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Abstract

Iowa’s State Board of Education (ISBE) conducted a
stratified multi-stage sample survey to study the avail-
ability of employment preparation courses and the degree
to which students in Iowa’s public high schools enroll in
those courses. The design stratifies districts in two di-
mensions, but given the budget and time constraints the
sample of PSUs is small, which causes high variability
in direct estimates. A hierarchical Bayesian (HB) analy-
sis that borrows strength across strata with similar char-
acteristics is suggested to improve efficiency and make
better use of auxiliary information. Since the method is
dependent on a valid model, effective model selection is
crucial in HB estimation. The application of HB model
selection and estimation for small areas is illustrated us-
ing a single simulated finite population based on the ISBE
study.

KEY WORDS: Benchmarking; Generalized linear mixed
models; Hierarchical Bayesian analysis; Model selection;
Posterior predictive p-values.

1. Introduction

Small area estimation has received much attention in re-
cent decades due to the increased need for accurate and
reliable descriptions of small area characteristics for many
public policy issues. Given the constraints of limited bud-
gets and time the sample size in many surveys for edu-
cational and other studies is usually determined to pro-
duce accurate estimates at a relatively high level of ag-
gregation, such as for states. As a result, there are often
very small sample sizes allocated to individual small ar-
eas, such as school districts or substate educational areas.
This will induce extremely unreliable direct estimates in
these small areas, in which the policymakers are often
interested as well.

Traditional indirect estimation methods produce more
stable estimates in small areas by using synthetic or com-
posite estimation. A synthetic estimator is an implic-
itly model-assisted estimator based on the assumption of
small areas inheriting the same characteristics from the
covering large area. It could dramatically reduce vari-
ances, but could cause ”over-shrinkage” and potentially
large bias in estimation due to an inappropriate implicit
model assumption of homogeneity. The composite esti-
mator, as a way of balancing the instability of a direct
estimator and the potential bias of a synthetic estimator,
utilizes both direct estimates at large areas and stabilized

estimates at small areas. The exact way to balance the
large and small area information needs to be specified.

Recent developments in small area estimation includ-
ing empirical best linear unbiased prediction (EBLUP),
empirical Bayes (EB) and hierarchical Bayes (HB) esti-
mation have shown distinct advantages over traditional
indirect estimators. Instead of using implicit models,
these approaches utilize explicit models to delineate the
dependent relationships among the local areas, especially
allowing for modeling of local variation through complex
error structures. More complex data structures such as
geographic dependence, cross-sectional effects and time
series correlation could be handled as well.

In 2004, representatives of Iowa’s State Board of Edu-
cation (ISBE) approached the Center for Survey Statis-
tics and Methodology (CSSM) at Iowa State University
(ISU) for help in planning a series of surveys. The pur-
pose of one of the surveys is to study the availability
of employment preparation (EP) courses and the degree
to which students in Iowa’s public high schools enroll in
those courses. A primary concern of the survey is to as-
sess the degree to which students in Iowa’s public school
districts, which vary greatly in size, community charac-
teristics, and ruralness, have equal opportunities to pre-
pare in school for employment, college, and life in general.

Due to the budget, time and policy restrictions a survey
was conducted instead of a census. A stratified three-
stage survey was designed to produce estimates of av-
erage numbers of EP courses of certain types taken by
students for the State of Iowa and populations of small
(less than 250 students in grades 9-12), medium (250 to
less than 2,500 students) and large (2,500 or more stu-
dents) school districts. Districts in Iowa are organized
into twelve area education agencies (AEAs) for the pur-
poses of administration and support. District size and
AEA were used as stratifying variables. All large dis-
tricts were included with certainty due to their extreme
size. Medium and small districts were sampled with prob-
ability proportional to total enrollment size within stra-
tum. For political reasons all schools in selected districts
were included in data collection. A simple random sam-
ple of students was selected in each sampled school. The
samples were split between grade nine and grade twelve
students from general and special education groups.

