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Abstract 
 

This is a study of a Best Linear Unbiased Estimator 
(BLUE) and the Combined Ratio Horwitz-Thompson 
Estimator (CRHT) for sampling problems where self-
weighting designs are impractical.  Sampling of mail is an 
example of this.  A measure of �self-weighting� is derived 
and their variances as functions of this measure are 
compared under repeated sampling from stratified cluster 
designs.  For self-weighting designs, the variances of 
CRHT and BLUE are similar but that of CRHT increases 
rapidly with this measure. The BLUE is insensitive to this 
measure.  When proper design control is impossible, the 
variance of CRHT can be many times (2 to 100s) that of 
the BLUE.  The BLUE is derived from population 
characteristics of mail and the sample design, making 
model failure a virtual non-issue.  Simulation results, 
supporting mathematics, their implications, and 
applications are presented. 
 
KEY WORDS: Combined Ratio Estimation, Best Linear 
Unbiased Estimation, Stratified Cluster Designs 
 

 

1. Introduction 
  
This paper describes a sample design and three estimators 
of population totals.  Two of these estimators are the 

Combined Ratio HT Estimator, CT�  (used currently by 

USPS) and the Separate Ratio HT Estimators, ST�  

Cochran (1973). The third estimator is a Best Linear 

Unbiased Estimator, ST
��  (BLUE), Rao (1973) derived 

from the sample design and characteristics of the sampled 

population, Woodruff (2006).  ST
��  avoids problems 

stemming from inadequate design control affecting ST�  

and CT� .   ST
��   is derived from a model that captures the 

haphazard manner in which mail containers are filled 
during mail processing. The model is not used in the 

comparison of these estimators however, instead, CT� , ST�  

and ST
��  are all evaluated with respect to repeated 

sampling under a stratified two stage cluster sample 
design.   This paper should serve to discourage the 
general use of the Combined Ratio HT Estimator in mail 
sampling and estimation. 
 
Mail populations are referred to as mail flows or just 
flows.  Sampling mail is like sampling a river by 
collecting some of its water in buckets at specific times 
from a fixed location.  Little is known about its content 
(think sampling frame - stratum and cluster sizes in both 
numbers of units and auxiliary variable totals) until after 
it is sampled and then the sampled portion is gone.  This 
is a major difference between sampling mail and sampling 
other relatively static populations like households, 
businesses, or people.  This feature of flow sampling 
inhibits sample design since the frame is not available 
until after the sample is selected and observed. 
 
A mail flow is a small subset of the totality of mail pieces 
(letters, cards, magazines, and small packages) that move 
through transportation and processing facilities from their 
origin to their destination.  There are thousands of mail 
flows for which volume estimates are needed (mail 
volumes are totals for pieces, postage, and kilograms); 
each flow is defined by mail class, transport mode, origin,  
destination, and possibly other characteristics.  These 
flows are stratified into dozens to hundreds of strata by 
processing facility, mail class, transportation mode, 
container type, month, and country of origin or 
destination for international mail. The sample unit is a 
container (a bag, tray, or tub of mail pieces), is light 
enough for a single person to lift and carry, and only 
exists for a few hours. 
 
Within a stratum�s month, the first stage clusters are days, 
a random sample of days is selected each month for 
sampling a mail flow at a processing facility and within 
each selected day, the second stage selection is a sample 
of mail containers from the flow-stratum.  Piece, weight, 
and postage totals are recorded for each sampled 
container (possibly by mail class or shape within the 
container). There is often ad-hoc sample design within 
sample days which is conducted by the data collector for 
the purpose of spreading a fixed sample size (around 5 
mail containers) over however many mail containers 
arrive during the sample day for the mail flow being 
sampled.  An exact description of this ad hoc sampling is 
peripheral to the statistical content of this paper and, in 
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any case, impossible to know in advance.  These final 

design stages further aggravate design problems for CT�  

and ST� but they don�t affect the viability of the BLUE, 

ST
�� .  See Woodruff, Lan (2004) for a more complete 

description of mail sampling and its particular difficulties.  
See Woodruff (2006) for a derivation of the BLUE, an 
unweighted separate ratio estimator. 
 
