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Abstract

Large-scale surveys often produce raw weights with very
large variations. A standard approach is to perform
some form of trimming, as a way to reduce potentially
large variances in various survey estimators. The amount
of trimming is usually determined by considerations of
bias-variance trade-off. While bias-variance trade-off is
a sound principle, the trimming method itself is popular
only because of its simplicity, not because it has statisti-
cally desirable properties. In this paper we investigate a
more principled method by shrinking the variability of the
log of the weights. We use the same mean squared error
(MSE) criterion to determine the amount of shrinking.
The shrinking on the log scale implies shrinking weights
by a power parameter p between [0,1]. Our investiga-
tion suggests an empirical way to predict the optimal
choice. This power shrinkage method provides a natu-
ral way to deal with measurement errors and outliers in
the raw weights, while preserving the ranking of the raw
weights. We demonstrate the use of this method with the
National Latino and Asian American Study (NLAAS).

Keywords: Selection probability, unequal selections, se-
lection biases, self-weighting.

1 Introduction

In survey studies, the weights are often used to mitigate
the bias from the unequal selection probability. Estima-
tion bias is reduced by sampling weight at the expense of
increased variance. As an example, Kish (1992) provided
an authoritative account of the weighted and unweighted
estimators. He discussed the weight trimming approach
to reduce the mean square error through the bias-variance
trade-off. We propose below a new approach, power-
shrinkage method, to deal with this problem. The power-
shrinkage approach we propose is a continuous transfor-
mation and preserves the ranking of weights. We investi-
gate the properties of both trimming and power-shrinkage
approaches via simulation studies.

We organize this paper in five sections. Section 1 is the
introduction. Section 2 provides the formulas of shrink-
age weights. Section 3 describes the NLAAS data set
used in our simulation study. Section 4 describes the
simulation design. Section 5 summarizes the results and
concludes.

2 Power-Shrinkage and Trimming

The survey weights are constructed as the reciprocals of
the selection probabilities. Let w be the survey weight, n
be the sample size, and y be the variable of interest. Let
p ∈ [0, 1] be the power-shrinkage parameter and T ∈ [0, 1]
be the trimming threshold defined in terms of percentile.
The original weighted estimator, power-shrinkage estima-
tor and the trimmed estimator for the expectation, E(y),
are given by

• Original weighted estimator : ȳw =

n∑

i=1

wiyi

n∑

i=1

wi

• Power-Shrinkage estimator: ȳ
(p)
w =

n∑

i=1

wp
i yi

n∑

i=1

wp
i

• Trimmed weighted estimator: ȳ
(T )
w =

n∑

i=1

wi(T )yi

n∑

i=1

wi(T )

where wi(T ) = min(wi, Z(T )), and Z(T ) is the (100 ×
T th) percentile of w.

It is well known that while ȳw is unbiased, its variance
can be very large when the variance of the weights is
large. The trimming estimate ȳ

(T )
w addresses this problem

by reducing those excessively large weights via wi(T ) =
min(wi, Z(T )), that is, the top weights above Z(T ) are
trimmed down to Z(T ). This trimming will introduce
bias, but the hope is that the variance of ȳ

(T )
w is much

smaller than ȳw, such that the overall mean square error
of ȳ

(T )
w is smaller than ȳw.

Although trimming is a very useful and popular
method, it is nevertheless an ad-hoc method, and has
a number of undesirable properties. For example, it does
not preserve the (strict) ranks of the original weights.
Furthermore, it does not address problems in the con-
struction of the weights that are likely to affect all or
most weights even though most of them did not become
excessive.
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We therefore propose the power-shrinkage method
based on the motivation described below. In most sur-
vey studies, the distribution of the weights is reasonably
approximated by the log normal distribution (see section
3 for a real data example). So if we want to reduce the
impact of excessive weights, or if we believe that there is
noise in the weights (e.g. due to measurement error in
the construction of weights), we should rescale the log of
the weights to reduce its variance. This is the same as
raising the weight by a power p ∈ [0, 1], which gives the
power-shrinkage estimate ȳ

(p)
w .

When p = 1 and T = 1, there is no shrinkage or trim-
ming; all three estimators are the same; ȳw = ȳ

(p)
w = ȳ

(T )
w .