The survey was designed to sample 60 schools and
no more than 12,000 students. The 22 schools in eight
large districts in seven AEAs were taken with certainty.
The remaining 38 schools were split evenly between the
medium and small school districts. From each of these
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size levels, 19 schools were selected from 12 strata. As
a result, seven strata were assigned two PSUs and the
remaining five strata that have relatively fewer districts
had only one PSU sampled. Variance estimation for the
strata with only one district sampled is a very challeng-
ing problem in surveys like ISBE’s. In a one-per-stratum
design, standard direct variance estimation is not appli-
cable. Variance estimation based on collapsing strata is
commonly used. But the approach produces a variance
estimate only for a group of strata and the estimated vari-
ance itself tends to be highly unstable. In a preliminary
study, we proposed to estimate variance in this one-per-
stratum design using restricted generalized variance func-
tions (RGVF), which produced better variance estimates
in terms of a higher coverage rate for confidence intervals
and more stable performance than a method utilizing col-
lapsing (Lu and Larsen 2006).

Since the design takes a small sample of PSUs within
strata, the direct estimator tends to produce highly un-
reliable estimates for individual strata. To make more
efficient and reliable estimates of small area quantities,
we consider using hierarchical Bayesian (HB) estimation.
The method borrows strength across strata with similar
characteristics and makes better use of auxiliary infor-
mation than direct estimation. A fully Bayesian analysis
provides a unified framework for surveys with small and
large sample sizes and deals with nuisance parameters
in a natural and appealing way. Monte Carlo integra-
tion techniques are employed to produce posterior esti-
mates of parameters. A generalized linear mixed model
(GLMM) is considered for small area modeling in Section
2. The HB estimator for the finite population mean un-
der the GLMM is proposed in Section 3. The precision of
the HB estimator is measured by its posterior variance.
Three Bayesian methods of model comparison are consid-
ered for selecting an appropriate model. The performance
of the estimators and model selection is illustrated using
a single simulated finite population in Section 4. Sec-
tion 5 contains a discussion about using HB estimation
with careful model selection in small area estimation and
suggests possible future research work.

2. Small Area Models

ISBE is interested in the characteristics of a multi-
component population consisting of students from general
and special education groups in ninth and twelfth grades.
The population of twelfth grade students in Iowa’s public
high schools was chosen as a representative target pop-
ulation for the purpose of study. The inference for the
multi-component population could be made by extend-
ing the univariate model to a multivariate model with an
appropriate correlation structure.

Given the population structure and the sampling de-
sign, a GLMM is considered for modeling the population
distribution. Let yi,j,k,l denote the number of EP courses
taken by the lth student from the kth school in AEA j

in size level i. Assume yi,j,k,l, l = 1, · · · , ni,j,k, indepen-
dently follow a Poisson distribution:

yi,j,k,l|λi,j,k ∼ Poisson (λi,j,k) , (1)

where λi,j,k is the rate of taking EP courses for students
in the kth school in AEA j in size level i. Then, we
assume the rate of the Poisson distribution for each school
is related to some auxiliary variables at the school level
and random effects due to school size and AEA through
a log-linear model

log (λi,j,k) = x′i,j,kβ + τi + ηj + ζi,j + vi,j,k. (2)

The xi,j,k of length p is a vector of covariate variables
at the school level. The τi ∼ N(0, σ2

τ ), ηj ∼ N(0, σ2
η)

and ζi,j ∼ N(0, σ2
ζ ) are random effects from size, AEA,

and the interaction between size and AEA. The random
error term for the school is vi,j,k ∼ N

(
0, σ2

v

)
. The model

hyperparameters are β, σ2
τ , σ2

η, σ2
ζ and σ2

v . If there was
overdispersion in the Poisson distribution means, then we
could consider a model like

λi,j,k|α, µi,j,k ∼ Gamma (α, α/µi,j,k)
log (µi,j,k) = x′i,j,kβ + τi + ηj + ζi,j , (3)

where α is a scale parameter that could be assumed com-
mon for the entire population (or verified across size levels
or AEAs). The sample design is considered as ignorable
because it is an inherent part of the model.

3. Hierarchical Bayes Analysis

In this section, we apply hierarchical Bayes (HB) analysis
to the GLMM introduced in Section 2. Estimates of the
posterior mean and variance of parameters are obtained
from (MCMC) simulation.

3.1 Prior distributions

In a hierarchical Bayesian framework, we assume β, σ2
τ ,

σ2
η, σ2

ζ , and σ2
v are mutually independent with diffuse

prior distributions. Let β have a (locally) uniform distri-
bution with p (β) ∝ 1. Independently σ2

τ ∼ IG (aτ , bτ ),
σ2

η ∼ IG (aη, bη), σ2
ζ ∼ IG (aζ , bζ), and σ2

v ∼ IG (av, bv),
where IG denotes an inverse gamma distribution and aτ ,
bτ , aη, bη, aζ , bζ , av, and bv are known positive constants.
The constants usually are set to be very small to reflect
our vague knowledge about the parameters. If a Poisson-
Gamma model for overdispersion is employed, the scale
parameter α can be assumed to have a prior distribution
as α = w/(1− w), where w ∼ Uniform (0, 1).

