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Abstract random in the same imputation cell, which can be constructed b

partitioning the sample using auxiliary variables known for both

Fractional regression hot deck imputation (FRHDI), suggested bye respondents and the nonrespondents. An advantage of tt
J. K. Kim, imputes multiple values for each instance of a missingnethod is that the actual observed values are used for imputatic
dependent variable. The imputed values are equal to the predictgdlqy  assuming some homogeneity within cells, imputations ar

value based on the fully observed cases plus multiple randofajistic. The performance of hot deck imputation depends on th
residuals chosen from the set of empirical residuals. Fractiong|uality of available donors for the missing cases.

weights are chosen to enable variance estimation and to preserve

the correlation among independent and dependent variables. Thge method of stochastic regression imputation replaces a missir
FRHDI method can be viewed as a special case of fractiongja|ue by a predicted value plus a residual, which is drawn to reflec
hot deck imputation (FHDI). In some circumstances with somencertainty in the predicted value. In notation, gt C A be the
starting weight values, existing procedures for computing FRHDkgt of indices for respondents ard, C A contain the indices
weights can produce negative values. We discuss procedures fgf missing values. The imputed valyg, i € Ay, is
constructing nonnegative adjusted fractional weights for FRHDI.

Y =0 +¢; 3)
KEY WORDS: Calibration; Missing data; Multiple imputation;

Quadratic programming; Regression weighting. whereg; is the predicted value of; andé; is an imputed residual

selected from{é} = y; — 9;,j € Ag}. The predictionsy; for
i € Ay andg; for j € Ag, are based on the relationship between
1. Introduction x andy for cases iMAg.

Consider a population aV elements identified by a set of in- Stochastic regression imputation maintains the distribution of the
dicesU = {1,2,...,N}. Associated with unit. of the pop- variables in the sense of maintaining the observed relationshi
ulation are two study variableg;, and z;, where everyx, is  betweeny andz and allows for the estimation of distributional

complete and somg; are missing. Letd denote the set of in- quantities. However, this method is potentially more sensitive tc
dices of the elements in a sample selected by the chosen samedel violations than methods based on implicit models, suct
pling mechanism. Responsgsare obtained from the selected as hot deck imputation. In addition, the imputed value is not
sample according to the response mechanism. Let the populaecessarily one of the actually occurring values, which in some

tion quantity of interest bédy = 0(y1,y2,...,yn) OF Oy = situations can be seen as a negative feature of the method.
0((y1,21), (y2,22),- .., (yn, zn)). Under complete response, an
unbiased linear estimator 6f = N ! Zf\;lyi is There is one further disadvantage of imputing a single value
for each missing value. Single imputation cannot represen
0 => wiy; (1)  uncertainty due to imputation. Multiple imputation methods,
icA including multiple imputation (Rubin 1978, 1987) and fractional

imputation (Kim and Fuller 2004), consider multiple possible
values for each missing value. The variability in imputed values
is used to in effect quantify uncertainty due to imputation. Impu-
tation procedures also vary in terms of the amount of variability
introduced through the process of producing imputations.

where w; is a sampling weight for unii that depends on the
sampling mechanism.

Another parameter of interestés = N ! Zf;l y;x;. An unbi-
ased linear estimator &f, is

s Brick and Kalton (1996) studied two methods for reducing the
0y = Z WiYiTq (2) : ; : : |

imputation variance which comes from the random componen
of the variance of the estimator arising from imputation. One
Hot deck imputation assigns valuesiofor respondents to miss- method is implemented through the sample design used fo
ing y-values for nonrespondents. One of the main consideratiorselecting donors within each imputation cell. For example,
for hot deck imputation is how best to select the donor valuesselection without replacement is less variable than selection witl
Many hot deck imputation procedures select donor values atplacement. The other method is to use fractional imputatior

i€EA
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(Kalton and Kish, 1984; Fay 1996), which uses more than one

donor for a recipient and assigns fractional survey weights to E(yilzi) = Bog + P
the multiple donors. Fractional imputation was suggested adnd ) 4)
a method for expressing uncertainty due to imputation and Viyilzi) = og.

reducing imputation variance. However, fractional hot deckTo apply regression imputation to fractional imputation, the

imputation can not preserve the correlation structure amongeighted mean of the imputed values using stochastic regressic

two or more quantitative variables except for the variables thaimputation is used to impute the missing data. Let missing val-

define imputation cells. As a result, a relationship between anes and observed values in cglbe indicated byd ;, and Ag,,

independent and dependent variable could be weakened duergspectively. Fojj € A,;,, the imputed value for missing is

simple hot deck imputation, even if the imputations are done

multiple times. yi; = Z wi (9i + €7). (5)
1€ADpg;

