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Abstract  
With the goal of developing a small area estimation 
(SAE) product for clients, several user needs were 
identified.  The basic area level mixed linear model was 
taken as the starting point upon which several 
enhancements were built to incorporate desired features 
based on user needs.  One of the main research 
contributions of this SAE product development 
endeavor is a generalization of Kalman Filter (KF) to 
two or higher dimensions (corresponding to area and 
outcome variables besides time) for computational 
feasibility and statistical efficiency under multivariate 
modeling.  For this purpose, the area and outcome 
variables are ranked in some ad hoc manner for rank-
order to serve as a pseudo-time variable so that the usual 
theory of KF can be applied. Use of KF also gives rise 
to a versatile set of diagnostics based on innovations 
which are extremely useful to overcome the masking 
effect present in the usual BLUP residuals.  This can be 
serious in the case of correlated random effects. In this 
paper, the new SAE product of Statistics Canada termed 
BUPF (signifying Best Unbiased Prediction via 
Filtering) is briefly described. It is observed that taking 
on the task of developing a product (the term product is 
defined as a menu-driven software system customized 
for clients and requiring minimal statistical training) 
unlike a tool (requiring statistical skills to operate) can 
be mutually beneficial for both researchers and clients.  
It helps researchers to take a disciplined path with 
deliverables, set priorities, and receive client input and 
validation at early stages, while it helps clients to have 
an understanding and confidence about the product and 
to plan for data gaps and customer needs in advance.  
The BUPF product was successfully pilot-tested with 
the 2003 Labour force Survey (LFS) data for producing 
annual averages of monthly employment total estimates 
for three digit occupation codes by province.  Several 
other applications are planned in future in light of 
increasing user demands. 
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1. Introduction 

 
The present research is an outgrowth of the new 
initiative SPORD (Statistical Product Oriented R&D) 
for SAE currently underway at Statistics Canada for the 
period 2005-07.  SPORD signifies a client customized 
menu-driven software system with several features 
depending on the client need. After initial discussions 
with the client (Labour Market Information Working 

Group of the Forum of Labour Market Ministers), 
several features of the SAE-product were established 
and it became apparent that none of the alternative 
available products (such as PROCMIXED in SAS, 
MLwiN, and WinBUGS) satisfy the methodology 
requirements of the desired product. With this in mind, 
we embarked on an intensive R&D, and were successful 
in completing a pilot test (Singh and Verret, 2006a) in 
Spring ’06 for the Labour Force Survey (LFS) for 
estimating provincial employment by 3-digit occupation 
codes under contract from the client. 
 
The initial process of identifying client needs led to the 
following requirements: 
 
1. The SAE methodology  should take full account of 

the survey design to make it robust to model 
misspecification for nonignorable designs, and for 
obtaining design consistent estimates for validation 
by local area knowledge. 

2. It should be amenable to good model diagnostics 
and should make Least amount of Assumptions in 
Modeling for Prediction (LAMP) in the interest of 
robustness to departures from them. 

3. It should be able to produce estimates for areas with 
very few or no observations. 

4. It should allow for multivariate modeling for 
internal consistency (i.e., SAE of a sum of outcome 
variables is sum of SAEs) as well as for improved 
efficiency for correlated outcome variables. 

5. It should be computationally feasible for large 
multi-dimensional data involving time, area and 
outcome dimensions. 

6. The estimates should be benchmarked to a set of 
reliable direct estimates for key large areas or 
suitable subgroups of small areas for robustification 
to potential model breakdowns, maintaining face 
validity, and avoiding possible over-shrinkage; as 
well as standard errors and confidence intervals 
associated with the estimates. 

The LAMP requirement turned out to be an overarching 
principle for the product methodology requirements. 
 
In order to meet the above requirements, it was decided 
for simplicity to start with the multivariate version of 
the basic area level mixed linear model of Fay and 
Herriot (1979) and build several enhancements. It is 
known that it takes full account of the survey design via 
design-based covariance matrix of the vector of 
observation errors in the direct estimates. The 
approximate assumption of normality of direct estimates 
with known covariance matrix except possibly for 
over/under dispersion can be reasonably well satisfied 
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after collapsing and smoothing whenever necessary as 
suggested by Singh, Folsom, and Vaish (2005).  The 
underlying framework is basically semiparametric with 
minimal assumptions, and the resulting estimates have 
the desirable property of being empirical best unbiased 
predictor as well as shrinkage-type estimator lying 
between direct and indirect estimates—something easily 
understandable by clients.  Moreover, even for discrete 
outcome variables, the above area level linear mixed 
model framework is known to work well in general.  
 