This paper focuses on a special property of mail, �volume 
volatility�, and its effect on these three estimators.  
Volume volatility, is a USPS term used to describe the 
day-to-day variability in the quantity of mail arriving at a 
processing facility for a given mail flow.  A measure for 
day-to-day volume volatility is defined and its effect on 
the variance of the three estimators is derived.  The 

variance of CT�  and ST�  increases with increasing volume 

volatility which forces the between day components of 

variance to increase. The variance of ST
�� is unaffected by 

volume volatility.  For most mail flows, day-to-day 
volume volatility is substantial and the day�s total flow 
kilograms or numbers of containers cannot be accurately 
predicted.   
 

It is shown that the viability of CT�  and ST�  requires day-

to-day volume stability (roughly constant daily totals for 
kilograms of mail or numbers of mail containers).  
Volume stability is an unrealistic expectation in mail 
flows because of the complex nature of mail processing 

and transportation.  On the other hand, the viability of ST
��  

is based on day-to-day stability of these first stage cluster 
averages (average number of pieces per container, 
average weight per container, and average total postage 
per container) and these daily averages tend to be quite 
stable regardless of how much the daily totals fluctuate 
within a flow-stratum.   
 
Each estimator�s variance is expressed as the sum of 
several variance components which isolate the sources of 
sampling error and quantify the role of volume volatility 
in the total sampling variance of each estimator.  Sections 
2 gives the variance formulae for each estimator under the 
stratified cluster sample design.  Section 3 describes the 
simulation study that quantifies the size of the variances 
of these three estimators and the relative contributions to 
total variance of their variance components.  These 
variances are graphed as functions of the volume 
volatility measure, Q, defined in Section 3.   
 
2. Sample Design, Notation, and Variances 
 

Each mail flow is partitioned into F strata (F may be 

several dozen to several hundred).  Let fU  denote the set 

of mail containers in stratum f and let fN  for f=1, 2, 3, 

��.F be the number of mail containers in fU .   A 

stratum is typically the set of all mail containers passing 
through a processing office, moving by a transportation 
mode (air or surface, or SAL), in a particular container 
type (tray, tub or bag), within a particular mail class, and 
during a month.  Estimates of total mail pieces, total 
kilograms, and total postage are required for mail flows 
each of which may consist of several hundred strata.  For 
example, the flow of all letter post arriving by airmail 
from Great Britain during 2006 is a typical flow and its 
strata are defined by month (12), container type (3), and 
processing office (10) to give 360 strata.   
 

Let fD  for f=1, 2, 3, ��.F be the number of days in 

stratum f�s month and let fM be the set of days in 

stratum f�s month.  Let fs  be a simple random sample 

without replacement of days from fM  and let fn  be the 

number of days in fs .    Let fdU  be the set of mail 

containers for the mail flow in day d of stratum f  and let 

fdN  be the number of mail containers in fdU ( 

f

D

d
fd NN

f

=∑
=1

).  Let fds  be a simple random sample 

without replacement selected from fdU  and let fdn  be 

the number of containers in fds . 

Let fdjK  be the weight in kilograms of the thj  container 

in fdU  and let fdjπ  be the probability of selection of the 

thj  container in fdU .  Then fdjπ =
fd

fd

f

f

N

n

D

n
.  When 

referring to population units, upper case is used and for 

sample units, lower case is used - fdjy  is the value of the 

study variable for the thj  sample unit from fds  and fdjY  

denotes the value of the study variable for the thj  

population unit in fdU .   The Horwitz-Thompson 

Estimator for total kilograms of mail in fU is 

∑∑=
f fdsd sj fdj

fdj
f

k
k

ε ε π
�  where fdjk  and fdjK  are defined 

analogously to fdjy  and fdjY .  Let the total kilograms in 
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stratum f be known and denoted, fK ∑∑
= =

=
f fdD

d

N

j
fdjK

1 1

, 

then ( )ff kEK �= .   Define fy�  and fY  

∑∑
= =

=
f fdD

d

N

j
fdjY

1 1

similarly.   