Kim (2006) suggested Fractional Regression Hot Deck Imputay, the above formulay>, ., widi; = 3ic 4, wh andApy;

tion (FRHDI) in order to combine the advantages of hot decks the set of indices of imputed values foE A7, The imputed
imputation and regression imputation within the framework ofgstimator o, can be constructed as follows:

fractional imputation. The procedure for combining the two

imputation methods takes the form of fractional hot deck imputa- ¢ .
tion with a suitable choice of fractional weights. Consequently, O = Z wiyY; + Z W;Yrj
FRHDI preserves the correlation structure and uses observed 9=1 [1€Anrg J€AMg
values for imputation. In addition, a jackknife variance estimation ¢ [
technique developed by Kim and Fuller (2004) can be applied for = D 1D wiwt > owy Y w(@i+é)
variance estimation. g=1 [i€ARy, jE€EAMg  i€AD,

. . G [
It is known, however, that the weights constructed by the regres- _ Z Z wiyi + Z Z wjwl (i + &)
sion weighting method can vary, producing some large weights or — | . .

g=1 _zGARg JEAMGIE€EAD;

even some negative weights. A large weight on donors can result
in large imputation variance for some estimates. In partlcularKim (2006) suggested adjusting the above formula for weighting

estimates within a domain can be highly variable if some weights g S . .
under stochastic regression imputation to get an expression for

are extreme. A 'negf?mve fractlpnal we!ght can b? SerIOl“'Sl)ﬁot deck imputation. There are two main motivations for Kim's
problematic for estimating the variance of imputed estimators. suggestion. First, all missing values can be imputed by observe

values. Like hot deck imputation Kim’s method just changes the

In this paper, we modify an iterative regression procedur . . . . . . ;
suggested by Huang and Fuller (1978) to construct nonnegatijéacuonal weight to get regression weights instead of imputing

. ) ; 2 “Unobserved values. Second, it is easy to estimate the variance
fractional weights and to place bounds on the fractional weight he imputed estimator by applving a consistent replication vari-
The review of FRHDI is described in Section 2. The propose P y appying P

. . . . . ,._ance estimation procedure with fractional imputation suggeste
method of constructing nonnegative fractional weights is dis- P P 99

cussed in Section 3. Simulation results are reported in Section Ry Kim and Fuller (2004).

Section 5 is a discussion and summary. The weighted mean of the imputed values can be written as

wi; (95 + €7) = WY (6)
2. Fractional Regression Hot Deck Imputation ig%gj ]J 7124%9 ’

One can indicate the donors for missing valye j € Aum if and only if for eachy € A,

through indicator variableg = {d,;;i € Ar}. Let the indicator Z wh(1a;) = (1, ;) @)
variabled;; take the value one ifj; is used as a donor for the EA T

missing y; and take the value zero otherwise. The sampling _ _ _ _
weightw; is distributed to the donors witt;; = 1. Letw?; be Therefore, the regression fractionally imputed estimator can b

the fractional weight allocated to donofor recipientj. The'sum  €xpressed in the form of the fractional hot deck imputed estimato
of fractional weights for each missing value is required to be oneas follows:

i€ADg;

Assume that the finite populatidii hasG imputation cells and G
the cell regression model is appropriate for each cell. Thatis, for ¢, = Z Z w;y; + Z Z Wy
i € Ay, the ghimputation cell, g=1 \i€An, €Ay i€ ADy;
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where thew;; satisfy condition (7). Under the calibration property”,  , wiz; = Zx, not the full
condition (7), there are several ways to construct regressiol
Similar algebra can be used to write the imputed estimator ofveights with a reduced range of values. Huang and Fullel
9, as a fractional hot deck (FRHDI) estimator. Sinbg can  (1978) defined a procedure to modify the so that there are no
be expressed as a FHDI estimator, variance estimation througtegative weights and no large weights. Husain (1969) suggeste
replication can be applied. guadratic programming as a procedure to place bounds on tf
weights. Deville and &ndal (1992) considered some objective
functions (e.g.Q) that can be used to produce positive weights
3. Construction of Regression Fractional Weights with a certain range. Park (2005) suggested that nonnegativ
regression weights can be computed by a calibration techniqu

In order to use fractional regression hot deck imputation, ongsing an initial weight, the inverse of the approximate conditional
must construct weights)};,i € Agq for eachj € Ay such  jnclusion probability.