On the other hand, when p = 0 and T = 0, both power-
shrinkage and trimmed estimators are equivalent to the
unweighted estimator. When p and T are close to one,
the estimators are less biased but with larger variances.
When p and T are close to zero, they behave like the un-
weighted estimator, biased but with a smaller variance.
The optimal choice of p depends on a number of factors.
The challenge is therefore to find a practical way to find a
good (not necessary optimal) choice of p, as well as some
common choices of p that will work reasonably well in a
variety of situations. To explore these and to compare
power-shrinkage and trimming approaches, we designed
a simulation study using the NLAAS dataset as the tem-
plate.

3 NLAAS

The National Latino and Asian American Study
(NLAAS) is a nationally representative survey of White,
Latino and Asian American household residents (aged
18 and older) in the non-institutionalized population of
the US. A total of 4864 individuals, including Latinos,
Asians, and Whites, were interviewed. The sample in-
cludes an NLAAS Core, designed to be nationally rep-
resentative of all Latino origin groups regardless of geo-
graphic patterns; and NLAAS-HD supplements, designed
to oversample geographic areas with moderate to high
density (HD) of Latino and Asian households. Weight-
ing reflecting the joint probability of selection from the
pooled Core and HD samples provides sample-based cov-
erage of the national Latino population.

The properties of weights in NLAAS are summarized
in Table 1, Figure 1 and Figure 2. As we can see, the
variance of the weight is large, and the distribution of log
weight is roughly Gaussian.

w Percentile w
MIN 80 5 368

MEAN 7,340 25 1,325
MAX 136,011 50 2,861

75 8,625
95 28,385

Table 1: Summery Statistics for w
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Figure 1: Distribution of Survey Weight w
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Figure 2: Distribution of log10(w)

4 Simulation Design

To investigate the properties of power-shrinkage and
trimming approaches, we designed a simulation study us-
ing the NLAAS dataset. We constructed a hypotheti-
cal population consisting of I clusters, where I = 4, 864.
Assume there are j = 1, ..., wi individuals in the clus-
ter i, and their yi,j ∼ N(yi, σ

2
y), where σy is the stan-

dard deviation of y in each cluster, which we use the
unweighted standard error from the y in the NLAAS
dataset. Our artificial population consisted of N =∑I

i=1 wi = 35, 705, 416 individuals. If y is restricted to
be positive, we use the log-normal distribution instead of
the normal distribution. If y is a binary variable other
than gender, we use a logistic regression on age and gen-
der to predict the outcomes in each cluster. The variable
gender is predicted with a logistic regression model on
age.

We applied a two-stage sampling design. First, we
draw q clusters by simple random sampling without re-
placement. Second, we draw s cases within each cluster
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by simple random sampling without replacement. The
simulated sample size is n = q× s. The observation from
cluster i is assigned the weight w∗i = wi/s.

Given the sample design, we are interested in the fol-
lowing estimators:

• The sample estimator:

ȳw =

q∑

i=1

s∑

j=1

w∗i yi,j

q∑

i=1

s∑

j=1

w∗i

• The Power-Shrinkage estimator:

ȳ(p)
w =

q∑

i=1

s∑

j=1

(w∗i )pyi,j

q∑

i=1

s∑

j=1

(w∗i )p

• The trimmed estimator:

ȳ(T )
w =

q∑

i=1

s∑

j=1

w∗i (T )yi,j

q∑

i=1

s∑

j=1

w∗i (T )

In each iteration, the power-shrinkage and trimmed es-
timators with shrinkage parameters/trimmed thresholds
at 0, 0.05, 0.1, 0.15, ..., 0.95, 1 are calculated. The optimal
shrinkage parameter is denoted as p∗, and the optimal
trimmed threshold is T ∗. To compare the minimal mean
square error of power-shrinkage approach against that of
the trimming approach, we compute the ratio of the opti-
mal power-shrinkage MSE (PMSE) to the optimal trim-
ming MSE (TMSE):

Rpt =
PMSE(p∗)
TMSE(T ∗)

.

We also explore the properties of both approaches given
different sample sizes. We set s = 2 and change the value
of q to control the sample size. In this simulation, we
use q = 2432, 1216, 608, 304, 152, 76. So the sample size
is n = qs = 4864, 2432, 1216, 608, 304, 152, respectively.

It is well known that the correlation between the
weights and the variable to be analyzed plays an im-
portant role in determining the bias of the unweighted
estimator. If the correlation is low, then the bias of the
unweighted estimator is small. We therefore selected vari-
ables with different correlations with the weights to study
this issue.

