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Abstract

Fractional regression hot deck imputation (FRHDI), suggested by
J. K. Kim, imputes multiple values for each instance of a missing
dependent variable. The imputed values are equal to the predicted
value based on the fully observed cases plus multiple random
residuals chosen from the set of empirical residuals. Fractional
weights are chosen to enable variance estimation and to preserve
the correlation among independent and dependent variables. The
FRHDI method can be viewed as a special case of fractional
hot deck imputation (FHDI). In some circumstances with some
starting weight values, existing procedures for computing FRHDI
weights can produce negative values. We discuss procedures for
constructing nonnegative adjusted fractional weights for FRHDI.

KEY WORDS: Calibration; Missing data; Multiple imputation;
Quadratic programming; Regression weighting.

1. Introduction

Consider a population ofN elements identified by a set of in-
dices U = {1, 2, . . . , N}. Associated with uniti of the pop-
ulation are two study variables,yi and xi, where everyxi is
complete and someyi are missing. LetA denote the set of in-
dices of the elements in a sample selected by the chosen sam-
pling mechanism. Responsesyi are obtained from the selected
sample according to the response mechanism. Let the popula-
tion quantity of interest beθN = θ(y1, y2, . . . , yN ) or θN =
θ((y1, x1), (y2, x2), . . . , (yN , xN )). Under complete response, an
unbiased linear estimator ofθ1 = N−1

∑N
i=1 yi is

θ̂1 =
∑
i∈A

wiyi (1)

wherewi is a sampling weight for uniti that depends on the
sampling mechanism.

Another parameter of interest isθ2 = N−1
∑N

i=1 yixi. An unbi-
ased linear estimator ofθ2 is

θ̂2 =
∑
i∈A

wiyixi (2)

Hot deck imputation assigns values ofy for respondents to miss-
ing y-values for nonrespondents. One of the main considerations
for hot deck imputation is how best to select the donor values.
Many hot deck imputation procedures select donor values at

random in the same imputation cell, which can be constructed by
partitioning the sample using auxiliary variables known for both
the respondents and the nonrespondents. An advantage of this
method is that the actual observed values are used for imputation
and, assuming some homogeneity within cells, imputations are
realistic. The performance of hot deck imputation depends on the
quality of available donors for the missing cases.

The method of stochastic regression imputation replaces a missing
value by a predicted value plus a residual, which is drawn to reflect
uncertainty in the predicted value. In notation, letAR ⊆ A be the
set of indices for respondents andAM ⊆ A contain the indices
for missing values. The imputed valuey∗i , i ∈ AM , is

y∗i = ŷi + ê∗j (3)

whereŷi is the predicted value ofyi andê∗j is an imputed residual
selected from{ê∗j = yj − ŷj , j ∈ AR}. The predictions,̂yi for
i ∈ AM andŷj for j ∈ AR, are based on the relationship between
x andy for cases inAR.

Stochastic regression imputation maintains the distribution of the
variables in the sense of maintaining the observed relationship
betweeny andx and allows for the estimation of distributional
quantities. However, this method is potentially more sensitive to
model violations than methods based on implicit models, such
as hot deck imputation. In addition, the imputed value is not
necessarily one of the actually occurring values, which in some
situations can be seen as a negative feature of the method.

There is one further disadvantage of imputing a single value
for each missing value. Single imputation cannot represent
uncertainty due to imputation. Multiple imputation methods,
including multiple imputation (Rubin 1978, 1987) and fractional
imputation (Kim and Fuller 2004), consider multiple possible
values for each missing value. The variability in imputed values
is used to in effect quantify uncertainty due to imputation. Impu-
tation procedures also vary in terms of the amount of variability
introduced through the process of producing imputations.

Brick and Kalton (1996) studied two methods for reducing the
imputation variance which comes from the random component
of the variance of the estimator arising from imputation. One
method is implemented through the sample design used for
selecting donors within each imputation cell. For example,
selection without replacement is less variable than selection with
replacement. The other method is to use fractional imputation
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(Kalton and Kish, 1984; Fay 1996), which uses more than one
donor for a recipient and assigns fractional survey weights to
the multiple donors. Fractional imputation was suggested as
a method for expressing uncertainty due to imputation and
reducing imputation variance. However, fractional hot deck
imputation can not preserve the correlation structure among
two or more quantitative variables except for the variables that
define imputation cells. As a result, a relationship between an
independent and dependent variable could be weakened due to
simple hot deck imputation, even if the imputations are done
multiple times.

