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Abstract 

 

In this paper a multivariate structural time series model 
is described that accounts for the panel design of the 
Dutch Labour Force Survey and is applied to estimate 
monthly unemployment rates. Compared to the 
generalized regression estimator, this approach results 
in a substantial increase of the accuracy due to a 
reduction of the standard error and the explicit 
modelling of the bias between the subsequent waves. 

 

1. Introduction 

The Dutch Labour Force Survey (LFS) is based on a 
rotating panel design. A major problem with such 
panels is that systematic differences occur between the 
subsequent waves due to mode and panel effects, 
which is known as rotation group bias (RGB). The 
estimation procedure of the LFS is based on the 
generalized regression (GREG) estimator. These 
estimators are widely applied by national statistical 
institutes since they are always approximately design 
unbiased. They have, however, relatively large design 
variances in the case of small sample sizes. The 
monthly sample size of the Dutch LFS is too small to 
produce reliable figures about employment and 
unemployment with the GREG estimator. Therefore 
each month the samples observed in the preceding 
three months are used to estimate moving averages 
about the labour market situation. 

Since the monthly sample sizes are too small to apply 
direct survey estimators, model-based estimation 
procedures can be used to produce sufficiently reliable 
statistics. For rotating panel designs, Pfeffermann 
(1991) and Pfeffermann et al. (1998) proposed a 
structural time series model to borrow information or 
strength from preceding samples to improve the 
accuracy of the estimates and to account for the RGB 
as well as the autocorrelation between the different 
panels. This approach is applied to the unemployment 
rate of the Dutch LFS in this paper, which is defined as 
the ratio of the total unemployment and the total labour 
force. 

In section 2, the survey design of the Dutch LFS is 
summarised. A structural time series model that 
accounts for the rotating panel design of the LFS is 
described in sections 3 and 4. The analysis results are 

detailed in section 5. Some general remarks are made 
in section 6. 

2. The Dutch Labour Force Survey 

The LFS is based on a stratified two-stage cluster 
design of addresses. Strata are formed by geographical 
regions. Municipalities are considered as primary 
sampling units and addresses as secondary sampling 
units. Since most target parameters of the LFS concern 
people aged 15 through 64 years, addresses with only 
persons aged 65 years and over are undersampled. In 
the first wave, data are collected by means of computer 
assisted personal interviewing (CAPI). The 
respondents aged 15 through 64 years are re-
interviewed four times at quarterly intervals. In these 
four subsequent waves, data are collected by means of 
computer assisted telephone interviewing (CATI). 
During these re-interviews a condensed questionnaire 
is applied to establish changes in the labour market 
position of the respondents. 

This rotating panel design results in systematic 
differences in the estimates of the unemployment rate 
between the successive waves in one time period. 
These differences are a consequence of panel effects 
due to systematic changes in the behaviour of the 
respondents in the panel, panel attrition, mode effects 
and differences between the CAPI and CATI 
questionnaires. Due to these factors, the estimates 
based on the subsequent panels are biased, which is 
known in the literature as rotation group bias (RGB), 
see e.g. Bailar (1975) and Pfeffermann (1991). This 
RGB in the Dutch LFS results in a systematic 
underestimation of the unemployment rate in the CATI 
waves and systematic differences in the seasonal 
effects.  

The weighting procedure of the LFS is based on the 
GREG estimator. The inclusion probabilities reflect the 
sampling design as well as the different response rates 
between geographical regions. The weighting scheme 
is based on a combination of different social-
demographical categorical variables. To correct for 
panel attrition, the inclusion weights of each CATI-
wave of the sample data are calibrated with the GREG 
estimator to the labour force status (10 classes) crossed 
with age (3 classes) observed in the first wave. In the 
next step, the calibrated weights of the four CATI 
waves and the inclusion weights of the CAPI wave are 
used as the starting weights in the GREG estimator. 
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The calibration of the CATI waves to the labour force 
status of the CAPI wave hardly corrects for the RGB. 
Therefore, an additional rigid correction is applied to 
the GREG estimate obtained with the five waves. The 
ratio between the unemployment rate based on CAPI 
only and the estimates based on all waves is computed 
using the data of the 12 preceding quarters. Estimates 
for the preceding three months are multiplied by this 
ratio to correct for rotation group bias. See Van den 
Brakel and Krieg (2007) for details.  

