case of one AV, where the estimation is not
improved. Both cases (1a) and (1b) have the same
estimator of the regression parameter, so knowledge of
all three levels of an AV does not improve the
estimator.

A4. The estimators of the variance, both the overall and
the separate estimators for each of the two-phases,
appear to be reasonable, since the estimates of Est Var
are close to the estimates of SimVar.

This report is released to inform interested parties of
(ongoing) research and to encourage discussion (of
work in progress).
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Table 3: Optimal Regression Parameters for Two-Phase Sample Designs

Model Regression Estimator Residuals
(0) None 2 Y i = Yk, €k = Yk
(1b) Overall (X)| 14 = X, B, T4, +Z”£k1”£:(yk ~Xi ) ey = Vi — X By
ies ezk =yk _XLﬂx
(Lo First @) | s =2/ T.5, +Z”£k1”£iyk ‘Z”Iklzkﬂz ey =Yi — 4k,
kes kes B = Yk
(1) Second ()| = Y radvich s minat (i) e
kes, kes € =Yk ~Vihy
ng)igzlfzr;ﬂl O # = XPx + 2y T, + T, +Zﬂl‘k1”;§(yk X By)- Zﬁl‘klz'k/;z e}k =Yk _X[féx -8,
kes kES1 e2k = yk - Xkﬂx
& oo (| Tt D m (KB Vi) |
& Second (v) kes, kes €k =Yk ~ XLﬁx - VLﬁv
(Si?oigs(tvgz) & | m =+t Vi By T, B, + Z;rl_klv;(ﬁv +erl_kl7r2_i(yk —v[(ﬁv)— Zﬂl_klz[(ﬁz €1k =_yk __Z;(:BZ
kes, k es kes, eZk - yk Xkﬁx
(3) Overall (x), | # =Xk By +2¢ By +Vy B Ty By + TP Y I
FirSt (Z)& X z v XX 75 z Gy . yk Zkﬂz 52kﬂx
Second (v) * Z”lkvi(ﬂv +Z”lk ok (Vi =Xk Vi )- Z”lkzk/’z € =Yk — X By — Vi By
kss1 kes kes1
Table 4: Optimal Regression Parameters for Two-Phase Sample Designs
Estimators Model parameters
(1b) Overall (x) B, = [v ] cov(T ,'fy)
(1c) First(2) B = [Vl T ] cov, 'i'z,'fy)
(1d) Second (v) _ [Vz('i'v )]1 covz('i'v ,'fy)
(2b) Overall (x) & N A oa . -1 N oL A
First (2) B = {V(TX)— covl(TX,TZ )[v T, ] cov } [ - cov, T ,TZ)[vl(TZ)] covl(TZ,Ty)}
B, = {vl('i'z)— covl('i'z,'i'x)[v(Tx)] covl(T T )] {cov (T T ) (T T )[ ('i’x)]il cov(T 'fy)}
(2d) g;;eorﬁ:; ((\)/()) & B, = [v - cov, [v2 T, ]7 cov,(T,. T, ]71[cov 'i' T )— cov (‘T’X,‘i'z)[v2 T ] " cov (TZ, Ay)]
B, = [VZ(TV)—cov (T T, [ (T, ] cov, ( } [cov )~ cov,(T,.1,) [ (‘i’x)]f1 cov(T,.T )}
2e) First (2) & =\ +
() S:arcsor%)(v) B, = [Vl(Tz)] COVl(Tz’T ) [V2 ] covZ(TV y)
3) Overall (x), . PN 4 AT RN
©) Fi\:SBtr?z) (g) B = {(vl(T )— cov (T ,T, )[ Z ] cov ) + (vz cov [VZ(TV)] 1covZ(T\,,TX)ﬂ
Second (V)

K ( T) cov
=) [cov(

) cov, (T, ,'i'x)ﬂx]v B, = [vz(‘i'v)]il[covz('i'v,fy)— covz('i'v,'i'x)ﬁx]

[ (TZ)]i covl(‘i'z,‘fy)j + (covz('i'x,Ty)— covz('i'x,'T'v)[vz('i'v)]i1 covz('i'v,'fy)”
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Table 5: Results from the Empirical Example

Population 12(0): y, = Xy + X+ €,

Population 1(0): y, = V22X, + &

Population 2(0): y, = vV2Xy + &

Estimator E&S case Estimator SimVar Est Var Est VE EstEV SimVar Est Var Est VE EstEV SimVar EstVar  EstVE EstEV

(0) No auxiliary info C4 10.01 941 2.35 7.06 9.09 8.79 2.20 6.59 9.63 9.25 231 6.94
(1a) All (x,) A2 opt 855 847 212 635 243 243 061  1.82 1519 1503 3.76 1127
cal 9.00 8.92 2.23 6.69 2.43 2.43 0.61 1.82 16.45 16.30 4.07 12.22

(1b) Overall (x,) B2  opt 855 847 212 635 243 243 061  1.82 1519 1503 3.76  11.27
cal 9.00 8.92 2.23 6.69 2.43 2.43 0.61 1.82 16.45 16.30 4.07 12.22

(1c) First (x,) A4 opt 961 918 212 7.6 743 720 061 659 11.04 1070 376  6.94
cal 9.72 9.29 2.23 7.06 7.73 7.20 0.61 6.59 11.36 11.02 4.08 6.94

(1d) Second (Xy, Xp) Cl1  opt 442 422 235 186 419 410 220 1.90 430 416 231 1.85
cal 4.38 4.17 2.35 1.82 411 4.02 2.20 1.82 4.30 4.19 231 1.85

(1d) Second (x,,) c2  opt 896 871 235 635 409 402 220 182 13.76 1458 231 1127
cal 9.29 9.04 2.35 6.69 4.09 4.02 2.20 1.82 14.69 14.54 2.31 12.22

(1d) Second (x,) c3  opt 891 868 235 633 1260 1260 220 10.29 429 417 231 186
cal 9.32 9.09 2.35 6.73 13.33 13.33 2.20 11.04 4.29 4.17 231 1.86

(2a) All (x,) & First (xy) nfa  opt 703 697 062 635 246 246 063  1.82 11.96 1189 0.62  11.27
(2b) Overall (x,,) & First (X,) nfa  opt 752 744 141 6.03 244 243 061 182 1296 1282 233  10.48
(2¢) All (x,,) & Second (xy) Al opt 403 398 212 186 253 253 061  1.90 570 560 376 185
cal 4.09 4.05 2.23 1.82 2.44 2.43 0.61 1.82 6.01 5.93 4.08 1.85

(2d) Overall (x,,) & Second (x,) B1  opt 437 431 170 261 247 247 061 1.85 6.28 614 271  3.43
cal 3.43 3.36 154 1.82 2.45 2.45 0.61 1.82 4.30 4.16 2.31 1.85

(2€) First (x,) & Second (X,) A3 opt 853 845 212  6.33 1093 1094 060 10.29 569 561 376  1.86
cal 8.78 8.71 1.97 6.73 11.70 11.74 0.65 11.04 6.01 5.94 4.08 1.86
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