3.2 Posterior estimation

Using a Gibbs sampler for computation, we indepen-
dently simulate L parallel chains. After the convergence
has been achieved for all parallel chains, a subsequence of
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D iterates from each chain is retained for posterior esti-
mation. The posterior mean and variance of λi,j,k under
the GLMM defined in (1) and (2) are given by

E (λi,j,k|ys) = E{E(λi,j,k|β, τi, ηj , ζi,j , σ
2
v , ys)|ys}

= E{exp(x′i,j,kβ + τi + ηj + ζi,j +
1
2
σ2

v)|ys}

and

V (λi,j,k|ys)
= V {E(λi,j,k|β, τi, ηj , ζi,j , σ

2
v , ys)|ys}+

E{V (λi,j,k|β, τi, ηj , ζi,j , σ
2
v , ys)|ys}

= V {exp(x′i,j,kβ + τi + ηj + ζi,j +
1
2
σ2

v)|ys}+

E{exp[2(x′i,j,kβ + τi + ηj + ζi,j) + σ2
v ]

(eσ2
v − 1)|ys}

= E{exp[2(x′i,j,kβ + τi + ηj + ζi,j + σ2
v)]|ys} −

[E{exp(x′i,j,kβ + τi + ηj + ζi,j +
1
2
σ2

v)|ys}]2.

These quantities can be estimated using the iterated sim-
ulates from MCMC as follows:

Ê (λi,j,k|ys) =
1

LD

L∑
l=1

D∑
d=1

[ exp{x′i,j,kβ(ld) +

τ
(ld)
i + η

(ld)
j + ζ

(ld)
i,j +

1
2
σ(ld)

v

2
} ] (4)

and

V̂ (λi,j,k|ys) =
1

LD

L∑
l=1

D∑
d=1

[ exp{2(x′i,j,kβ(ld) +

τ
(ld)
i + η

(ld)
j + ζ

(ld)
i,j + σ(ld)

v

2
)} ]− [Ê (λi,j,k|ys)]2. (5)

The posterior covariance of λi,j,k and λi′,j′,k′ is

C (λi,j,k, λi′,j′,k′ |ys) =
C{E(λi,j,k|β, τi, ηj , ζi,j , τi′ , ηj′ , ζi′,j′ , σ

2
v , ys),

E(λi′,j′,k′ |β, τi, ηj , ζi,j , τi′ , ηj′ , ζi′,j′ , σ
2
v , ys)|ys}+

E{C(λi,j,k, λi′,j′,k′ |β, τi, ηj , ζi,j ,

τi′ , ηj′ , ζi′,j′ , σ
2
v , ys)|ys}

= C{exp(x′i,j,kβ + τi + ηj + ζi,j +
1
2
σ2

v),

exp(x′i′,j′,k′β + τi′ + ηj′ + ζi′,j′ +
1
2
σ2

v)|ys}.

It can be estimated by

Ĉ (λi,j,k, λi′,j′,k′ |ys) =

1
LD

L∑
l=1

D∑
d=1

exp{(xi,j,k + xi′,j′,k′)′ β(ld) + τ
(ld)
i +

τ
(ld)
i′ + η

(ld)
j + η

(ld)
j′ + ζ

(ld)
i,j + ζ

(ld)
i′,j′ + σ(ld)

v

2
} −

[
1

LD

L∑
l=1

D∑
d=1

exp{x′i,j,kβ(ld) + τ
(ld)
i + η

(ld)
j +

ζ
(ld)
i,j +

1
2
σ(ld)

v

2
}] · [ 1

LD

L∑
l=1

D∑
d=1

exp{x′i′,j′,k′β(ld) +

τ
(ld)
i′ + η

(ld)
j′ + ζ

(ld)
i′,j′ +

1
2
σ(ld)

v

2
}], (6)

where the superscript (l, d) denotes the dth iteration in
the lth chain in the retained subsequences.