Let: ( ) ( )( )fdKfdjK
fdN

j fdYfdjY

fdN
kyfdS −∑

=
−

−
=

11

1
,

2    

     (2.1) 

where ∑
=

=
fdN

j fdjY

fdN
fdY

1

1
. Similarly for fdK  . 

Let: ( ) ( )( )fKfdK
fD

d fYfdY
fD

kyfS −∑
=

−−=
11

1,2    

     (2.2) 

where  fdKfdNfdK = ,   fdYfdNfdY = ,    

and ∑
=

∑
=

=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ fD

d

djN

j fdjK

fD
fK

1 1

1
with fY defined similarly.  

Under the design described above: 

=)�,�( fkfyCov

( ) ( )kyfS

fD

fn

fn

fD
kyfdS

fdN

fdnfD

d
fdn

fdN

fn

fD
,

2
1

2

,
2

1
1

2

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−+−∑

=
 

(2.3)  

The variance of fy� , ( )fyV �  , is  similar with ( )yyfdS ,
2  

and ( )yyfS ,
2  in place of ( )kyfdS ,

2  and ( )kyfS ,
2 . 

Similarly for ( )fkV � .   By independence of sampling in 

different strata, 0)�,�( =lkfyCov  for all lf ≠ . 

To derive the variances of the three estimators, the 

following results are needed.  Let 
∑
=

=
F

k

fk

fW

1
�

�
�

α α

, the 

estimated kilogram proportion of the total mail flow 

kilograms in stratum f, 
K

fK
, where ∑

=
=

F

f
fKK

1

.  

Expanding fW�  in a Taylor Series about the expected 

values of the { }fk� , the variance of fW� is approximately:  

=&)�( fWV

( ) ( )∑

≠

+
−

=⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ F

f

kV
K

fK

fkV
KK

fKK

α
αα 1

�
4

2

�
2

1
2

      (2.4). 

Let 
fk

fy

f �

�
� =β ,  the estimated rate per kilogram of the 

study variable y in stratum f, and let the actual rate be 

fK

fY

f =β .  Expanding fβ�  in a Taylor Series about the 

expected values of fy�  and fk� , ignoring terms of order 2 

and greater, the variance of fβ�  is approximately 

( ) ( ) ( ) ( )fkfyCov

fK

fY

fkV

fK

fY

fyV

fK
fV �,�

3
2�

4

2

�
2

1
� −+=β

     (2.5)   
By a similar linearization, 

( ) ( )[ ]fkVffyfkCov
KfKK

ffWCov �)�,�(
111

�,� ββ −−=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

     (2.6)     and  

( ) ( ) ( )⎥
⎦

⎤
⎢
⎣

⎡
−−∑

=
= jkjyCov

K

iY
ikiyCov

K

jYF

f fkV
K

jYiY

K
jjWiiWCov �,��,�

1
)�(

22

1
��,�� ββ   

( )ji ≠      (2.7)    

These are all the terms needed for ( )CTV �  and ( )STV � .  

∑
=

∑
=

= F

f fk

F

f fy

KCT

1
�

1
�

�  is the combined ratio estimator for the 

mail flow total, ∑
=

=
F

f fYY
1

 where ∑
=

=
F

f fKK
1

is 

known.    