3. Time series model 

Let tθ  denote the population parameter of interest, i.e. 
the true unemployment rate, at time t. Direct 
estimators, like the GREG estimator, assume that tθ  is 
a fixed but unknown parameter. Under this design-
based approach, an estimator for tθ  for cross sectional 
surveys uses the data observed at time t. Data from the 
past are only used in the case of partially overlapping 
samples in a panel design. Scott and Smith (1974) 
proposed to consider the population parameter tθ  as a 
realization of a stochastic process that can be described 
with a time series model. Under this assumption, data 
observed in preceding periods t-1, t-2,..., can be used to 
improve the estimator for tθ , even in the case of non-
overlapping sample surveys.  

As a result of the rotating panel design of the Dutch 
LFS, each month five independent samples are 
observed to estimate the population parameter tθ . Let 
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containing the five GREG estimates jt
tY −  for tθ  

based on the panel observed at time t, which entered 
the survey for the first time at t-j. The jt

tY −  are based 
on a reduced version of the regular weighting scheme 
for the quarterly figures without using the correction 
for the RGB described in section 2. This vector can be 
modelled as (Pfeffermann, 1991) 
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with 51  a five dimensional vector with each element 
equal to one, T
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dependent components that account for the RGB of the 
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corresponding survey errors for each panel estimate. 

3.1 Time series model for the population parameter 

The population parameter tθ  is modelled with the 
basic structural time series model, i.e.: 

 tttt SL εθ ++= ,  (3.2) 
where tL  denotes a stochastic trend component, tS  a 
stochastic seasonal component, and tε  the irregular 
component which contains the unexplained variation 
that is modelled as white noise. The stochastic trend is 

modelled as a smooth trend model, which is defined 
by: 
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The parameters tL  and tR  are referred to as the trend 
and the slope parameter respectively. The seasonal 
component is modelled as 
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3.2 Time series model for rotation group bias 

The systematic differences between the trend and the 
seasonal components of the subsequent waves are 
modelled with tλ  and tγ .  Additional restrictions for 
the elements of both vectors are required to identify 
model (3.1). Here it is assumed that the most accurate 
estimate for tθ  is obtained with the first wave, which 
is observed by CAPI. This implies that the first 
components of tλ  and tγ  equal zero. Now tλ  
measures the time dependent differences in the low 
frequency variation with respect to the first wave. The 
components of tλ  are defined as: 
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tγ  measures the systematic differences in the seasonal 
components with respect to the first wave. The 
components of tγ  are defined as  
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The variance components of the random walks in (3.5) 
and the seasonal components in (3.6) are assumed to 
be equal for all waves. 

3.3 Time series model for survey errors 

A consequence of the rotating panel design is that the 
survey errors in the subsequent time periods are 
correlated. To account for this autocorrelation, the 
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dependency between the survey errors of the panel 
observed at the last time and previous occasions is 
modelled with the following autoregressive 
relationship:  
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Here jt
tn −  denotes the net number of respondents in 

the survey at time t that entered the panel at time t-j, 
and ρ  the autocorrelation coefficients of the AR 
model. 

4. State-space representation 

The model proposed in the preceding section can be 
analysed by means of the Kalman filter. To this end, 
the model is expressed in state-space representation, 
see Harvey (1989) or Durbin and Koopman (2001). A 
state-space model consists of a measurement equation 
and a transition equation. The measurement equation 
specifies how the observations depend on a linear 
combination of unobserved state variables, e.g. trend, 
seasonal, RGB and the survey errors. Thus 

 tt ZαY = .   (4.1)  

Here tα  denotes the state vector with unobservable 
state variables, and Z  a known design matrix that 
specifies the linear relationship between the 
observations and the elements of the state vector.  

The transition equation specifies how the state vector 
evolves in time: 

 ttt ηTαα += −1 ,  (4.2)  

with  

 0η =)( tE , 
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Here 0 and O denote a vector respectively a matrix 
with each element zero. The state-space representation 
of the model proposed in section 3 is obtained with 
(4.1) and (4.2) by taking 
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Here 1  denotes a vector with each element one and I  
the identity matrix. The subscripts for 0 , 1 , O , and 
I  specify the dimensions of the vectors and the 
matrices. 