Specifically, we chose the following variables: gender,
age, height, education, major depression, substance dis-
order, social phobia, any disorder, immigrant status, k10-
distress measure, agepluswgt, and survey weight w. Here

the variable agepluswgt is constructed as

agepluswgt = age + 0.001× w,

which has a correlation of 0.5726 with w. By investi-
gating agepluswgt and survey weight w, we attempt to
learn the performance of power-shrinkage and trimming
for variables with high correlation with survey weight.
Note that the correlation between variables and weights
in NLAAS, ρ, is different from the correlation in our ar-
tificial population, which is denoted as ρ̂, typically lower
in magnitude because the random noise we introduced
within each cluster.

To investigate the relationship between the optimal
power-shrinkage parameter p∗, trimming threshold T ∗,
simulated correlation ρ̂ and sample size n, we fit the fol-
lowing regression model.

log
(

p∗

1− p∗

)
= β0+β1 log

( |ρ̂|
1− |ρ̂|

)
+β2 log(n)+ε (1)

log
(

T ∗

1− T ∗

)
= γ0+γ1 log

( |ρ̂|
1− |ρ̂|

)
+γ2 log(n)+ε (2)

where the p∗ or T ∗ are replaced as 0.99 if it is 1, and
replaced as 0.01 if it is 0. We also fit the regression model
with an interaction term, which turns out to be far from
significant.

5 Results

We summarize the simulation study results in Table 2
and Figures 3 to 14. Table 2 presents the optimal power-
shrinkage parameters p∗, the optimal trimming thresh-
olds T ∗ and the ratio of optimal mean square errors Rpt

along with the sample size n and the simulated sam-
ple correlation, ρ̂, between variable, y, and weights, w∗.
In Figure 3 to 14, the mean square error of the power-
shrinkage approach is denoted as the solid curve. The
mean square error of the trimming approach is denoted as
the dotted curve. The horizontal axis indexes the power-
shrinkage parameters or trimming thresholds. The ver-
tical axis is the mean square error. The sample size is
noted on the top of each graph.

The mean square error curves are generally smooth for
the power-shrinkage estimators, but are usually jagged for
the trimmed estimators. This is because power-shrinkage
is a continuous transformation while trimming is not a
smooth operator. But overall, the two methods are com-
parable in terms of minimizing the MSE because the ratio
Rpt is quite close to one for most cases listed in Table 2.

Our limited evidences suggest that the power-shrinkage
method works well with smaller sample sizes and/or when
the correlations between the variable and the weight is
high. As expected, we also observe that the optimal
bias-variance trade-off varies with the correlation between
each variable and the survey weight. When the correla-
tion is high, little trimming or shrinkage is preferred. Our
simulation results also suggest that the usual practice of
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trimming a small fraction of the most extreme weights
might not be the best way to trim – it is often better to
trim more aggressively or shrink more aggressively, unless
the correlation is very high.

Because the survey weight and agepluswgt are not typ-
ical variables of interests in practice, we exclude them in
our attempt to fit the regression models (1) and (2). For
model (1), the least-square estimates for the regression
parameters are β̂0 = −3.70, β̂1 = 1.02 (significant) and
β̂2 = 1.13 (significant). This result is expected because
intuitively the optimal power should increase with both
the correlation and the sample size. The reason is with
either large correlation or large sample size, the bias in
an inapproiately weighted estimator becomes more dom-
inated. Same is true with the trimming, that is, the op-
timal trimming threshold should increase with the cor-
relation or sample size. For model (2), the regression
estimates are γ̂0 = −3.19, γ̂1 = 1.24 (significant) and
γ̂2 = 1.27 (significant). The R2 for both regressions are
about 50%, indicating the usefulness of these two simple
models.

The results above inspired us to seek a simple ap-
proximation formula for predicting the optimal shrink-
ing power based on the correlation and sample size. We
seek a simple approximation because the regression re-
sults here are based on only 10 specifically chosen vari-
ables, so while the results are suggestive, they should not
be taken literally for general consumption. Instead, be-
cause β̂0 = −3.70, β̂1 = 1.02, β̂2 = 1.13, we suggest that
a simple rule to calculate the optimal power-shrinkage
parameter is to use β∗0 = −4, β∗1 = 1, β∗2 = 1, that is

p̂ =
n|ρ̂|e−4

1− |ρ̂|+ n|ρ̂|e−4
(3)

The resulting predictions, rounding to the closest grid
point in our simulation study, are reported in Table 3,
where we also calculate the ratio MSE(p̂)

MSE(p∗) to evaluate how
this simple rule performs. The results are very encourag-
ing, because the loss of optimality by this approximation
is negligible in most cases in terms of the MSE. Even for
the two out-sample predictions – recall survey weights
and agepluswgt were not used in the regression – the re-
sults are not bad, especially for agepluswgt. Of course,
much more investigations are needed, both theoretical
and empirical, to test to what extend the simple rule (3)
is useful. Our conjecture is that the use of unit slope
for both predicting variables should hold fairly generally,
but the value of the intercept may need to be changed
non-trivially for some other variables.