Let θi,j denote the population mean for stratum (i, j),
which is the quantity of interest. The θi,j could be con-
sidered as the sum of three terms

θi,j = N−1
i,j {

∑
k∈si,j

∑
l∈si,j,k

Yi,j,k,l +

∑
k∈si,j

∑
l/∈si,j,k

Yi,j,k,l +
∑

k/∈si,j

∑
l∈Ui,j,k

Yi,j,k,l}, (7)

where Ni,j =
∑

k∈Ui,j
Ni,j,k is the population size of stra-

tum (i, j). A Bayesian estimate of θi,j is

E (θi,j |ys) = N−1
i,j {

∑
k∈si,j

ni,j,kȳi,j,k +

∑
k∈si,j

(Ni,j,k − ni,j,k)E (λi,j,k|ys) +

∑
k/∈si,j

Ni,j,kE (λi,j,k|ys)} (8)

≡ N−1
i,j {

∑
k∈si,j

ni,j,kȳi,j,k + l′i,jE (λ|ys)}.

In the above, λ = {λi,j,k} is a parameter vector of rates
of Poisson distributions for schools in the entire popu-
lation and l′i,j = {0, · · · , 0, l̃i,j , 0, · · · , 0} is the vector of
coefficients for stratum (i, j). In the latter expression,
l̃i,j = {li,j,k}k∈Ui,j is the vector of values li,j,k in stratum
(i, j), where li,j,k = (Ni,j,k − ni,j,k) if k ∈ si,j and Ni,j,k

if k /∈ si,j . The set si,j denotes the sample.
The HB estimator of θi,j is proposed as

θ̂i,j = N−1
i,j {

∑
k∈si,j

ni,j,kȳi,j,k + l′i,jÊ (λ|ys)}. (9)

The posterior variance of θ̂i,j is

V (θi,j |ys) = N−2
i,j {l

′
i,jV (λ|ys) li,j} (10)

which can be estimated by plugging V̂ (λ|ys) into (10),
where the diagonal and off-diagonal elements of V̂ (λ|ys)
are calculated by (5) and (6), respectively.

3.3 Benchmarked HB estimators

In many surveys, even though we have very small sample
sizes in small areas, we usually still have enough sam-
ple in a larger region consisting of a group of small areas
to produce a reliable estimate for the large region. As-
sume that an accurate and reliable direct estimate for
an aggregation of small areas is available. We want to
benchmark the HB estimators for individual areas such
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that the aggregation of the benchmarked HB (BHB) es-
timates equals the direct estimate over the larger region
(You, Rao, and Dick 2004).

In the EP survey, we have relatively reliable direct es-
timates at size levels. The benchmark property with re-
spect to the size level direct estimate is∑

j

Ni,j θ̂
BHB
i,j =

∑
j

Ni,j ˆ̄yi,j , (11)

where i ∈ {size level: 1 = large; 2 = medium; 3 = small},
j ∈ {12 AEAs}, and ˆ̄yi,j denotes the direct estimate
of the population mean for stratum (i, j). The raking-
benchmarked HB (RBHB) estimator for stratum (i, j)
can be obtained as

θ̂RBHB
i,j = θ̂HB

i,j

∑
j Ni,j ˆ̄yi,j∑
j Ni,j θ̂HB

i,j

. (12)

The posterior mean square error (PMSE) of the BHB
estimator is

PMSE
(
θ̂BHB

i,j

)
= V (θi,j |ys) +

(
θ̂BHB

i,j − θ̂HB
i,j

)2

(13)

(You, Rao, and Dick 2004). As long as practically feasi-
ble, we can benchmark to two or more levels of standards.
The benchmarked HB estimator is design consistent in
the larger region, which is an attractive property. Due
to benchmarking the BHB estimator should be more ro-
bust to model failure than the HB estimator. When the
model is misspecified, benchmarking could correct the
bias of the HB estimator to some degree. The PMSE
derived under the model, however, could be seriously in-
flated due to a large bias correction. Therefore, effective
model selection and model checking are highly important.

3.4 Model selection

Model assessment or model comparison has always been
an important dimension of model-based inference. If a
statistical model is not appropriate for a given relation-
ship in the population, then analysis based on the model
could be very misleading. The appropriateness of a model
is measured by not only the form of model structure but
also the involvement of covariate information. Variable
selection concerns which of the possibly several predictor
variables to use in a model. The problem of variable se-
lection can be viewed essentially as a problem of model
selection in a statistical application.

Traditional procedures of model comparison and vari-
able selection rely on Bayes factors. To use Bayes factors,
it is necessary to specify proper prior distributions for the
parameters and models. This can be heavy work to spec-
ify prior distributions for all models under consideration,
especially if there is a large number of potential covari-
ate variables available. In addition, the posterior model
probabilities are generally sensitive to the choice of prior
parameters, which in general is not desirable.