Generally the measurement equation (4.1) also has an 
irregular term. The Kalman filter assumes that the 
disturbances of the measurement equations at different 
time periods are uncorrelated. This assumption is not 
met if the survey errors of the panel are incorporated in 
the irregular terms of the measurement equation. 
Therefore the survey errors are incorporated as 
unobserved components in the state vector and the 
dependency between the survey errors is explicitly 
modelled in the transition equation. In this application 
the irregular term of the population parameter in 
equation (3.2) is denominated by the survey errors 
which are already incorporated in the state vector. 
Assuming an additional irregular term in the 
measurement equation would result in identification 
problems. Therefore the irregular component of the 
measurement equation has been dropped. 

The transitional relationship of the survey errors is 
explained by Van den Brakel (2005). The transitional 
relations for the first five entries of e

tα  follow from 
(3.7). The remaining elements are included to have the 
same elements in e

tα  and e
t 1−α  with a time shift of 1 

and to assure that the vector e
tη  is independent of past 

state vectors. This last property is required since the 
Kalman filter assumes that Oηη =),( 'ttCov  for 
t≠ t�. 

After having expressed the model in state-space form, 
the Kalman filter can be applied to obtain optimal 
estimates for the state vector tα . Estimates for state 
variables for period t based on the information 
available up to and including period t are referred to as 
the filtered estimates. The filtered estimates of past 
state vectors can be updated, if new data become 
available. This procedure is referred to as smoothing. 
In this paper, the Kalman filter estimates for the state 
variables are smoothed with the fixed interval 
smoother. See Harvey (1989) or Durbin and Koopman 
(2002) for technical details.  

5 Results 

With the GREG estimator monthly estimates for the 
unemployment rate are obtained for each wave. In 
Figure 5.1 the unemployment rate based on the first 
wave is compared with the average of the four CATI 
waves. It follows that the unemployment rate observed 

with the first wave is systematically higher than the 
other four waves.  

Figure 5.1: RGB monthly unemployment rate based on 
GREG estimates 
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5.1 Estimation results for the time series model 

The five time series obtained with the different waves 
are modelled with the time series model proposed in 
sections 3 and 4. The analysis is conducted with 
software developed in Ox in combination with the 
subroutines of SsfPack (beta 3), see Doornik (1998) 
and Koopman et al. (1999). Note that a more recent 
version of Ssfpack is used than the 2.2 version 
described in Koopman et al. (1999). Version 3 is very 
appropriate for the estimation of complex multivariate 
structural time series models. 

Preliminary analyses indicate that the model proposed 
in sections 3 and 4 can be simplified. The estimates for 
the RGB of the seasonal effects in the second wave are 
not significantly different from zero and the RGB for 
the seasonal effects of the third, fourth and fifth wave 
are not significantly different from each other. 
Therefore the model is simplified by taking 
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accordingly. 

Maximum likelihood estimates for the 
hyperparameters, i.e. the variance components of the 
stochastic processes for the state variables 
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the AR parameter between the survey errors 1ρ , are 
obtained using a numerical optimization procedure. 
The results are presented in Table 5.1. 
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Table 5.1: Maximum likelihood estimates hyper-
parameters 

Hyperparameter  estimate 
Slope (smooth trend) 0.000192 
Seasonal 0.000325 
RGB trend 0.000000 
RGB seasonal 0.000000 
Survey error wave 1 0.343 
Survey error wave 2 0.256 
Survey error wave 3 0.293 
Survey error wave 4 0.336 
Survey error wave 5 0.278 
First order auto regression survey error 0.2 

The smoothed Kalman filter estimates for the 
unemployment rate tθ  are given in Figure 5.2. These 
are the estimates for the monthly unemployment rate, 
based on the smooth trend model and a seasonal 
component, corrected for the RGB between the five 
GREG estimates. The trend and the seasonal 
component are time dependent since the maximum 
likelihood estimates of the corresponding 
hyperparameter are positive (see Table 5.1). The 
smoothed Kalman filter estimates for the trend and the 
seasonal component are plotted in Figures 5.3 and 5.4 
respectively. 