150
that0 < wj; < 1, > c4,,. w5 = wj; and formula (7) holds.
It has been noted that numerical procedures for computingnother modification to regression weights is to relax the cali-
weights sometimes encounter problems. It is possible thajration property. This approach was studied by several author:
suitable weights might not exist. It also is a fact that numericajncjuding Husain (1969), Bardsley and Chambers (1984), anc

procedures that do not directly incorporate all the constraintkzg and Singh (1997). However, the constraint (7) is importan
can produce weights that are negative, which is undesirablgq that it cannot be relaxed in our situation.

Section 3.1 discusses weight computation. Section 3.2 presents a

encounter a problem. weights with the constraints (7), not the calibration property,
. ) o to get adjusted fractional weights. Wayne Fuller, in personal
3.1 Introduction to Regression Weighting communication, has pointed out that there is no guarantee th:

) ) o a solution exists for the weights constructed by a quadratic
Kim (2006) suggested the regression weighting method to corprogramming problem with bounds on the weights. To ensure the
struct the fractional weights satisfying the constraint (7). Thisexistence of a solution, we assume that there exists at least ol
method can be viewed as a calibration technique. This procedutgynor with anz-value greater than the valug and one donor

for constructing the fractional weights is to minimize a functionyitn an z-value less than the-value, z;, for the case with the
of the distance between an initial weight; and a final fractional  yjssingy-value.

weightw;; subject to the constraint (7). Let; be any initial frac-

tional weights satisfying _,. , , ~a;; = 1. Acommon choiceis 3 2 Computer Algorithm for Regression Fractional Weights

a;; = 1/M for j € Ay whereM is the number of donors used

for fractional imputation. Let the dist?nce function between  The algorithm by Huang and Fuller (1978) produces weights tha
andwj; be Q(ayj, w) = >ic 4, . @ (ay; —wj;)?. Thenthe  are a smooth, continuous, monotone increasing function of th

problem is to minimize original least squares regression weights based upon the idea
. generalized least squares. We modify their algorithm to apply fol
Qaiz, wiy) our problem. This procedure is iterative and requires checking th

weight at each step against a user supplied criterion. The frac

subject to the constraints tional weight (9) can be rearranged to be

Z‘eAD -w?}‘(l z;) = (1,25) *
i it ) ) = Qi 1+ i 10
and g (8) wz] «a J ( d) ) ( )
By using the Lagrange multiplier method, the solution of (8) is ¢ = (z; — a—jlj)/ggéj(xi — Z15).
wi; = ouy+ (5 — T1;)S,, o (wi — 1) 9)
where An alternative computational form equivalent to the weights (10)
_ can be constructed as

Seaj = DLieap,; %i(®i —Z15)?
and 1+ 25

T - o 1Uf-==am' +-{j ) (11)

Trj = icap,; YijTi- J 1+ z;
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where The constantd/3 and4/5 are to speed convergence of the
1 algorithm. Alternativel and~ function can be constructed.
_ — / 2 . . .
zij = (xj;—Zr5) ( Z ij(zi — ;) ) (zi — ;) STEP 3: Compute the new regression fractional weights:
i€EAR
and " (k) )
— J
2]‘ = Z Q25 )\i - H i
1€EAR j=1
-1
The regression fractional weights defined by (11) will be non- k) v IR 2
negative ifl + z;; > 0 for everyi. Our computer algorithm s = (@ —T) ,%: g Ay (25 — )
creates nonnegative fractional weights by modifying the 14D
such that|z;;| < 1 so thatw}; > 0 and there is an. such x(x; — ;)
that mazica,, (wz‘j) < L. If the first-step fractional weights (k) O
fall outside the desired range;;| < 1, then relatively small A maw{,g YiiFij o
1EAD;

adjustment values are assigned to the fractional weights of donors

where the auxiliary variable of donar; is far from that of

recipientz; and relatively large adjustment values are assigned

to the fractional weights of donors where the auxiliary variable of

donorz; is close to that of recipient,. The initial weightsa; ; 1+ ij’“)
are used as first-step weights. Adjustment values can be obtained Wy Qg —®
by v;, a “bell” shaped function (in a suitable metric) between the %

*(k)

STEP 4: If|z§]]-“)| < 1for everyi € Ap;, then

auxiliary variable of the donor and recipient for each donor.