Alternatively, recent developments have been focussed
on a predictive approach, which is applicable for utiliz-
ing improper prior distributions as long as the resulting
posterior distributions are proper. The method can be
used not only for the comparison between nested models
but also for the comparison across a large class of plausi-
ble non-nested models. We will discuss and apply three
Bayesian predictive methods for model comparison.

The first method is based on the posterior predictive
p-value, which measures the probability that the predic-
tive data could be more extreme than the observed data
in terms of a certain ”discrepancy” measure. The ”dis-
crepancy” measure could be some test statistic or more
generally could involve the unknown ”nuisance” parame-
ters as well. One of the commonly used ”discrepancy”
measures is the χ2 discrepancy defined as X2 (y; θ) =∑n

i=1
(yi−E(yi|θ))2

V ar(yi|θ) , where y = (y1, · · · , yn) is a vector of
independent observations and θ is a vector of parame-
ters. According to Gelman, Meng and Stern (1996), the
posterior predictive p-value can be approximated by the
frequency of the predictive discrepancy (based on repli-
cated predictive values) exceeding the realized discrep-
ancy (based on observed data) among a large number of
posterior predictions.

The second approach is the L-criterion proposed by
Laud and Ibrahim (1995). The method measures the
performance of a model by evaluating expected poste-
rior predictive errors. The measurement is implemented
through an imaginary device of a replicate experiment
which is assumed to be done under the same condi-
tions as the current experiment. For a given model
m, define L2

m = E{(Z − y)′ (Z − y)} =
∑n

i=1[{E (Zi) −
yi}2 + V ar (Zi)], where Z denotes the vector of the re-
sponse values in the replicated experiment. The ex-
pectation is taken with respect to the predictive den-
sity of a replicated experiment (PDRE) defined as
p (z|y, m) =

∫
p

(
z|m, θ(m)

)
π

(
θ(m)|m, y

)
dθ(m). The

density π
(
θ(m)|m, y

)
∝ π

(
θ(m)|m

)
p

(
y|m, θ(m)

)
is the

posterior distribution for θ(m) under model m given ob-
served data Y = y. The L2

m could be considered as a
measure of how close the predictive data is to the ob-
served data accounting for the variability of the predic-
tions. Small values of L2

m indicate good models. Laud
and Ibrahim (1995) referred to Lm =

√
L2

m as the L-
criterion due to its convenience of use as a measure in
the same scale as the response variable. They also sug-
gested to quantify the uncertainty that is inherent in the
criterion values by calculating the standard deviation of
the criterion with respect to the marginal distribution of
the outcome variable. The calibration number for the L-
criterion is defined as SLm∗ = [V ar{Lm∗ (Y )}]1/2, where
m∗ denotes the model with the smallest criterion value.
Hoeting and Ibrahim (1998) defined a comparison score
as φm = Lm−Lm∗

SLm∗
, which measures the number of calibra-

tion units that a given model is from the model with the
smallest criterion value. A simple model with a relatively
small comparison score, say less than 2, is preferred.
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The third method is based on the deviance informa-
tion criterion (DIC). The deviance defined as D (y, θ) =
−2 log p (y) has an important role in statistical model
comparison due to its connection to the Kullback-Leibler
(KL) information measure. The expected deviance as
a measure of predictive accuracy is therefore often used
as a measure of overall model fit. The estimate of
expected posterior deviance is given by D̂avg (y) =
1
L

∑L
l=1 D

(
y, θl

)
, where l denotes the number of itera-

tion. The model complexity is measured by the effective
number of parameters of a Bayesian model, which could
be approximated by pD = D̂avg (y)−Dθ̂ (y), where Dθ̂ (y)
is the deviance at a point estimate of θ such as the poste-
rior mean. The DIC is defined as the sum of the expected
posterior deviance and the effective number of parame-
ters, which could be considered as a Bayesian measure of
fit or adequacy, penalized by an additional model com-
plexity term pD. Spiegelhalter et al. (2002) show that
in models with negligible prior information DIC will be
approximately equivalent to Akaike’s criterion (AIC).

4. Illustration

To illustrate the performance of the proposed estimators
and model comparison methods, we simulated a single
finite population of EP courses taken by twelfth grade
students from Iowa’s public high schools from a Poisson
log-linear model with random effects from size levels and
AEAs. Population sizes in the simulation match actual
population sizes in Iowa’s school districts in 2004. One
sample data set was drawn from the simulated population
under the stratified three-stage design.