Figure 5.2 Smoothed Kalman filter estimates for the 
monthly unemployment rate 
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Figure 5.3 Smoothed Kalman filter estimates for the 
trend of the monthly unemployment rate 

3

3.5

4

4.5

5

5.5

6

6.5

7

2003 2004 2005 2006

Time

U
n

em
p

lo
ym

en
t 

ra
te

Trend 95% confidence interval
 

Figure 5.4 Smoothed Kalman filter estimates for the 
seasonal effect of the monthly unemployment rate 
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The Kalman filter estimates for the RGB of the trend 
are time independent since the maximum likelihood 
estimate of the corresponding hyperparameter tends to 
zero (see Table 5.1). The smoothed Kalman filter 
estimates for the RGB are given in Table 5.2. The 
model beautifully detects a slightly increasing bias in 
the low frequency variation of the subsequent waves. 
The estimates for the RGB of the four CATI waves are 
significantly different from zero. 

Table 5.2 Smoothed Kalman filter estimates RGB trend 
Wave RGB St. error 

2 -0.77 0.06 
3 -0.89 0.07 
4 -0.94 0.08 
5 -1.11 0.07 

The Kalman filter estimates for the RGB of the 
seasonal effects are also time independent since the 
maximum likelihood estimate of the corresponding 
hyperparameter tends to zero (see Table 5.1). The 
smoothed Kalman filter estimates are given in Figure 
5.5.  

Figure 5.5: Smoothed Kalman filter estimates for the 
RGB of the seasonal effects in the third, fourth and 
fifth wave 
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It follows that the seasonal effects in February and 
August in the third, fourth and fifth wave are 
significantly different from the first and the second 
wave. Comparing Figures 5.4 and 5.5 shows that the 
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RGB in the seasonal effects arises since the seasonal 
effects in the last three waves are less pronounced than 
in the first two waves. 

5.2 Comparison with GREG estimates 

The GREG estimates based on the CAPI wave for the 
monthly unemployment rates are compared with the 
filtered estimates obtained with the time series model 
in Figure 5.6. Some of the peaks and dips in the series 
of the GREG estimates are partially considered as 
survey errors under the structural time series model 
and flattened out in the filtered estimates for the series. 
Some of these peaks and dips are preserved since they 
are considered as seasonal effects under the time series 
model. It also follows that the filtered estimates are 
corrected for the RGB since the filtered series is at the 
same level as the GREG series for the CAPI wave. 

Figure 5.6:  Filtered estimates and GREG estimates 
CAPI wave for monthly  unemployment rate  
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The procedure applied in the regular estimation 
procedure of the LFS, to combine the CATI and the 
CAPI waves, is also used to estimate monthly 
unemployment figures. As described in section 2, the 
four CATI waves are calibrated to the employment 
status in the CAPI wave. The GREG estimator is used 
to estimate the monthly unemployment rates using the 
five different waves. Finally a correction factor based 
on the preceding 36 months is used to remove the 
RGB. These corrected GREG estimates based on the 
data observed in the five waves are compared with the 
filtered estimates obtained with the time series model 
in Figure 5.7. The monthly GREG estimates based on 
all waves are also compared with the GREG estimates 
based on the CAPI wave in Figure 5.8.  

The ratio correction applied to the GREG estimate 
based on all waves removes the RGB in the low 
frequency variation between the subsequent waves, but 
does not correct for the RGB in the seasonal patterns. 
This follows from figure 5.7 and 5.8. The series of the 
GREG estimates based on all waves follows the same 
level as the GREG estimates based on the CAPI wave 
(Figure 5.8). There are, however, subtle differences 
between the filtered estimates obtained with the time 
series model and the GREG estimate based on all 

waves (Figures 5.7). They are partially the result of 
systematic differences in the seasonal patterns between 
the subsequent waves. Moreover they arise because 
some of the dips and peaks in the GREG estimates are 
considered as survey errors by the time series model. 

 Figure 5.7:  Filtered estimates and GREG estimates 
all waves for monthly unemployment rate  
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Figure 5.8: GREG estimates CAPI wave and all waves 
for monthly unemployment rate 
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The standard errors for the monthly GREG estimates 
based on all waves, the CAPI wave and the filtered 
estimates are compared with each other in Figure 5.9. 
The standard errors for the GREG estimates are based 
on the variance of the ratio of two GREG estimators, 
see e.g. Särndal et al. (1992), formula 7.13.10. See Van 
den Brakel and Krieg (2007) for technical details of the 
variance approximation used to account for the 
calibration of the CATI waves to the CAPI wave and 
the applied ratio correction described in section 2. 