Kim (2006) suggested Fractional Regression Hot Deck Imputa-
tion (FRHDI) in order to combine the advantages of hot deck
imputation and regression imputation within the framework of
fractional imputation. The procedure for combining the two
imputation methods takes the form of fractional hot deck imputa-
tion with a suitable choice of fractional weights. Consequently,
FRHDI preserves the correlation structure and uses observed
values for imputation. In addition, a jackknife variance estimation
technique developed by Kim and Fuller (2004) can be applied for
variance estimation.

It is known, however, that the weights constructed by the regres-
sion weighting method can vary, producing some large weights or
even some negative weights. A large weight on donors can result
in large imputation variance for some estimates. In particular,
estimates within a domain can be highly variable if some weights
are extreme. A negative fractional weight can be seriously
problematic for estimating the variance of imputed estimators.

In this paper, we modify an iterative regression procedure
suggested by Huang and Fuller (1978) to construct nonnegative
fractional weights and to place bounds on the fractional weights.
The review of FRHDI is described in Section 2. The proposed
method of constructing nonnegative fractional weights is dis-
cussed in Section 3. Simulation results are reported in Section 4.
Section 5 is a discussion and summary.

2. Fractional Regression Hot Deck Imputation

One can indicate the donors for missing valueyj , j ∈ AM

through indicator variablesd = {dij ; i ∈ AR}. Let the indicator
variabledij take the value one ifyi is used as a donor for the
missing yj and take the value zero otherwise. The sampling
weightwj is distributed to the donors withdij = 1. Let w∗

ij be
the fractional weight allocated to donori for recipientj. The sum
of fractional weights for each missing value is required to be one.
Assume that the finite populationU hasG imputation cells and
the cell regression model is appropriate for each cell. That is, for
i ∈ Ag, the gth imputation cell,

E(yi|xi) = β0g + β1xi

and
V (yi|xi) = σ2

g .
(4)

To apply regression imputation to fractional imputation, the
weighted mean of the imputed values using stochastic regression
imputation is used to impute the missing data. Let missing val-
ues and observed values in cellg be indicated byAMg andARg,
respectively. Forj ∈ AMg, the imputed value for missingyj is

y∗Ij =
∑

i∈ADgj

w∗
ij(ŷi + ê∗i ). (5)

In the above formula,
∑

i∈ARg
w∗

ijdij =
∑

i∈ADgj
w∗

ij andADgj

is the set of indices of imputed values forj ∈ AMg The imputed
estimator ofθ1 can be constructed as follows:

θ̂I1 =
G∑

g=1

 ∑
i∈ARg

wiyi +
∑

j∈AMg

wjy
∗
Ij


=

G∑
g=1

 ∑
i∈ARg

wiyi +
∑

j∈AMg

wj

∑
i∈ADgj

w∗
ij(ŷi + ê∗i )


=

G∑
g=1

 ∑
i∈ARg

wiyi +
∑

j∈AMg

∑
i∈ADgj

wjw
∗
ij(ŷi + ê∗i )

 .

Kim (2006) suggested adjusting the above formula for weighting
under stochastic regression imputation to get an expression for a
hot deck imputation. There are two main motivations for Kim’s
suggestion. First, all missing values can be imputed by observed
values. Like hot deck imputation Kim’s method just changes the
fractional weight to get regression weights instead of imputing
unobserved values. Second, it is easy to estimate the variance of
the imputed estimator by applying a consistent replication vari-
ance estimation procedure with fractional imputation suggested
by Kim and Fuller (2004).

The weighted mean of the imputed values can be written as∑
i∈ADgj

w∗
ij(ŷj + ê∗i ) =

∑
i∈ARg

w∗
ijyi (6)

if and only if for eachj ∈ AMg∑
i∈ADgj

w∗
ij(1, xi) = (1, xj). (7)

Therefore, the regression fractionally imputed estimator can be
expressed in the form of the fractional hot deck imputed estimator
as follows:

θ̂I1 =
G∑

g=1

 ∑
i∈ARg

wiyi +
∑

j∈AMg

∑
i∈ADgj

w∗
ijyi



Section on Survey Research Methods

2692



where thew∗
ij satisfy condition (7).

Similar algebra can be used to write the imputed estimator of
θ2 as a fractional hot deck (FRHDI) estimator. Sinceθ̂2I can
be expressed as a FHDI estimator, variance estimation through
replication can be applied.