∑
=

=
F

f ffWKCT
1

��� β     

     (2.8)  
and 

( ) ( ) ( )]
1 1 1

��,����[
2� ∑

=
∑
=
∑

≠

=
+=

F

f

F

i

F

ij

j
jjWiiWCovffWVKCTV βββ  

by Taylor Series Approximation: 

)��( ffWV β

( ) ( )[ ]fffWfWfWfffWV ββββ −+−+= ��
&  and 

Section on Survey Research Methods

2645



( )CTV �

( ) ( ) ( )( ) ( )
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∑
=

∑
=
∑

≠

=
+++=

F

f

F

i

F

ij

j
jjWiiWCovfWfCovffWfWVffVfWK

1 1 1
��,���,�2�2�22 ββββββ&

      (2.9) 

∑
=

=
F

f ffWKST
1

�� β , the separate ratio estimator where 

K

fK

fW =  and ( ) ( )fV
F

f fWKSTV β�
1

22� ∑
=

=  (2.10) 

Finally, the variance of the BLUE will be derived under 
the design described above and evaluated with respect to 
repeated sampling under this design.  The BLUE is 

denoted, ST
��  ,  and is defined as ∑

=
=

F

f ffWKST
1

���� β where 

fk

fy

f =β�� , 
∑

∑ ∑

=

fsd fdn

fsd fdsj fdjy

fy

ε

ε ε
, and similarly for 

fk . The daily sample size of mail containers is dictated 

by workload constraints and is constant (or nearly so).  

Thus, danddnn dffd ′∀= ′ .  Then 

∑∑=
f fdsd sj

fdj
fdf

f y
nn

y
ε ε

1
and similarly for fk .  Under 

the sample design just described, 

( ) =fkE ∑
=

∑
=

fdN

j fdjK
fD

d
fdNfD 11

11
 and similarly for 

( )fyE .  Then linearizing fβ�� , 

( ) ( )
( )
( ) =−=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

fk

fkE

fyE

fkE

fy
VfV

2
��

&β  

( ) ( ) ( )
( ) ( ) ( )

( ) ( )fkfyCov

fkE

fyE

fkV

fkE

fyE

fyV

fkE
,

3
2

4

2

2

1
−+

       (2.11) 
Where: 

( )kyfdS

fdN

fdnfD

d
fdnfDfn

fkfyCov ,
2

1
1

11
),(

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−∑

=
=  + 

∑
=

∑
=
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=

−
−

−
⎟
⎟

⎠
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⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ fD

d

fD

i fdK

fD
fdK

fD

i fdY

fD
fdY

fDfD
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fn 1 1

1

1

1

1

1
1

1  

     (2.12) 

and similarly for ( )fyV  and ( )fkV .  Then 

( ) ( )fV
F

f fWKSTV β��
1

22�� ∑
=

= .   

The expressions for )�( CTV and )�( STV  are functions of 

the  ( ){ }F

ffyV
1

�
=

, ( ){ }F

ffkV
1

�
=

, and { }F

ffkfyCov
1

�,�(
=

.   

The second term (between day variance) for each of these 

variances(covariances) that define )�( CTV and )�( STV  is a 

variance(covariance) of daily totals for the k and y 
variates over the month.  Thus this second term is an 
increasing measure of day-to-day volume volatility and 

will drive up the variance of  )�( CTV and )�( STV  as  

volume volatility increases. 
 

 The expression for )
��( STV  is a function of the  

( ){ }F

ffyV
1=

, ( ){ }F

ffkV
1=

, and { }F

ffkfyCov
1

,(
=

.  The 

second term of (2.12) (between day variance) for each of 

these variances(covariances) that define )
��( STV  is a 

variance(covariance) of daily means each month for the k 
and y variates.  These daily means are quite stable and 
therefore this between day component of 
variance/covariance is not only small but also unaffected 
by volume volatility.  Day-to-day volume changes occur 
through fluctuations in numbers of containers, not through 
the amount of mail each contains (most are nearly filled 
with mail). 
 
These last two paragraphs explain much about the 
simulations and empirical computations in the next 

section where both )�( CTV and )�( STV  increase as volume 

volatility increases but )
��( STV  remains unaffected by 

volume volatility.   