One of the main research contributions of this SAE 
product development endeavor is a generalization of 
Kalman Filter (KF) to two or higher dimensions 
(corresponding to area and outcome variables besides 
time) for computational feasibility and statistical 
efficiency for multivariate modeling.  For this purpose, 
the area and outcome variables are ordered in some ad 
hoc manner for rank order to serve as a pseudo-time 
variable so that the usual theory of KF can be applied. 
Use of KF also gives rise to a versatile set of diagnostics 
based on innovations which are extremely useful to 
overcome the masking effect present in the usual BLUP 
residuals. The masking effect can be marked when the 
random area-specific effects have spatial auto-
correlation. Other main contributions in the SAE 
product for enhancing the basic area level model 
correspond to smoothing of the error covariance 
structure while allowing for unknown over/under-
dispersion, collapsing of areas with very few or no 
observations for estimating fixed parameters while 
providing area-specific estimates for random 
parameters, exact benchmarking, innovation diagnostics 
and covariate selection for linear mixed models based 
on both likelihood ratio test and variance component. 
 
The organization of this paper is as follows. In Section 
2, the nature of methodological problems in satisfying 
user requirements are examined, while in Section 3, 
proposed solutions for incorporating the desired features 
are described.  Section 4 contains a brief description of 
the Statistics Canada’s SAE product ‘BUPF’ currently 
being developed. Finally, Section 5 contains summary 
and directions of future work.   
 
2. SAE Methodological Problems for Satisfying User 

Requirements 
 
2.1 Full account of the survey design under weak 
assumptions 
 
When the sample design is nonignorable for the (super-
population) model, i.e., the model doesn’t hold for the 
sampled observations, it is difficult in general to take 
full account of the survey design with the unit-level 
model without making strong parametric modeling 
assumptions; see e.g., the sample distribution and 
sample complement distribution approach of 
Pfeffermann and Sverchkov (2003).  Although the 
approach of Pfeffermann and Sverchkov is quite 

ingenious and is optimal given the parametric 
assumptions, it requires extra modeling assumptions 
which may not be preferable by practitioners. 
Alternatively, with fixed effects models (linear or 
nonlinear), a reasonable alternative  under semi-
parametric assumptions (in the sense of first two 
moments) is to use optimal estimating functions 
(Godambe and Thompson, 1986; see also Binder 1983) 
involving sampling weights. This approach condenses 
the data in an optimal way but different from that based 
on sufficiency considerations.  The above idea was 
extended by Singh, Folsom, and Vaish (2003) to 
nonlinear random effects models under a hierarchical 
Bayes framework with an approximate Gaussian 
likelihood. However, if the model is linear and at the 
area or aggregate level, then the frequentist framework 
under semiparametric assumptions can be used to take 
full account of the survey design by means of the 
design-based covariance matrix of direct estimates.  
This is similar to the method of Fay and Herriot (1979) 
and may be preferable in view of the overall LAMP 
principle underlying the methodology requirements. 
 
More specifically, let the direct design-based estimator 
of the population total ,y dT  of the outcome variable y 

for the domain d  be , 1
d

dir
y d k k k sk U

t y w ∈∈
=∑  based 

on the sample  where  is the calibrated sampling 

weight for the sampled unit k and  is the finite 

domain d universe, let 

s kw

dU

,x dT  be a column vector of q 
auxiliary variables with known population totals and 

 be a D-vector of zero counts except for the dth 

position the known population count for domain d.  
Now, for sample s,  the survey weighted estimating 
functions for the fixed parameters 

,c dT

dN

β  (q in all) and the 

area-specific random parameters , 1,...,d d Dη =  for 
the linear mixed area-level superpopulation model  
 

, , ,d k x d d d ky A′ β η ε= + + , xA , ,d x d dT N=

)

,                
2

, ~ (0,d k NID εε σ , 2~ (0, )d NIDη ησ      (2.1) 

with ,d kε  being independent of dη , are given by 

, , ,( )
d

1x d d k x d d kd k U
A y A wβψ β k sη ∈∈

′= − −∑ ∑           

          (2.2a) 
       , , ,(

d
d d k x d dk U

y A wηψ β ) 1k k sη ∈∈
′= − −∑                         

           (2.2b) 
where only contributions from the observed data, and 
not from the unobserved prior information about the 
random effects are included.  This shows that the 
sample data can be condensed into summary statistics 

{ }, , 1,...,dir
y dt d D=  assuming that , i.e., the ˆ

dN N= d
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domains are used as post-strata for weight calibration. 
The above derivation of summary statistics via EFs 
would be useful in motivating the idea of collapsing 
when dealing with areas with few or no observations; 
see Subsection (2.3) below. Now, the model taking 
account of the survey design can be written in terms of 
the summary statistics as , , ,

dir
y d x d c d dt T T eβ η′ ′= + + , or 

in vector form,  
           (2.3) ( ) ( )dir

yt T x T cβ η= + e+
where ~ (0, ), ( ) ~ (0, )e V T c Nη Γ

( ) { }dT c diag N= , V is the design-based covariance 

matrix of yt  and  is the diagonal matrix Γ
2( ) ( ) ,T c T c Iη η ησ′Γ Γ = . Here it is assumed that 