3. Construction of Regression Fractional Weights

In order to use fractional regression hot deck imputation, one
must construct weightsw∗

ij , i ∈ ARg for eachj ∈ AMg such
that 0 < w∗

ij < 1,
∑

i∈ADgj
w∗

ij = wj and formula (7) holds.
It has been noted that numerical procedures for computing
weights sometimes encounter problems. It is possible that
suitable weights might not exist. It also is a fact that numerical
procedures that do not directly incorporate all the constraints
can produce weights that are negative, which is undesirable.
Section 3.1 discusses weight computation. Section 3.2 presents a
modification to methods when standard computational methods
encounter a problem.

3.1 Introduction to Regression Weighting

Kim (2006) suggested the regression weighting method to con-
struct the fractional weights satisfying the constraint (7). This
method can be viewed as a calibration technique. This procedure
for constructing the fractional weights is to minimize a function
of the distance between an initial weightαij and a final fractional
weightw∗

ij subject to the constraint (7). Letαij be any initial frac-
tional weights satisfying

∑
i∈ADgj

αij = 1. A common choice is
αij = 1/M for j ∈ AM whereM is the number of donors used
for fractional imputation. Let the distance function betweenαij

andw∗
ij beQ(αij , w

∗
ij) =

∑
i∈ADgj

α−1
ij (αij − w∗

ij)
2. Then the

problem is to minimize

Q(αij , w
∗
ij)

subject to the constraints∑
i∈ADgj

w∗
ij(1, xi) = (1, xj)

and
0 < w∗

ij < 1, j ∈ AMg.
(8)

By using the Lagrange multiplier method, the solution of (8) is

w∗
ij = αij + (xj − x̄Ij)S−1

xx,jαij(xi − x̄Ij) (9)

where

Sxx,j =
∑

i∈ADgj
αij(xi − x̄Ij)2

and
x̄Ij =

∑
i∈ADgj

αijxi.

Under the calibration property
∑

i∈A wixi = x̄N , not the full
condition (7), there are several ways to construct regression
weights with a reduced range of values. Huang and Fuller
(1978) defined a procedure to modify thewi so that there are no
negative weights and no large weights. Husain (1969) suggested
quadratic programming as a procedure to place bounds on the
weights. Deville and S̈arndal (1992) considered some objective
functions (e.g.,Q) that can be used to produce positive weights
with a certain range. Park (2005) suggested that nonnegative
regression weights can be computed by a calibration technique
using an initial weight, the inverse of the approximate conditional
inclusion probability.

Another modification to regression weights is to relax the cali-
bration property. This approach was studied by several authors,
including Husain (1969), Bardsley and Chambers (1984), and
Rao and Singh (1997). However, the constraint (7) is important
so that it cannot be relaxed in our situation.

In this paper, we modify the method of constructing nonnegative
weights with the constraints (7), not the calibration property,
to get adjusted fractional weights. Wayne Fuller, in personal
communication, has pointed out that there is no guarantee that
a solution exists for the weights constructed by a quadratic
programming problem with bounds on the weights. To ensure the
existence of a solution, we assume that there exists at least one
donor with anx-value greater than the valuexj and one donor
with an x-value less than thex-value,xj , for the case with the
missingy-value.

3.2 Computer Algorithm for Regression Fractional Weights

The algorithm by Huang and Fuller (1978) produces weights that
are a smooth, continuous, monotone increasing function of the
original least squares regression weights based upon the idea of
generalized least squares. We modify their algorithm to apply for
our problem. This procedure is iterative and requires checking the
weight at each step against a user supplied criterion. The frac-
tional weight (9) can be rearranged to be

w∗
ij = αij(1 + φi) (10)

where

φi = (xj − x̄Ij)′S−1
xx,j(xi − x̄Ij).

An alternative computational form equivalent to the weights (10)
can be constructed as

w∗
ij = αij

(
1 + zij

1 + z̄j

)
, (11)
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where

zij = (xj − x̄Ij)′
(∑

i∈AR

αij(xi − xj)2
)−1

(xi − xj)

and

z̄j =
∑

i∈AR

αijzij .