The algorithm for computing the regression fractional weights

If not, setk = k + 1 and go to STEP 2.

is composed of the following steps. For simplicity of notation, The final fractional Weight@;-(s) have the following properties.

assume there is only one imputation cell add= 1. If there

rately within each cell.

STEP 1: Calculate

-1

zij = (z;— %) Z a;j(z; — xj)2 (z; — )
i€AD;
and
_ 1
z; = mam{ Z Q5 24, M — ]_}
i€AD;

If |2;;] < 1 for everyi € Apj, then the initial weightsy;;

satisfy the constraints. If not, skt= 1 and go to the next

step.
STEP 2 : Compute the adjusted weight for each distaihce
where
4
k
¥ = 3 kil

and

1 0<d® <1

W= g -y <d <)
@) d > 1

2694

For eachj € Ay,
are multiple imputation cells, then implement the algorithm sepa-

() 0< w;‘j(k) < 1forie Ap,; and

(W) icap,, wi (L z:) = (1,2;).

If the imputation cells are such that the restriction cannot be met
the program will produce weights approximating the criterion. In
our situation, we can always find nonnegative fractional weights
by the proposed computer algorithm under the assumption the
there exists at least one donor with afvalue greater than the
valuex; and one donor with am-value less than the-value,z;,

for the case with the missingvalue.

4. Simulation Study

This section presents the main results from two limited simulation
studies. To show the performance of our procedure, we compare
three imputation methods:

FRHDIO : FRHDI using the regression fractional weight,
FRHDI1 : FRHDI using the nonnegative fractional weight,
and

MI : Multiple imputation.
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For fractional imputation, for each missing value, we created
10-case nearest neighborhoods where the distance is defined
on the value ofr;. Each nearest neighborhood consists of 1

respondents with the closestvalue to the valuer; for missing under simulation 1.

oTable 1: Monte Carlo mean and variance of the point estimato

. o . P t Meth M Vari
unit j. After that, M donors for each missing unit are selected by aramerer ethod — can anance
X . . s Mean:) FRHDIO(M=5) 2.00 0.0262
simple random sampling without replacement within each nearest FRHDI1(M=5) 200 0.0260
neighborhood. Fractional weights’; on FRHDIO are calculated MI (M=5) > 'OO 0 6268
by the regression method (9) setting the initial fractional weight FRHDIO(M=10) 2 00 0'0250
equal toa;; = 1/d;;. Nonnegative fractional weights are FRHDI1(M=10) 2'00 0.0260
obtained by the computer algorithm that was described in Section _ ) :
o . . X MI (M=10) 2.00 0.0260
3.2. For multiple imputation (Rubin 1987)/ repeated imputa- —
. . S Slopefs) FRHDIO(M=5) 1.00 0.0158
tion values are drawn from the posterior predictive distribution of _
o : . : . FRHDI1(M=5) 1.00 0.0155
the missing values under a simple linear regression model given _
: L . MI (M=5) 1.00 0.0162
the standard prior distribution, e.g., constant on the regression _
e . . : FRHDIO(M=10) 1.00 0.0156
coefficients and inversely proportional to the regression model _
variance. In this simulation, we uséd = 5 and10 FRHDIL(M=10) ~ 1.00 0.0158
' ' o ‘ Ml (M=10) 1.00 0.0159
In the first simulation, three independent variables were gener- Domain meard;) FRHDIO(MfS) 2.00 0.0778
) C . FRHDI1(M=5) 2.00 0.0765
ated: z; from a normal distribution withV(0, 1), e, ~ N(0,1), _
. o . Ml (M=5) 2.00 0.0830
and z; from the uniform (0,1) distribution. The dependent vari- _
: o FRHDIO(M=10) 2.00 0.0781
able isy; = 2 + x; + ;. We also generated a response indicator _
R; from a Bernoulli distribution with the response rate= 0.65 FRHDIL(M=10)  2.00 0.0805
! b L Ml (M=10) 199 0.0790

They; is observed if and only iR; = 1. Thex; andz; are ob-
served throughout the sample. We uged- 5000 samples of size

n = 100 to simulate properties of the procedures. Three parame-
ters are estimated. The parameters are

#1 = mean ofY’,

Table 2: Monte Carlo relative biases and t-statistics of the varianc
estimator under simulation 1.