)�( CTV contains the term ∑
=

F

f fWfVK
1

)�(
2 β = 

( )∑
=

∑

≠

=
−∑

=
⎟
⎠
⎞

⎜
⎝
⎛ F

f

F

fj

j
jWjfWfCovK

F

f fWfVK
1 1

�,�2

1
�2 βββ ,  

substituting this into (2.9) and noting that by linearizing 

fβ� , we have that approximately  

( ) ( )∑
=

∑

≠

=
=∑

=
∑

≠

=

F

f

F

fj

j
jWjfWfCov

F

f

F

fj

j
jWjfWfCov

1 1
��,��

1 1
�,� ββββ &

.  Then (2.9) can be written: 

( )CTV �
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( ) ( )( )∑
=

∑

=
++= ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛F

f

F

f f
W

f
VKfWfCovffWfVfWK

1 1

�2�,�2�22 ββββ&

         (2.13).   

The covariance term, ( )fWfCovffW �,�2 ββ  , is 

approximately zero.  This follows from (2.6) and the 

linear model that relates the { }fdjy  and the { }fdjk , 

fdjfdjffdj ky εβ +=   where the { }fdjε  are pairwise 

uncorrelated and ( )2,0 ffdjfdj k σε ∝ , see Woodruff 

(2006) for details.  Under this linear relationship the 
approximation, 

( ) ( )[ ]fkVffyfkCov
KfKK

ffWCov �)�,�(
111

�,� ββ −−=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

 ( )
⎥⎦
⎤

⎢⎣
⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−+−= fkVfffk

ffkCov
KfKK

�)��,�(
111

βεβ& =0 

holds  

where fε�  is the Horwitz-Thompson estimator of zero 

applied to the sample { }fdjε .  Using this result, both (2.9) 

and (2.13) can be further simplified:  

( )CTV �
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑ ∑

=
+

=
=

F

f f
W

f
VK

F

f
ff

WVK
1

�2

1

�2 ββ&  

     (2.14) 

(2.14) explains the behaviour of CT�  that is observed in 

Table 1 of Section 3.  As volume volatility increases, 

( )CTV �  increases with it but most of this increase comes 

from the second term in (2.14).  This second term 

accounts for roughly 90% of ( )CTV �  for the levels of 

volume volatility typically encountered in mail flows.  
The first term will tend to be inherently small due to the 
correlation between numerator and denominator of each 

{ }fβ� .  No such correlation will limit the size of the 

second term. 

∑

=

F

f f
W

f1

�β is the randomly weighted average (weights 

are random variables, each positive, and they add to one) 

of the { }F

ff 1=
β .   ∑

=

F

f f
W

f1

�β  is always in the interval 

[ ]maxmin ,ββ  where { }fFf
ββ

≤≤
=

1

min
min  and 

maxβ is the maximum of the same set.  This constrains the 

variance of ∑

=

F

f f
W

f1

�β  to be small when [ ]maxmin ,ββ  

is short but opens the possibility for it to be large when 

[ ]maxmin ,ββ  is long.  For many mail flows this interval 

is relatively long.  For the mail flow considered in section 

3, the { }F

ff 1=
β  vary from near one to over 50.  This 

characteristic of a mail flows causes )�( CTV to grow 

rapidly with volume volatility through the increase in 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑

=

F

f f
W

f
VK

1

�2 β .   ∑
=

⎟
⎠
⎞⎜

⎝
⎛F

f ff
WVK

1
�2 β is less 

affected by volume volatility, due surely to the relative 

stability of the ratios of correlated variables, the { }fβ�  .  

It is shown in section 3 that ( )∑
=

F

f fWfCovffWK
1

�,�2
2 ββ  

is inconsequentially small as also indicated analytically 
above.   
 