As expected, the standard errors of the GREG 
estimates based on all waves are smaller than the 
GREG estimates based on the CAPI wave, since they 
are based on more data. The standard errors of the 
filtered estimates obtained with the time series model 
are smaller than the GREG estimates based on all 
waves, since the time series model uses additional 
sample information from preceding periods. 

A smaller than expected difference between the 
standard error of the GREG estimates based on all 
waves and the filtered time series model estimates was 
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found. This can be explained by the size of the time 
series model, which is large compared to the length of 
the series available to fit the model (41 state variables 
applied to a five dimensional series monthly observed 
during a period of six years). Smaller standard errors 
for the filtered estimates might be expected if more 
data becomes available. Another important aspect is 
that the GREG estimates are corrected for the RGB in 
the low frequency variation only. The time series 
model, on the other hand, accounts for the RGB in the 
low frequency variation and the seasonal patterns and 
the standard errors reflect the complexity of the 
applied model. 

Figure 5.9: Standard errors GREG and filtered 
estimates monthly unemployment rate 
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The efficiency obtained by borrowing sample 
information from the past by relying on a time series 
model is illustrated more clearly if the standard error of 
the GREG estimates using all waves is compared with 
the standard error of the monthly estimates obtained 
with a time series model that accounts for the RGB in 
the low frequency variation only. Therefore a time 
series model without a component for the RGB in the 
seasonal pattern is applied to the data in an attempt to 
improve the precision of the time series model 
estimates. This implies that ,γ

tα  γZ , γT , γ
tη , and 

γQ  are deleted from the model in state space 
representation as described in section 4. The filtered 
estimates for the monthly unemployment rates based 
on a model with and without a component for the RGB 
in the seasonal pattern are compared in Figure 5.10.  

The model without a component for the RGB of the 
seasonal effects finds an average seasonal effect for the 
population parameter tθ . As a result the absolute 
values of the seasonal effects in February and August 
are smaller under the simplified model, resulting in a 
lower estimate for the monthly unemployment rate in 
February and a larger estimate in August. 

The standard errors for the filtered estimates obtained 
with the two time series models and the GREG 
estimator using all waves are compared in Figure 5.11. 
The standard error of the filtered estimates of the 
simplified time series model is substantially smaller 

than the standard error of the GREG estimates using all 
waves. This is the increase in precision that is obtained 
by using the sample information from preceding 
periods through the time series model. The 
simplification of the time series model by ignoring the 
RGB for the seasonal effects, results in a reduction of 
the standard error at the cost of an increased bias in the 
seasonal effects. Under the model assumption that the 
estimates for the monthly unemployment rates 
obtained with the data observed in the first wave are 
unbiased, the time series model that accounts for the 
RGB in the seasonal patterns is preferred, since it 
removes some bias in the seasonal pattern. 

Figures 5.10: Filtered estimates monthly 
unemployment rate for two different time series models 
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Figure 5.11: Standard errors monthly estimates 
unemployment rate GREG for all waves and filtered 
estimates for two different time series models  
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6. Discussion and conclusions 

In this paper a multivariate structural time series model 
is applied to the monthly data of the Dutch LFS that 
accounts for the rotating panel design of this survey. 
This approach is initially proposed by Pfeffermann 
(1991) and extended in this paper with a component 
that models systematic differences in the seasonal 
effects between the subsequent waves. With this time 
series model a substantial increase of the accuracy of 
the monthly estimates for the unemployment rate is 
obtained. First, the model explicitly estimates the RGB 
in the low frequency variation and the seasonal 
patterns between the first CAPI-wave and the four 
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subsequent CATI-waves. As a result, estimates for the 
unemployment rates are corrected for this RGB. 
Second, the time series model borrows strength from 
data observed in preceding periods via the assumed 
model for the population parameter and the 
autocorrelation between the survey errors of the 
different panels. 

The RGB induced by the rotating panel design is 
substantial. The bias in the low frequency variation 
results in an underestimation of the unemployment rate 
in the subsequent waves and its magnitude slightly 
increases from -0.8 percent points in the second wave 
to -1.1 percent points in the fifth wave. The seasonal 
effect in February is about 0.5 percent points too small 
and in August 0.4 percent points too large in the third, 
fourth and fifth wave compared to the first two waves. 
This results in less pronounced seasonal effects in the 
last three waves. 