0, = slope ofY on X, and

_ Parameter Method RB{) t-statistic

03 = mean ofy” wherez < 0.25. Meanf,) FRHDIO(M=5)  -1.74 _ -0.86
FRHDI1(M=5) -0.71 -0.35

For fractional imputation, the variance estimation method pro- MI (M=5) 3.54 1.81
posed by Kim (2006) was applied. Kim (2006) considers the FRHDIO(M=10) 3.25 1.63
adjusted jackknife replicates constructed by decreasing by an FRHDI1(M=10) -0.14 -0.07
appropriate amount fractional weights of the imputed values MI (M=10) 5.13 2.51
associated with a deleted respondent and increasing by an Slope@-) FRHDIO(M=5) 3.87 0.04
appropriate amount fractional weights of the other donors we FRHDI1(M=5) 2.20 0.02
mentioned. There are certain situations where it is not possible MI (M=5) 5.73 0.07
to find the appropriate amount when using negative fractional FRHDIO(M=10) 1.78 0.02
weights. In certain cases in which there were difficulties, we FRHDI1(M=10) 1.54 0.02
used the approximated amount of adjustment for the variance MI (M=10) 3.39 0.04
estimator under FRHDIO. The variance estimator for multiple Domain mearfs) FRHDIO(M=5) 7.60 3.71
imputation was given in Rubin (1978, 1987). FRHDI1(M=5) 4.62 2.30
MI (M=5) 28.48 13.82

Table 1 shows the mean and variance of the imputed estimator FRHDIO(M=10) 5.61 2.62
calculated based on the Monte Carlo samples generated by FRHDI1(M=10) 2.23 1.07
MI (M=10) 32.85 15.40

the linear regression model. The three imputation methods are

unbiased. Fractional imputation is slightly more efficient than
multiple imputation with the same number of donors. In addition,
there is no further improvement using FRHDI with nonnegative
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fractional weights based on the efficiency of the point estimator.

In Table 2, relative biases and t-statistics for the variance estima-

tors are presented. The relative bias of the variance estimator ®ble 3: Monte Carlo mean and variance of the point estimato

the Monte Carlo bias (the mean of the variance estimates minughder simulation 2.

the variance of the estimates) divided by the Monte Carlo mean Parameter

of the variances. The t-statistic for testing the hypothesis of zero Mean{,)
bias is the Monte Carlo estimated bias divided by the Monte

Carlo standard error of the estimated bias (the square root of

the variance of the estimated biases). The fractional imputation

variance estimation procedures have reasonably small relative

biases for the variances of the imputed estimaprandd,. The

fractionally imputed variance estimator is biased for the variance = Slopef-)
of the estimator of domain meds. The main source of this bias
is the bias in the jackknife variance estimator for a ratio.

Table 2 further illustrates that multiple imputation produces a
seriously biased estimator of the variance of the estimator of

f3. This bias in the multiple imputation variance estimator for
a domain mean was pointed out by Fay (1992). Kim and Fuller
(2004) point out that the bias in the multiple imputation variance
estimator for the mean can be reduced by increasingr sample
sizen. IncreasingM or n, however, reduces only some part of
the bias of the multiple imputation variance estimator for the

Method Mean Variance
FRHDIO(M=5) 2.01 0.0265
FRHDI1(M=5) 2.01 0.0264
MI (M=5) 2.04 0.0340
FRHDIO(M=10) 2.01 0.0259
FRHDI1(M=10) 2.01 0.0263
MI (M=10) 2.04 0.0322
FRHDIO(M=5) 0.00 0.0655
FRHDI1(M=5) 0.00 0.0649
MI (M=5) 0.55 0.0096
FRHDIO(M=10) 0.00 0.0645
FRHDI1(M=10) 0.00 0.0681
MI (M=10) 0.54 0.0085

Domain mearf;) FRHDIO(M=5) 2.01 0.0841
FRHDI1(M=5) 2.01 0.0822
MI (M=5) 2.04 0.0921
FRHDIO(M=10) 2.02 0.0781
FRHDI1(M=10) 2.01 0.0779
MI (M=10) 2.04 0.0840

domain mean since the MI variance estimator does not reflect
the fact that the imputed values used in the domain come from
observations outside the domain. Of course, if the MI procedure
used the domains explicitly one could expect different results.

One additional result can be mentioned. The variance estimators
for FRHDI1 are more stable than those for FRHDIO and MI.
FRHDIO has the uniformly smallest variance of the variance
estimators on all three parameters.

estimator under simulation 2.