The regression fractional weights defined by (11) will be non-
negative if1 + zij ≥ 0 for every i. Our computer algorithm
creates nonnegative fractional weights by modifying thezij

such that|zij | < 1 so thatw∗
ij > 0 and there is anL such

that maxi∈ADgj
(w∗

ij) < L. If the first-step fractional weights
fall outside the desired range|zij | < 1, then relatively small
adjustment values are assigned to the fractional weights of donors
where the auxiliary variable of donorxi is far from that of
recipientxj and relatively large adjustment values are assigned
to the fractional weights of donors where the auxiliary variable of
donorxi is close to that of recipientxj . The initial weightsαij

are used as first-step weights. Adjustment values can be obtained
by γi, a “bell” shaped function (in a suitable metric) between the
auxiliary variable of the donor and recipient for each donor.

The algorithm for computing the regression fractional weights
is composed of the following steps. For simplicity of notation,
assume there is only one imputation cell andG = 1. If there
are multiple imputation cells, then implement the algorithm sepa-
rately within each cell.

STEP 1: Calculate

zij = (xj − x̄Ij)′

 ∑
i∈ADj

αij(xi − xj)2

−1

(xi − xj)

and

z̄j = max{
∑

i∈ADj

αijzij ,
1
M

− 1}

If |zij | < 1 for everyi ∈ ADj , then the initial weightsαij

satisfy the constraints. If not, setk = 1 and go to the next
step.

STEP 2 : Compute the adjusted weight for each distancedi,
where

d
(k)
i =

4
3
|zij |,

and

γ
(k)
i =


1 0 ≤ d

(k)
i < 1

2

1− 4
5 (d(k)

i − 1
2 )2 1

2 ≤ d
(k)
i ≤ 1

4
5 (d(k)

i )−1 d
(k)
i > 1

The constants4/3 and4/5 are to speed convergence of the
algorithm. Alternatived andγ function can be constructed.

STEP 3: Compute the new regression fractional weights:

λ
(k)
i =

(k)∏
j=1

γ
(j)
i

z
(k)
ij = (xj − x̄Ij)′

 ∑
i∈ADj

αijλ
(k)
i (xi − xj)2

−1

×(xi − xj)

z̄
(k)
j = max{

∑
i∈ADj

αijz
(k)
ij ,

1
M

− 1}

STEP 4: If|z(k)
ij | < 1 for everyi ∈ ADj , then

w
∗(k)
ij = αij

(
1 + z

(k)
ij

1 + z̄
(k)
j

)
.

If not, setk = k + 1 and go to STEP 2.

The final fractional weightsw∗(s)
ij have the following properties.

For eachj ∈ AMg,

(i) 0 < w
∗(k)
ij < 1 for i ∈ ADgj and

(ii)
∑

i∈ADgj
w
∗(k)
ij (1, xi) = (1, xj).

If the imputation cells are such that the restriction cannot be met,
the program will produce weights approximating the criterion. In
our situation, we can always find nonnegative fractional weights
by the proposed computer algorithm under the assumption that
there exists at least one donor with anx-value greater than the
valuexj and one donor with anx-value less than thex-value,xj ,
for the case with the missingy-value.

4. Simulation Study

This section presents the main results from two limited simulation
studies. To show the performance of our procedure, we compared
three imputation methods:

FRHDI0 : FRHDI using the regression fractional weight,

FRHDI1 : FRHDI using the nonnegative fractional weight,

and

MI : Multiple imputation.
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For fractional imputation, for each missing value, we created
10-case nearest neighborhoods where the distance is defined
on the value ofxi. Each nearest neighborhood consists of 10
respondents with the closestx-value to the valuexj for missing
unit j. After that,M donors for each missing unit are selected by
simple random sampling without replacement within each nearest
neighborhood. Fractional weightsw∗

ij on FRHDI0 are calculated
by the regression method (9) setting the initial fractional weight
equal to αij = 1/dij . Nonnegative fractional weights are
obtained by the computer algorithm that was described in Section
3.2. For multiple imputation (Rubin 1987),M repeated imputa-
tion values are drawn from the posterior predictive distribution of
the missing values under a simple linear regression model given
the standard prior distribution, e.g., constant on the regression
coefficients and inversely proportional to the regression model
variance. In this simulation, we usedM = 5 and10.

In the first simulation, three independent variables were gener-
ated:xi from a normal distribution withN(0, 1), ei ∼ N(0, 1),
andzi from the uniform (0,1) distribution. The dependent vari-
able isyi = 2 + xi + ei. We also generated a response indicator
Ri from a Bernoulli distribution with the response ratep = 0.65.
Theyi is observed if and only ifRi = 1. Thexi andzi are ob-
served throughout the sample. We usedB = 5000 samples of size
n = 100 to simulate properties of the procedures. Three parame-
ters are estimated. The parameters are

θ1 = mean ofY ,

θ2 = slope ofY onX, and

θ3 = mean ofY wherez < 0.25.