The estimation procedure of the regular LFS is based 
on the GREG estimator. In this procedure the estimates 
for the unemployment rate are corrected with the ratio 
between the unemployment rate based on CAPI only 
and the estimates based on all waves, using the data of 
12 preceding quarters. This ratio corrects for the RGB 
in the low frequency variation but not for the RGB in 
the seasonal patterns. Compared with the currently 
applied estimation procedure, the time series model 
improves the accuracy of the estimates of the 
unemployment rate, since it reduces the standard error 
and gives, under the assumption that the data obtained 
in the first wave are not biased, better corrections for 
the RGB. 

The time series model is identified by adopting a 
restriction for the RGB parameters which assumes that 
the first wave is observed without bias. This implies 
that the estimates based on the first wave are used to 
benchmark the subsequent waves. If this restriction is 
used, then an all out effort in each part of the statistical 
process is required to reduce possible bias in the first 
wave, e.g. by using the most appropriate mode, 
reducing non response, optimizing the weighting 
scheme, etc. Based on external information about the 
bias in the different waves, the restriction for the 
rotation group bias components might be adjusted. 

The time series approach explored in this paper is 
appropriate to produce model-based estimates for 
monthly unemployment figures. Statistics Netherlands, 
however, is generally rather reserved in the application 
of model-based estimation procedures for the 
production of official statistics. There is, on the other 
hand, a case for having official time series that are 
based on model-based procedures with appropriate 
methodology and quality descriptions for situations 
where direct estimators do not result in sufficiently 
reliable estimates. For example under rotating panel 

designs where measurement errors result in severely 
biased estimates or in the case of small domains or 
short data collection periods, where small sample sizes 
result in large standard errors for direct estimators.  

Acknowledgement 

The authors whish to thank professor Pfeffermann for 
his advice during this research. The views expressed in 
this paper are those of the authors and do not 
necessarily reflect the policies of Statistics 
Netherlands. 

References 

Bailar, B.A. (1975). The Effects of Rotation Group 
Bias on Estimates from Panel Surveys. Journal 
of the American Statistical Association, 70, pp. 
23-30. 

Brakel, J.A. van den (2005). Small Area Estimators for 
the Dutch Labour Force Survey using Structural 
Time Series Models. Unpublished research 
paper, BPA nr: TMO-R&D-2005-05-02-JBRL, 
Statistics Netherlands, Heerlen. 

Brakel, J.A. van den and S. Krieg (2007). Modelling 
Rotation Group Bias and Survey Errors in the 
Dutch Labour Force Survey. Unpublished 
research paper, BPA nr: DMH-R&D-2007-01-
25-JBRL, Statistics Netherlands, Heerlen. 

Doornik, J.A. (1998). Object-Oriented Matrix 
Programming using Ox 2.0. London: 
Timberlake Consultants Press. 

Durbin, J. and S.J. Koopman (2001). Time series 
analysis by state space methods. Oxford: 
Oxford University Press. 

Harvey, A.C. (1989). Forecasting, Structural Time 
Series Models and the Kalman Filter. 
Cambridge University Press, Cambridge. 

Koopman, S.J., N. Shephard and J.A. Doornik (1999). 
Statistical Algorithms for Models in State Space 
using SsfPack 2.2. Econometrics Journal, 2, pp. 
113-166. 

Pfeffermann, D. (1991). Estimation and Seasonal 
Adjustment of Population Means Using Data 
from Repeated Surveys. Journal of Business & 
Economic Statistics, 9, pp. 163-175. 

Pfeffermann, D., M. Feder and D. Signorelli (1998). 
Estimation of Autocorrelations of Survey Errors 
with Application to Trend Estimation in Small 
Areas. Journal of Business & Economic 
Statistics, 16, pp. 339-348. 

Särndal, C-E., B. Swensson and J. Wretman (1992). 
Model Assisted Survey Sampling. New York: 
Springer Verlag. 

Scott, A.J. and T.M.F. Smith (1974). Analysis of 
Repeated Surveys using Time Series Methods. 
Journal of the American Statistical Association, 
69, pp. 674-678. 

Section on Survey Research Methods

2682