( ) ( )yT T x T cβ η≈ + . Note that in the presence of 

spatial correlation,  will not be diagonal. Observe that 
the reduced model (2.3) is analogous to the two stage 
empirical Bayes model of Fay-Herriot ( see Rao, 2003, 
Ch 7,  for a good review) given by  

Γ

Sampling model :                     (2.4a) dir
y yt T= + e

Linking model :   ( ) ( )yT T x T cβ η= +       (2.4b) 
 

2.2 Simple Interpretability of SAEs  
 
 Under the aggregate-level model (2.3), the usual 
estimator sae

yt has the desirable optimality of being 
EBLUP (empirical best linear unbiased predictor or the 
stronger property of EBUP under normality) as well as 
the shrinkage-type estimator lying between direct ( ) 

and indirect (

dir
yt

ˆ( )T x β ) estimates; here the term indirect 
is used for the model-based estimator (also known as 
the synthetic estimator) if there were no available data 
from the domains.  The above shrinkage property makes 
the estimator easily understandable and interpretable in 
practice, and thus may be preferable for the desired 
product;  the estimator sae

yt is given by  

ˆ ˆ( ) ( )sae
yt T x T cβ η= +  (2.5a) 

, 1 1 1ˆ ( ( ) ( )) ( ) dir
yT x W T x T x W tβ − − −′ ′=

1 ˆˆ( ) ( ( ) )dir
yT c W t T xη β−= Γ −             (2.5b) 

 where W V , and a consistent estimator such as 
REML 

= +Γ
2ˆησ  is substituted in computing . Γ

 
2.3 Estimation for Areas with Few or No 
Observations  
 
For the linear mixed model (2.3), it is assumed that the 
design-based covariance matrix V is known or has a 

stable estimate . This is clearly violated if some areas 

have few or no observations. To overcome this problem, 
Singh et al. (2003) suggested collapsing of areas based 
on some subject matter considerations or finding 
collapsing partners with similar random effects; for this 
purpose they suggested finding provisional estimates of 
random effects using individual observations while 
ignoring the design. This solution was motivated from 
the basic estimating functions (2.2a &b) and was based 
on the observation that the reduced model after 
collapsing of estimating functions should have, in 
general, sufficient degrees of freedom for estimating 
fixed first and second order parameters (

V̂

' sβ , 2
ησ ) 

while the random effects, although outnumbering the 
collapsed set of summary statistics, can still be 
estimated separately using BLUP theory because of the 
prior information; see Appendix I. This follows from 
the BLUP EFs given by (re: Henderson et al. 1959, Rao 
2003, Ch 6, pp. 97) 
 

     
1

( ) ( )( )
0

( ) 0

dir
yV O t T x T cT x O

OT c I η

β η

η

− ⎛ ⎞′ ⎛ ⎞ − −⎛ ⎞
=⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟Γ′ −⎝ ⎠⎝ ⎠ ⎝ ⎠

 

 However, it would be desirable to have an objective 
criterion to choose between collapsing partners. It may 
be noted that in the original two stage formulation 
(2.4a&b) of Fay-Herriot, it does not follow that 
collapsing would still lead to separate estimates for each 
area because in the first stage itself, collapsing would 
reduce the dimension of the small area parameter vector 

yT .  Also dropping the areas with zero or small sample 
sizes instead of collapsing would violate the BLUP 
principle as the corresponding SAEs would consist of 
only the model-based component.  Moreover, we can’t 
have built-in benchmarks (see subsection 2.5) if some 
areas are dropped from modeling. 
 
Note that a suitable collapsing procedure would also 
make it legit to assume approximate normality of 
revised observation errors  from (2.3). With 
approximate normality, it would be possible to develop 
several model diagnostics as discussed in Subsection 
2.7.  Moreover, it will give rise to a stronger optimality 
of EBUP for SAEs and allow us to use a simplified 
estimate of MSE adjusted for estimation of variance 
components along the lines of Prasad and Rao (1990) 
and Datta et al. (1992).  It may also be noted that 
collapsing has the added benefit of stabilizing the error 
covariance structure. 

de

 
2.4 Specification of the Design-based Error 
Covariance Structure  
 
 Even after suitable collapsing, the estimated error 

covariance structure  may not be stable enough. 
Suppose the estimated covariance matrix  V