Seven models consisting of different combinations of
auxiliary variables and random effects are considered:

Model 1: log (λi,j,k) = b0 + b1xi,j,k;1

Model 2: log (λi,j,k) = b0 + b1xi,j,k;1 + τi

Model 3: log (λi,j,k) = b0 + b1xi,j,k;1 + τi + ηj

Model 4: log (λi,j,k) = b0 + b1xi,j,k;1 + τi + ηj + ζi,j

Model 5: log (λi,j,k) = b0 + τi + ηj

Model 6: log (λi,j,k) = b0 +
5∑

q=1

bqxi,j,k;q

Model 7: log (λi,j,k) = b0 + b1xi,j,k;1 + τi + ηj + vi,j,k

The covariate variables xi,j,k;q, q = 1, · · · , 5 correspond
to auxiliary information about the total enrollment size,
the amount of funding per student, and the percent-
age of male students, white students, and students hav-
ing free or reduced price lunch. The variables have
been transformed using logarithmic or power transfor-
mations to produce more uniform or symmetric distri-
butional shapes. The parameter b0 is the intercept and
bq, q = 1, · · · , 5 are the regression coefficients. Among
these models, model 3 is the model from which the pop-
ulation was simulated. Model 3 and any model from the
rest of models except model 6 are nested. Model 6 is a

GLM involving all five covariate variables but no random
effects.

The prior distributions for model parameters are spec-
ified in Section 3.1. For each model, by using the Gibbs
sampling algorithm, we independently simulated L = 3
parallel Markov chains, each of length 10, 000 iterations.
The first 5,000 iterations for each chain are deleted as
a “burn-in” period. By thinning to every 5th iteration,
1,000 iterates from each chain are retained for posterior
estimation.

As an example of Bayesian model selection, Table 1
shows the results of comparing seven models using the
three methods discussed in Section 3.4. According to the
posterior predictive p-values (PPPs), models 1, 2, 5 and 6
show strong evidence of model failure due to the extreme
pattern of observed data relative to the posterior predic-
tive data based on the assumed model. Models 3, 4 and
7 have no indication of model inadequacy. By choosing
the most parsimonious model among models with unex-
treme PPP, the true model (model 3) will be selected.
When using the L-criterion, model 4 has the smallest Lm

value. Calibrated by the standard deviation of the crite-
rion value under model 4, the comparison scores (CSs) for
models 1, 2, and 6 are larger than a value of 4, which is
too extreme in terms of calibration of inherent variation
of criterion values. Model 5 is the smallest model with
a not extreme CS. Among the models have the smallest
DIC value, model 3 will be selected due to its simplest
form. The PPP and DIC criteria successfully choose the
true model. The L-criterion selects model 5 which is only
different from the true model by omitting the first covari-
ate variable x1. The reason could be the coefficient of x1

is very small and the range of x1 is also very short so that
the effect of the first covariate term is small relative to
other effects.

By comparing the HB estimates under models 3 and
5, model 5 produces larger absolute relative bias (ARB)
and higher posterior mean square error (PMSE) in most
of strata. The HB estimator derived under model 5 still
shows advantages over the direct ratio estimator. Ba-

Table 1: Bayesian model selection criteria in the ex-
ample. Model 3 was used to generate the data.
PPP=posterior predictive p-value. CS=comparison score
for the Lm statistic. DIC=deviance information criterion.
pD=effective number of parameters. Model 3 is smaller
(pD) than models 4 & 7.

PPP Lm CS DIC pD

M1 0.000 249.00 6.300 20410 1.96
M2 0.000 245.28 4.517 20160 3.91
M3 0.136 235.92 0.041 19500 14.74
M4 0.143 235.84 0.000 19500 20.81
M5 0.014 237.47 0.779 19610 13.80
M6 0.000 248.13 5.885 20350 4.05
M7 0.146 235.86 0.010 19500 24.58

Section on Survey Research Methods

2631



sically, these Bayesian model comparison methods work
well in selecting an appropriate model for further anal-
ysis. Referring to more than one criteria if practically
feasible should be helpful in making a good decision.