3. Simulations and Computational Analysis 
 
The studies here are based on sampling mail flows that 
differ only in degree of volume volatility as measured by 

Q = ∑∑
==

−
−

fD

d
ffd

F

f f

NN
DF 1

2

1

)(
1

11
  where 

∑
=

=
fD

d
fd

f
f N

D
N

1

1
 with the notation defined in Section 

2. 
Let MF(Q) denote the mail flow with a volume volatility 
measure of Q.  Each mail flow population, MF(Q) is 
identical to the others except for the assignment of a 
stratum�s mail containers to days in the month.  The mail 
flow used to construct these populations is all letter post 
airmail from Great Britain to the US between January 
2004 and September 2004.  This mail flow consisted of 
about 43.7 million pieces and about 700,000 containers 
and was stratified into 150 strata by USPS facility where 
it entered the US, the container type in which it arrived, 
and the month in which it arrived.   Similar simulations 
and computations were done with other mail flows and 
similar results were obtained.  Great Britain airmail was 
documented here because it was the largest and most 
diverse mail flow (most arrival facilities and container 
types represented). 
   
There are two studies described here.  The first is a set of 
20 simulation studies conducted on each of the 20 

members of { })(QMF  where Q ranged from 0 to about 
170,000.  For each of these 20 simulations, sampling and 
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estimation of total number of mail pieces is replicated 500 
times following the procedures described in Section 2  

( fdjy  is total number of mail pieces in container j, on day 

d, in stratum f).  For each MF(Q), these 500 replications 
produce 500 independent estimates of total pieces for 

each estimator: CT�  , ST�  , ST
��  , and  ∑

=
=

F

f fyHTy
1

��  .  

These 500 replicate estimates are used to estimate bias 
and variance for the four estimators for each of the 20 
values of Q.  This provides a picture of each estimator�s 
behaviour as Q (volume volatility) increases.   
 
The second study uses the formulae derived in Section 2 
to compute the variance of each estimator directly from 
the known population parameters for each MF(Q).  This 
second approach permits the variance of each estimator to 
be broken down into a sum of major components so that 
the components contributing to variance can be isolated 
and quantified as functions of Q.  These two approaches 
to computing variance should give similar results and 
therefore also serve as a check on one another.  
   
In the first set of simulation studies with the 500 
replicates, a degree of randomness was built into sample 
selection to capture variations in both numbers of days 
per month sampled and numbers of containers sampled 
per day  that characterize actual conditions experienced in 
sample selection and data collection. The average total 
sample size in the 20 simulation studies on each of the 

{ })(QMF was about 2,200.  This total of about 2,200 
varied because these simulations randomly selected 3 to 5 
days per month and 3 to 5 containers per day.  For this 
reason, the simulation studies produce variance estimates 
that are about 10% to 15% larger than those derived 
directly from theory in Section 2 where exactly 4 sample 
days per month and 4 sample containers per sample day 
were assumed - 16 containers per stratum month.   For 
this second study, the total sample size was about 2,400. 
  
Graphs 1 and 2 show the variances (vertical axis) of the 4 
estimators as functions of Q (horizontal axis).  Graph 1 is 
from the 20 simulation studies of 500 sample replicates 
for each MF(Q) and Graph 2 is from the population 
parameters derived in Section 2.  These graphs are 
smoothed representations of scatter plots and show the 
straight line relationship between Q and the variances of 
the four estimators, a relationship somewhat clouded by 
the unsmoothed scatter plots.  The vertical scale units in 

Graph 1 and Graph 2 are in 1010  of ( )2PiecesMail .  