While simple rules such as (3) are quite useful for con-
structing efficient estimators for individual variables, they
are not useful when we want to seek a single power to con-
struct a fixed set of weights to be used for any variables
measured in a survey. For the latter purpose, we could
seek a “minmax” type power, that is, a power shrinkage
that would minimize the worst MSE across all variables of
interests. Our simulation results show that across the 12

variables in our simulation studies, the minimax choice of
p is in the range of [0.3, 0.8] across different sample sizes.
Because one can easily construct variables to be com-
pletely correlated or uncorrelated with the weights, we
believe that the minimax choice of p over enough choices
of variables will converge to p = 0.5. Further theoretical
investigation is planned to validate this conjuncture.
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y n ρ̂ p∗ T ∗ Rpt y n ρ̂ p∗ T ∗ Rpt

Age 152 -0.04 0.00 0.00 1.00 Height 152 0.09 0.35 0.60 0.90
ρ = 304 -0.07 0.05 0.00 0.99 ρ = 304 0.11 0.15 0.20 0.95

-0.0506 608 -0.04 0.15 0.00 0.90 0.0987 608 0.06 0.75 0.95 0.98
1216 -0.03 0.25 0.45 0.96 1216 0.09 0.75 0.95 0.96
2432 -0.03 0.45 0.60 1.11 2432 0.08 0.90 0.95 0.89
4864 -0.03 0.70 0.70 1.93 4864 0.07 0.95 1.00 0.90

Major 152 0.00 0.00 0.00 1.00 Social 152 0.00 0.00 0.00 1.00
Depression 304 0.00 0.00 0.00 1.00 Phobia 304 0.00 0.05 0.00 1.00

ρ = 608 0.00 0.00 0.00 1.00 ρ = 608 0.00 0.10 0.05 0.99
-0.0017 1216 0.00 0.00 0.00 1.00 0.0306 1216 0.00 0.20 0.45 0.99

2432 0.00 0.00 0.00 1.00 2432 0.00 0.35 0.65 1.03
4864 0.00 0.00 0.00 1.00 4864 0.00 0.50 0.75 1.04

Substance 152 0.02 0.20 0.40 0.98 Immigrant 152 -0.01 0.40 0.75 0.99
Abuse 304 0.02 0.40 0.70 0.98 304 -0.01 0.70 0.90 1.00
ρ = 608 0.02 0.65 0.90 1.01 ρ = 608 -0.02 1.00 1.00 1.00

0.0705 1216 0.02 0.90 0.95 1.02 -0.1843 1216 -0.01 1.00 1.00 1.00
2432 0.02 1.00 1.00 1.00 2432 -0.01 1.00 1.00 1.00
4864 0.02 1.00 1.00 1.00 4864 -0.01 1.00 1.00 1.00

Gender 152 -0.07 0.35 0.30 0.93 Any 152 0.01 0.15 0.20 0.99
ρ = 304 -0.07 0.45 0.75 0.89 Disorder 304 0.01 0.25 0.45 0.99

-0.0584 608 -0.07 0.65 0.90 0.93 ρ = 608 0.01 0.40 0.70 1.03
1216 -0.07 0.75 0.95 0.94 0.0452 1216 0.01 0.55 0.80 1.07
2432 -0.07 0.80 0.95 0.92 2432 0.01 0.75 0.90 1.06
4864 -0.07 0.85 0.95 0.77 4864 0.01 0.90 0.95 1.06

Education 152 -0.08 0.50 0.75 1.24 K10- 152 -0.02 0.05 0.00 1.00
ρ = 304 -0.08 0.65 0.80 1.44 Distress 304 -0.03 0.50 0.90 0.93