In our preliminary study using direct esimation, we
chose the ratio estimator because it produced better es-
timates than the Horvitz-Thompson estimator in terms
of smaller variance and mean square error (MSE) in the
Monte Carlo study (Lu and Larsen 2006). Now we com-
pare the model-based HB estimator with the design-based
ratio estimator based on the absolute relative bias (ARB)
and the square root of mean square error (RMSE) for in-
dividual strata. The ARB is defined as the absolute value
of the relative bias of the estimate over the realized finite
population value. The MSE of the ratio estimator is es-
timated through Monte Carlo simulation. The posterior
MSE of the HB estimator equals to the posterior variance
under the model. The PMSE of the BHB estimator was
calculated by (13) in Section 3.3.

To see the performance of different estimators at the
small area (stratum) level, we choose the twelve strata
consisting of medium districts as a representative of pre-
senting estimation results.
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Figure 1: The Absolute Relative Bias (ARB) of ratio,
HB, and BHB estimates under the true model (model 3)
based on a single simulated finite population.

Figure 1 shows the absolute relative bias (ARB) of
ratio, HB and BHB estimates over the realized (true)
finite population mean for individual strata, when the
true (correct) model is employed. The strata are sorted
by the population size of PSUs. Larger strata get more
PSUs in the sample. The five strata on the left have one
PSU sampled and the seven strata on the right have two
PSUs sampled. For the single randomly selected sample,
the ratio estimator produces consistently larger ARBs for
all except one stratum. Three out of twelve strata have
ARBs of ratio estimates almost as high as 15 − 20% of
the realized finite population mean. The ARBs for HB
estimates are less than 8% for all medium strata and less
than 4% for larger medium strata with two PSUs sam-

pled. The ratio estimator shows much higher variation
than the HB estimator at the small area level when the
model is correct. As a hybrid of ratio and HB estima-
tors, the BHB has ARBs and variation of estimates in
between.
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Figure 2: The RMSE (ratio) and SE (SE1, SE2) of the ra-
tio estimate and RPMSE (HB) of the HB estimate under
the true model (model 3). The RMSE of ratio estimate
is obtained based on 1,000 simulated samples. The SEs
of the ratio estimate and the RPMSE of the HB estimate
is based on a single simulated finite population.

Figure 2 displays the root of mean square error
(RMSE) of ratio and HB estimators. The MSE of the ra-
tio estimator is estimated through 1,000 replicated sim-
ulations of the sample from the finite population. The
posterior MSE of the HB estimator is derived under the
true model. Since in reality we usually have only one set
of sample data, it is difficult to estimate MSE through
replicated samples that are really generated from the fi-
nite population. People usually use the standard error to
quantify the design variation of direct estimator. Unfor-
tunately, in a one-PSU-per-stratum design, there are not
enough degrees of freedom to estimate variance directly.
Besides the concern of reliability of the direct estimator,
the assessment of precision of the estimator is also a chal-
lenging problem. Figure 2 also shows two kinds of stan-
dard errors (SEs) of the ratio estimator for strata with
one PSU sampled. The SE1 was obtained by collapsing
strata followed by synthetic variance redistribution. The
SE2 was estimated by using the restricted generalized
variance function method (Lu and Larsen 2006). In the
case of our application, the collapsing strata estimator
significantly overestimated the variances in small areas.
The generalized variance function method did better, but
since it is still design-based in substance, it would inher-
ent the instability of the direct estimator in small sample
cases. In contrast with the direct estimator, the HB es-
timator with a properly specified model produces more
reliable estimates in terms of smaller PMSE. The advan-
tage of using a model-based estimator is significant in

Section on Survey Research Methods

2632



terms of producing more efficient and reliable estimates.
Additionally, the HB method addresses analytical infer-
ence in a unified framework for surveys with small and
large sample sizes and deals with the nuisance parame-
ters in a natural way, thereby simplifying the production
of appropriate variance estimates in small sample cases.
HB shows its great advantage in this regard compared to
not only the direct estimator but also other model-based
estimators such as EBLUP and EB.
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Figure 3: The Absolute Relative Bias (ARB) of ratio, HB,
and BHB estimates under an inadequate model (model
2) based on a single simulated finite population.

However, just like all model-based estimators, the HB
estimator is also vulnerable to mis-specification of the
model. Figure 3 shows the ARB of ratio, HB and BHB es-
timates when an inadequate model (model 2) is used. The
HB estimator derived based on the smaller model, which
fails to address the random effect from AEAs and had
shown strong evidence of model inadequacy in the pre-
vious model checking, produces significantly larger bias
than the ratio estimator for most strata. Four strata
have ARBs more than 20%. By benchmarking to the
direct estimates at size and AEA levels, the BHB esti-
mator successfully ”corrects” the bias induced by model
mis-specification and produces comparable ARBs with
the ratio estimator. On the other hand, BHB pays a
price for ”correcting” the bias: the PMSE is inflated.