In Graphs 1 and 2, CRE= CT� , SRE= ST� , BLUE= ST
�� , and 

HT=Horwitz-Thompson Estimator= ∑
=

F

f
fy

1

� .  The 

variance components in Table 1 are in 1010  of 

( )2PiecesMail  
 
 
GRAPH 1 

GRAPH 2 

 
The components of variance are summarized in Tables 1, 
isolate the main contributors to the variance of the 
combined ratio estimator, and confirm that the main 

contributor to ( )CTV �  as Q increases, is the substantial 

difference between strata of the rates per kilogram of the 
study variables (the sum the third, fourth, and fifth 
columns).  The Covariance Between Strata (Table 1 , 
Column 5) which is always negative fails to compensate 
for the rapid increase of column 3 and the net result is the 
rapid increase in total variance of the combined ratio 
estimator with increasing Q ( Table 1 , Column 6).   
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(Col  6, Table 1) 
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Table 1 Variance Components for the combined Ratio 
HT Estimator 
Q 
(Volume  
Volatility) 

Separate 
Variance 
Component 

Randomly 
Weighted 
Variance  
Component 

Covariance 

)�,�( ff WCov β  

Component 

Covariance 
Between  
Strata 
Component 

Total 
Variance of 
Combined 
 Ratio HT 

       0.0       23.1 *        33.5        -0.4        -20.5         35.7 
     164.0       23.3         35.2        -0.4        -21.2         36.9 
     272.0       23.2         37.2        -0.3        -22.4         37.8 
     592.0       23.5         39.9        -0.6        -23.0         39.7 
    1002.0       23.7         45.8        -0.3        -26.5         42.6 
    2256.0       24.2         61.7        -0.4        -35.2         50.3 
    5518.0       25.3         97.9        -0.8        -48.6         73.7 
    7362.0       25.5        108.1        -0.7        -50.2         82.8 
    9984.0       27.2        155.8        -0.6        -81.3        101.1 
   15062.0       29.2        216.0         0.3       -118.7        126.7 
   19768.0       31.6        299.7        -0.3       -156.1        174.9 
   22846.0       32.9        345.5        -2.0       -133.0        243.4 
   39318.0       36.4        429.7        -0.9       -212.3        252.8 
   40424.0       40.0        551.5         1.0       -226.1        366.4 
   70772.0       52.0        978.5         0.8       -437.0        594.4 
   91188.0       55.3       1047.4        -3.1       -453.7        645.8 
  116588.0       67.3       1408.5         0.6       -701.1        775.3 
  120246.0       66.6       1307.9        -2.8       -591.0        780.8 
  127920.0       74.4       1580.9        -3.2       -741.5        910.6 
  129552.0       76.0       1686.3         5.7       -839.5        928.4 
  136302.0       75.2       1675.6        -3.7       -755.7        991.3 
  152836.0       83.8       1872.8        -3.8       -941.9       1010.9 
  184370.0       96.9       2340.4        -1.6      -1225.3       1210.4 

  

*Also variance of the BLUE for all Volatilities 
 
Column 2 of Table 1, Separate Variance Component, is 

also the total variance of ST�  and the first entry of this 

column (Q=0) is the variance of the BLUE for all values 
of Q.   
Recall from Section 2 that the row sums of columns 3, 4, 
and 5 in Table 1 are also equal to: 
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The populations used for these simulations are clean and 
the sample design does not fully capture many of the 
complex and unpredictable elements of final stage (within 
day) sampling that is a necessary part of mail data 
collection.  For this reason, the design difficulties that 
afflict the Combined Ratio HT Estimator are probably 
understated in this study.  These design difficulties have 
little effect on the BLUE.  
 
Q is roughly proportional to two things, the square of the 
total number of containers in the mail flow stratum and 
the relative day-to-day volatility within strata defined next 

as fQR .  Let fdp  be the proportion of the stratum f�s 

mail that is processed in day d and 

∑
=

=
fD

d
fd

f
f p

D
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1

1
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−
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d
ffd

f

pp
D 1

2)(
1

.   

The relationship between Q and the ratio, R =  

( )
⎟
⎠
⎞

⎜
⎝
⎛

S

C

TV

TV
��

�
 as a function of mail flow stratum size is 

a complex one since fQR  probably decreases as mail 

flow size (as measured by number of containers) 
increases.  Relative volatility and flow size should seldom 
be expected to cancel each other in Q.  The same 
simulation study documented here was run on airmail 
from Belgium. This mail flow is about 2% the size of 
Great Britain�s.  For Belgium, R attained values of over 
100 compared to Great Britain�s  largest R-values of 40 to 
50 in the lower part of Table 1.    
 