For fractional imputation, the variance estimation method pro-
posed by Kim (2006) was applied. Kim (2006) considers the
adjusted jackknife replicates constructed by decreasing by an
appropriate amount fractional weights of the imputed values
associated with a deleted respondent and increasing by an
appropriate amount fractional weights of the other donors we
mentioned. There are certain situations where it is not possible
to find the appropriate amount when using negative fractional
weights. In certain cases in which there were difficulties, we
used the approximated amount of adjustment for the variance
estimator under FRHDI0. The variance estimator for multiple
imputation was given in Rubin (1978, 1987).

Table 1 shows the mean and variance of the imputed estimator
calculated based on the Monte Carlo samples generated by
the linear regression model. The three imputation methods are
unbiased. Fractional imputation is slightly more efficient than
multiple imputation with the same number of donors. In addition,
there is no further improvement using FRHDI with nonnegative

Table 1: Monte Carlo mean and variance of the point estimator
under simulation 1.

Parameter Method Mean Variance
Mean(θ1) FRHDI0(M=5) 2.00 0.0262

FRHDI1(M=5) 2.00 0.0260
MI (M=5) 2.00 0.0268
FRHDI0(M=10) 2.00 0.0250
FRHDI1(M=10) 2.00 0.0260
MI (M=10) 2.00 0.0260

Slope(θ2) FRHDI0(M=5) 1.00 0.0158
FRHDI1(M=5) 1.00 0.0155
MI (M=5) 1.00 0.0162
FRHDI0(M=10) 1.00 0.0156
FRHDI1(M=10) 1.00 0.0158
MI (M=10) 1.00 0.0159

Domain mean(θ3) FRHDI0(M=5) 2.00 0.0778
FRHDI1(M=5) 2.00 0.0765
MI (M=5) 2.00 0.0830
FRHDI0(M=10) 2.00 0.0781
FRHDI1(M=10) 2.00 0.0805
MI (M=10) 1.99 0.0790

Table 2: Monte Carlo relative biases and t-statistics of the variance
estimator under simulation 1.

Parameter Method RB(%) t-statistic
Mean(θ1) FRHDI0(M=5) -1.74 -0.86

FRHDI1(M=5) -0.71 -0.35
MI (M=5) 3.54 1.81
FRHDI0(M=10) 3.25 1.63
FRHDI1(M=10) -0.14 -0.07
MI (M=10) 5.13 2.51

Slope(θ2) FRHDI0(M=5) 3.87 0.04
FRHDI1(M=5) 2.20 0.02
MI (M=5) 5.73 0.07
FRHDI0(M=10) 1.78 0.02
FRHDI1(M=10) 1.54 0.02
MI (M=10) 3.39 0.04

Domain mean(θ3) FRHDI0(M=5) 7.60 3.71
FRHDI1(M=5) 4.62 2.30
MI (M=5) 28.48 13.82
FRHDI0(M=10) 5.61 2.62
FRHDI1(M=10) 2.23 1.07
MI (M=10) 32.85 15.40
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fractional weights based on the efficiency of the point estimator.

In Table 2, relative biases and t-statistics for the variance estima-
tors are presented. The relative bias of the variance estimator is
the Monte Carlo bias (the mean of the variance estimates minus
the variance of the estimates) divided by the Monte Carlo mean
of the variances. The t-statistic for testing the hypothesis of zero
bias is the Monte Carlo estimated bias divided by the Monte
Carlo standard error of the estimated bias (the square root of
the variance of the estimated biases). The fractional imputation
variance estimation procedures have reasonably small relative
biases for the variances of the imputed estimatorsθ̂1 andθ̂2. The
fractionally imputed variance estimator is biased for the variance
of the estimator of domain mean̂θ3. The main source of this bias
is the bias in the jackknife variance estimator for a ratio.

Table 2 further illustrates that multiple imputation produces a
seriously biased estimator of the variance of the estimator of
θ3. This bias in the multiple imputation variance estimator for
a domain mean was pointed out by Fay (1992). Kim and Fuller
(2004) point out that the bias in the multiple imputation variance
estimator for the mean can be reduced by increasingM or sample
sizen. IncreasingM or n, however, reduces only some part of
the bias of the multiple imputation variance estimator for the
domain mean since the MI variance estimator does not reflect
the fact that the imputed values used in the domain come from
observations outside the domain. Of course, if the MI procedure
used the domains explicitly one could expect different results.