When the model is tolerable, the inflation of PMSE
for the BHB estimator might not be too bad. But if the
model is very poorly specified, the PMSE for BHB could
be extremely large. Figures 4 and 5 display the RPMSEs
of HB and BHB estimators under the true model and the
smaller model respectively. The HB estimator has very
small RPMSEs in both cases. The BHB estimator al-
ways has larger RPMSE due to the ”correction” of bias.
The inflation of PMSE using the smaller model is much
bigger than using the true model. This is because model
failure caused a serious bias of the HB estimator and a
corresponding big bias correction term for BHB. There-
fore, serious inflation of PMSE of BHB relative to the

HB estimator could be an indication of a poorly specified
model.
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Figure 4: The root of posterior mean square error
(RPMSE) of HB and BHB estimates under the true
model (model 3) based on a single simulated finite pop-
ulation.
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Figure 5: The root of posterior mean square error
(RPMSE) of HB and BHB estimates under an inadequate
model (model 2) based on a single simulated finite pop-
ulation.

From the above figures, we see great advantages of us-
ing a model-based estimator in terms of producing ef-
ficient and reliable estimates when a model is properly
chosen, especially for problems of inference with small
sample sizes. We also see the issue of the HB estima-
tor being vulnerable to model mis-specification, which
could cause serious estimation bias. By benchmarking to
reliable direct estimates at high levels of aggregation of
small areas, the BHB estimator could ”correct” the bias
in small areas to some degree and achieve some nice prop-
erties, such as design-consistency and reliable estimates
at a larger region. The disadvantage is that the PMSE
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could be dramatically inflated if the model is poorly spec-
ified. Therefore, careful model specification is crucial in
model-based estimation.

5. Summary And Discussion

A survey on transcripts of Iowa’s public high school stu-
dents motivated an examination of small area estimation
through model-based inference. The method of produc-
ing more reliable estimates for areas with small sam-
ple sizes than direct estimation were studied from a full
Bayesian perspective.

The hierarchical Bayes (HB) approach was used to ob-
tain the posterior estimates of the average number of EP
courses taken by twelfth grade high school students for
strata defined by district size and AEA and populations
of aggregations of strata. When an appropriate model is
used, the HB estimator outperforms the ratio estimator
by borrowing strength across strata in terms of produc-
ing consistently smaller absolute relative bias (ARB) and
root of mean square error (RMSE) for individual strata.

The use of the HB method could be very helpful in
gaining more efficiency in estimation. It could, how-
ever, produce a misleading survey inference if the model
is poorly specified. Effective model selection is crucial
in the HB analysis. The issue of model selection not
only includes selecting proper model structure but also
includes selecting covariate variables and proper forms
of transformations of the variables. In the illustration,
we examined three Bayesian model comparison methods.
The posterior predictive p-value and deviance informa-
tion criteria successfully chose the true model. The L-
criterion selected a model close to the true model, which
still produces HB estimates better than the direct esti-
mates. We are not suggesting these three are better than
other methods for Bayesian model selection. These are
just three methods that are easy to use and usually do
a nice job. There are many other methods that we have
not even mentioned here. The point is an effective model
selection is a good start and also a crucial basis for mak-
ing an efficient survey inference using the HB approach.
With a carefully chosen model, the HB estimator should
outperform the direct estimator in small area estimation.

Future study will pay more attention to examining
effective methods of choosing proper forms of trans-
formations of predictive variables and developing an
efficient strategy to combine the selection of variables
and transformations in the application of Bayesian model
selection. In large-scale surveys, since it is practically
inefficient or impossible to compare all possible models
with various combinations of variables, we also hope to
explore some more efficient methods to choose promising
models such that the scope of model selection could be
narrowed down to allow us to compare the models one-
by-one based on the criterion-based methods. Further,
for predictive survey inference, instead of choosing one
single model and assuming the model is the true model
to carry on the analysis, we could count in the model

uncertainty by averaging the predicted values over a
group of promising models weighted by the posterior
probabilities of the models. Therefore, besides Bayesian
model selection, Bayesian model averaging might be
another option for future study.
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