Table 4: Monte Carlo relative biases and t-statistics of the varianc

In the second simulation study, the samples are generated from pgrameter

the quadratic regression modgl= 2 ++/0.5(x? — 1) +e; where

x; ande; are as before. The samgand R; variables generated

in the first simulation were used. We expect the FRHDI be quite
robust against the misspecification of the imputation model since

the imputed values for fractional imputation are selected from ~gjgpep,)
nearest neighborhoods and thus correspond to a local (rather

than global) linear model. To demonstrate the robustness of

FRHDI, we used the simple linear regression model not the

true quadratic model for imputation. Of course, if one used the “pgomain meard)
guadratic model for imputation, then results would be different.

The estimand parameters we consider in simulation 2 are the

same as in simulation 1.

Method RB{) t-statistic
Mean@,) FRHDIO(M=5) 2.49 1.25
FRHDI1(M=5) 1.47 0.72
FRHDIO(M=10) 2.98 1.44
FRHDI1(M=10) 1.04 0.52
FRHDIO(M=5) 4.79 1.84
FRHDI1(M=5) 3.87 1.56
FRHDIO(M=10) 6.59 2.50
FRHDI1(M=10) 0.77 0.30
FRHDIO(M=5) 7.13 3.38
FRHDI1(M=5) 4.63 2.23
FRHDIO(M=10) 7.67 3.65
FRHDI1(M=10) 6.38 3.08

Table 3 shows the performance of the point estimator under
simulation 2. The Monte Carlo results are in general agree-
ment with our expectation. Fractional imputation methods are
approximately unbiased and have more efficiency than Ml for
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all parameters. Fractional imputation methods are more robufeville, J.-C., and &ndal, C.-E. (1992). Calibration estimators
against the failure of the imputation model than multiple impu-in survey samplingJournal of the American Statistical Associa-
tation. Multiple imputation estimators show big biases for alltion, 87, 376-382.
parameters especially for the slope. This result indicates that, as
expected, Ml is very sensitive to the model used for imputationFay, R.E. (1992). When are inferences from multiple imputation
Bias of multiple imputation estimator could be improved tovalid? Proceedings of the Survey Research methodology sectiol
some degree if the imputed values were generated by the locAmerican Statistical Association, 227-232.
simple linear regression model or by a quadratic regression model.
Fay, R.E. (1996). Alternative paradigms for the analysis of
In Table 4 the biases and t-statistics of the two fractional imputaimputed survey datalournal of the American Statistical Associ-
tion methods are illustrated under simulation 2. The simulatioration, 91, 490-498.
results of multiple imputation variance estimators are not listed in
Table 2 since the point estimators are seriously biased. Based étuang, E.T., and Fuller, W.A. (1978). Nonnegative regressior
the biases and t-statistics in Table 4, FRHDI variance estimatioastimation for sample survey dataProceedings of the Social
procedures are unbiased fér andf,. The variance estimator Statistics sectionAmerican Statistical Association, 57-64.
using nonnegative fractional weights (FRHDI1) is more stable
than FRHDIO. Husain, M. (1969). Construction of Regression weights for
estimation in Sample Surveys. Unpublished M.S. thesis, lowe

. . State University, Ames, lowa.
5. Summary and Discussion

We have discussed a procedure for constructing nonnegatifé@/ton, G., and Kish, L. (1984). Some efficient random im-

adjusted fractional weights for fractional regression hot deciUtation methods. Communications in Statistics: Theory and

imputation (FRHDI). In some situations, of course, solutions toMethods 13, 1919-1939.

the algorithm do not exist. Future work will examine options
when, for example, donor values with a spreadrefalues are
not available.

Kim, J.K. (2006). Fractional Regression Hot Deck Imputation.
Draft manuscript.

In a limited simulation, the proposed method performs better thaffim J:K., and Fuller, W.A. (2004). Fractional hot deck imputa-
naive multiple imputation and FRHDI without the restrictions on tion- Biometrikg 91, 559-578.

the fractional weights. Future work will apply methods to data . ) )
from longitudinal social science studies, examine more involved?@0: J-N-K., and Singh, A.C. (1997). A ridge shrinkage methoc

simulation contexts, and address situations with multivariatd®’ range restricted weight calibration in survey sampling.
missing data. Proceedings of the section on survey research methgdsrican

Statistical Association, 57-64.
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