One additional result can be mentioned. The variance estimators
for FRHDI1 are more stable than those for FRHDI0 and MI.
FRHDI0 has the uniformly smallest variance of the variance
estimators on all three parameters.

In the second simulation study, the samples are generated from
the quadratic regression modelyi = 2+

√
0.5(x2

i −1)+ ei where
xi andei are as before. The samezi andRi variables generated
in the first simulation were used. We expect the FRHDI be quite
robust against the misspecification of the imputation model since
the imputed values for fractional imputation are selected from
nearest neighborhoods and thus correspond to a local (rather
than global) linear model. To demonstrate the robustness of
FRHDI, we used the simple linear regression model not the
true quadratic model for imputation. Of course, if one used the
quadratic model for imputation, then results would be different.
The estimand parameters we consider in simulation 2 are the
same as in simulation 1.

Table 3 shows the performance of the point estimator under
simulation 2. The Monte Carlo results are in general agree-
ment with our expectation. Fractional imputation methods are
approximately unbiased and have more efficiency than MI for

Table 3: Monte Carlo mean and variance of the point estimator
under simulation 2.

Parameter Method Mean Variance
Mean(θ1) FRHDI0(M=5) 2.01 0.0265

FRHDI1(M=5) 2.01 0.0264
MI (M=5) 2.04 0.0340
FRHDI0(M=10) 2.01 0.0259
FRHDI1(M=10) 2.01 0.0263
MI (M=10) 2.04 0.0322

Slope(θ2) FRHDI0(M=5) 0.00 0.0655
FRHDI1(M=5) 0.00 0.0649
MI (M=5) 0.55 0.0096
FRHDI0(M=10) 0.00 0.0645
FRHDI1(M=10) 0.00 0.0681
MI (M=10) 0.54 0.0085

Domain mean(θ3) FRHDI0(M=5) 2.01 0.0841
FRHDI1(M=5) 2.01 0.0822
MI (M=5) 2.04 0.0921
FRHDI0(M=10) 2.02 0.0781
FRHDI1(M=10) 2.01 0.0779
MI (M=10) 2.04 0.0840

Table 4: Monte Carlo relative biases and t-statistics of the variance
estimator under simulation 2.

Parameter Method RB(%) t-statistic
Mean(θ1) FRHDI0(M=5) 2.49 1.25

FRHDI1(M=5) 1.47 0.72
FRHDI0(M=10) 2.98 1.44
FRHDI1(M=10) 1.04 0.52

Slope(θ2) FRHDI0(M=5) 4.79 1.84
FRHDI1(M=5) 3.87 1.56
FRHDI0(M=10) 6.59 2.50
FRHDI1(M=10) 0.77 0.30

Domain mean(θ3) FRHDI0(M=5) 7.13 3.38
FRHDI1(M=5) 4.63 2.23
FRHDI0(M=10) 7.67 3.65
FRHDI1(M=10) 6.38 3.08
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all parameters. Fractional imputation methods are more robust
against the failure of the imputation model than multiple impu-
tation. Multiple imputation estimators show big biases for all
parameters especially for the slope. This result indicates that, as
expected, MI is very sensitive to the model used for imputation.
Bias of multiple imputation estimator could be improved to
some degree if the imputed values were generated by the local
simple linear regression model or by a quadratic regression model.

In Table 4 the biases and t-statistics of the two fractional imputa-
tion methods are illustrated under simulation 2. The simulation
results of multiple imputation variance estimators are not listed in
Table 2 since the point estimators are seriously biased. Based on
the biases and t-statistics in Table 4, FRHDI variance estimation
procedures are unbiased forθ1 and θ2. The variance estimator
using nonnegative fractional weights (FRHDI1) is more stable
than FRHDI0.

5. Summary and Discussion

We have discussed a procedure for constructing nonnegative
adjusted fractional weights for fractional regression hot deck
imputation (FRHDI). In some situations, of course, solutions to
the algorithm do not exist. Future work will examine options
when, for example, donor values with a spread ofx-values are
not available.

In a limited simulation, the proposed method performs better than
naive multiple imputation and FRHDI without the restrictions on
the fractional weights. Future work will apply methods to data
from longitudinal social science studies, examine more involved
simulation contexts, and address situations with multivariate
missing data.
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