-0.0883 608 -0.07 0.60 0.70 1.57 ρ = 608 -0.03 0.60 0.90 0.94
1216 -0.05 0.75 0.80 1.70 -0.0333 1216 -0.03 0.80 0.95 1.02
2432 -0.06 0.85 0.95 2.07 2432 -0.04 0.85 0.95 1.05
4864 -0.06 0.85 0.85 3.14 4864 -0.02 0.90 1.00 0.96

Survey 152 0.19 0.05 0.50 1.17 Ageplus- 152 0.38 0.70 0.95 1.16
Weight 304 0.24 0.25 0.65 1.48 weight 304 0.36 0.80 0.95 1.07

ρ = 608 0.19 0.35 0.80 1.68 ρ = 608 0.35 0.90 1.00 0.79
1.0000 1216 0.19 0.50 0.90 1.82 0.5726 1216 0.40 0.90 1.00 0.69

2432 0.19 0.80 0.95 1.40 2432 0.38 1.00 1.00 1.00
4864 0.19 0.75 0.95 1.48 4864 0.39 0.95 1.00 0.77

Table 2: Simulation Study Results
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y n p̂ p∗ MSE(p̂)
MSE(p∗) y n p̂ p∗ MSE(p̂)

MSE(p∗)
Age 152 0.10 0.00 1.06 Height 152 0.25 0.35 1.05

304 0.30 0.05 1.50 304 0.40 0.15 1.83
608 0.30 0.15 1.09 608 0.40 0.75 1.40
1216 0.45 0.25 1.45 1216 0.65 0.75 1.08
2432 0.60 0.45 1.26 2432 0.80 0.90 1.08
4864 0.70 0.70 1.00 4864 0.85 0.95 1.30

Major Depression 152 0.00 0.00 1.00 Social Phobia 152 0.00 0.00 1.00
304 0.00 0.00 1.00 304 0.00 0.05 1.00
608 0.05 0.00 1.01 608 0.00 0.10 1.01
1216 0.05 0.00 1.01 1216 0.10 0.20 1.01
2432 0.10 0.00 1.04 2432 0.10 0.35 1.03
4864 0.15 0.00 1.10 4864 0.25 0.50 1.03

Substance Abuse 152 0.05 0.20 1.02 Immigrant 152 0.05 0.40 1.02
304 0.10 0.40 1.07 304 0.05 0.70 1.05
608 0.20 0.65 1.12 608 0.15 1.00 1.09
1216 0.35 0.90 1.20 1216 0.25 1.00 1.10
2432 0.50 1.00 1.25 2432 0.40 1.00 1.09
4864 0.65 1.00 1.23 4864 0.55 1.00 1.07

Gender 152 0.15 0.35 1.05 Any Disorder 152 0.05 0.15 1.01
304 0.30 0.45 1.06 304 0.05 0.25 1.03
608 0.45 0.65 1.10 608 0.10 0.40 1.07
1216 0.60 0.75 1.11 1216 0.20 0.55 1.10
2432 0.75 0.80 1.04 2432 0.35 0.75 1.11
4864 0.85 0.85 1.00 4864 0.50 0.90 1.10

Education 152 0.20 0.50 1.24 K10 Distress 152 0.05 0.05 1.00
304 0.30 0.65 1.38 304 0.15 0.50 1.06
608 0.45 0.60 1.11 608 0.30 0.60 1.14
1216 0.55 0.75 1.15 1216 0.40 0.80 1.35
2432 0.75 0.85 1.03 2432 0.60 0.85 1.34
4864 0.85 0.85 1.00 4864 0.65 0.90 1.46

Survey Weight 152 0.40 0.05 2.95 Agepluswgt 152 0.65 0.70 1.01
304 0.65 0.25 5.05 304 0.75 0.80 1.02
608 0.75 0.35 4.14 608 0.85 0.90 1.01
1216 0.85 0.50 3.18 1216 0.95 0.90 1.12
2432 0.90 0.80 1.16 2432 0.95 1.00 1.05
4864 0.95 0.75 2.13 4864 1.00 0.95 1.30

Table 3: Checking the performance of the approximated rule (3)
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Figure 3: Age
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Figure 4: Major Depression
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Figure 5: Substance Abuse
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Figure 6: Gender
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Figure 7: Education
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Figure 8: Survey Weight w
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Figure 9: Height
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Figure 10: Social Phobia
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Figure 11: Immigrant
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Figure 12: Any Disorder
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Figure 13: K10 Distress
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Figure 14: Agepluswgt
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