4. Conclusions 

The USPS uses the Combined Ratio HT Estimator ( CT� ) 

for many of its mail volume estimates but characteristics 
of mail flows and the volume volatility that mail 
processing and transportation impose on them make this 
estimator a particularly unfortunate choice. The manner in 
which mail containers are filled impose a model on the 
sample data and under this model there is a Best Linear 

Unbiased Estimator ( ST
��  or BLUE).  This model 

describes the approximate proportionality of container 
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study variables to container kilogram weight within strata 
(stability across containers of average container pieces per 
kilogram and postage per kilogram) independent of 
volume volatility and this stability of rates per kilogram 
implies that the variance of the BLUE is not affected by 
volume volatility (Q).   For moderate values of Q, the 
variance of the BLUE is a tiny fraction of that for the 
Combined Ratio HT Estimator.   
 
This BLUE provides an alternative to HT based 
methodologies when design control is problematic.  This 
lack of design control is forced by day-to-day volume 
volatility in mail sampling where unpredictability forced 
by weather, transportation, and processing creates large 
and unpredictable fluctuations in the day cluster sizes 
(number of containers in the mail flow each day).  
Equation (2.14) establishes that the Combined Ratio HT 

Estimator, CT� , can be particularly sensitive to volume 

volatility when there are large differences between strata 
in the rates per kilogram of the study variables. 
 
The empirical studies in Section 3, quantify the variances 
of four estimators (including the straight HT estimator) as 
functions of Q. These differences increase linearly with 
increasing day-to-day volume volatility but even with no 
volume volatility they are substantial - the Combined 
Ratio HT Estimator�s variance is about 50% larger than 
that of the BLUE when Q=0 in Table 1.  These 
differences increase with increasing volume volatility 
until they are truly extraordinary, over 4000% for the mail 
flow studied in Section 3.  This is due to the concurrence 
of the following things:  volume volatility, homogeneity 
of rates per kilogram within strata, and the heterogeneity 
of these rates between strata. 
 
It is shown in Section 2 that the viability of the Combined 
Ratio HT Estimator depends upon day-to-day stability 
(Q=0) of mail volumes (daily total kilograms, total pieces, 
etc) within each of the mail flow strata.  Similarly, the 
viability of the BLUE depends upon the stability of day-
to-day averages (average container weight, average 
number of mail pieces per container, and average postage 
per container) within each mail flow stratum.   Because of 
the way mail containers are filled, processed, and 
transported, any assumption of day-to-day volume 
stability is widely violated while day-to-day stability of 
these container averages is substantially assured. 
 
As long as mail sample design involves sample clusters 
defined in terms of fixed time intervals (days for most 
mail surveys), there will be a variance component in a 
Horwitz-Thompson based estimator that is an increasing 
measure of the variability of mail volumes between these 
time intervals (day-to-day volume variability in mail 
surveys).  This variance component can potentially 

dominate sampling error until such estimators approach 
white noise.   Lengthening the time interval would reduce 
this variance but would involve an increase in processing 
time that would violate the fundamental goal of mail 
processing � minimization of time and cost.   It is better to 
deal with this situation through an alternative estimator 

like the BLUE, ST
�� , under a model imposed by 

established features of mail populations. 
 
The procedures described above are not unique to mail 
sampling.  They have application to general flow 
sampling where each stratum is sufficiently mixed so that 
a contiguous set of its atoms (Woodruff , 2006) selected 
from the flow can be modeled as a simple random sample 
from the totality of atoms in the stratum. This holds for 
certain biological populations, for example, the sampling 
of rivers for their particulate or microbial content. 
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