V̂
∗  based on 

the working assumption of simple random sampling or 
that of ignorability of the design is stable.  This can be 
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reasonably well ensured in practice by suitable 
collapsing such that each area or collapsed subgroup of 
areas has a minimum number of observations.  Instead 
of modeling both the elements of ˆ( )E V and the error 

covariance structure of , which may require 
stronger assumptions, it may be easier to just specify the 
mean function 

ˆ ( )V E V− ˆ

ˆ( )E V which may be known from a 
priori considerations.  This mean function can be used 

to smooth to make it stable and thus treat it as 
approximately known.  In fact, it is known that the 
estimated design effects (deffs) defined as the ratio of 
estimated true design-based variance and that under the 
working assumption tend to have common means over a 
subgroup of statistics.  Using this empirical observation, 

Singh et al. (2005) proposed a smoothed  by using a 
common mean model for estimated generalized deff (or 

g-deffs, defined as the eigenvalues 

V̂

V̂

ˆ 'd sλ  of , 
see Rao and Scott, 1981 ) over suitable subgroups. More 
specifically, let the Cholesky decomposition of V

1 ˆV V∗−

∗  be 
A A′  where A  is an upper triangular matrix. Now, 

observe that the g-deffs ˆ 'd sλ  are the eigenvalues of 
1 ˆ( ) ( ) 1A V A−′ −

P ′

 and letting  to be the 
corresponding eigenvectors, we have  

'dP s

 
ˆˆ ( )( ) ,d d dd

V A P A Pλ ′ ′ ′=∑
            (2.6) ( )( )d dd

V A P A∗ ′ ′=∑
The smoothed estimate V of  is then obtained by 

replacing 

V
ˆ 'd sλ  by averages  over suitable 

subgroups g.  Although the above method of smoothing 
is found to work well in limited simulation studies, it 
may be biased if the common mean model for estimated 
eigenvalues is not correct. Also there may be omitted 
random effects in the linear mixed model (2.3).  It 
would therefore be desirable to correct for such over- or 
under-dispersion. 

'g sλ

 
2.5 Benchmarking to reliable direct estimates   
 
Typically, benchmarked SAEs are obtained post-
modeling by using a regression or raking type 
adjustment to SAEs; see e.g., Fay and Herriot (1979), 
Battese, Harter, and Fuller (1988), Pfeffermann and 
Barnard (1991), and Rao and Choudhry (1995). With 
this kind of benchmarking (corresponding to parameter 
constraints on D small area parameters) defined 
independently of the q fixed parameters ' sβ  from the 
original model (2.3), there is an inherent incompatibility 
of the two specifications. Consequently, the resulting 
benchmarked estimates are no longer optimal.  The 
corresponding MSE is increased by an extra term, 

, bsae denoting the benchmarked SAE; 
the adjustment to the MSE being motivated from the 
asymptotic hierarchical Bayes equivalence to EBUP, 
see e.g., Datta et al. (1992).   Moreover, approximate 
normal  confidence intervals for areas with sufficient 
realized sample sizes remain applicable for regression-
type adjustments but not necessarily for raking-type 
adjustments due to nonlinearity although raking may be 
preferable to avoid negative estimates. As an 
alternative, it would be desirable to have built-in 
benchmarks in the model specification (2.3) to protect 
against possible model breakdowns.  It is interesting to 
note that since the benchmarks are random and based on 
the same data used for SAE modeling, the problem 
doesn’t conform to a Bayesian framework with 
parameter constraints. On the other hand, a frequentist 
solution may be feasible. 

2
, ,( sae bsae

y d y dt t− )

 
2.6 Computational Feasibility of SAEs   
 
Even for the simple linear mixed models for SAE, the 
computation of BUP requires inversion of the matrix W 
which may cause numerical instability or may not be 
computationally feasible for large number of domains 
(as in the case of large multi-dimensional domains 
defined by time, area and outcome variables) with an 
arbitrary covariance matrix V.   It would be desirable to 
have a recursive method of computing BUP which 
updates it as data corresponding to each domain is 
incorporated.  It is shown in the next section that the 
computationally efficient technique of Kalman Filtering 
(KF) can be adapted under certain conditions to the 
present problem after a suitable orthogonalizing 
transformation whether or not the data has a time 
dimension.  Numerical stability is achieved because 
each updating step involves only scalar operations of 
multiplication and division. 
 
2.7 Model Selection and Diagnostics  
 
Besides the usual stepwise procedures of covariate 
selection for linear models without random effects, it 
would be desirable to bring in mixed model features in 
selecting covariates for fixed effects. For model 
diagnostics, it is known that the usual residual 
diagnostics for regression models with fixed effects may 
suffer from masking effect due to correlations induced 
by estimation of common fixed parameters. Also effect 
of some extreme observations may not manifest itself in 
the plot of standardized residuals. In the presence of 
correlated random effects,  the correlations between 
BLUP residuals may not be negligible. In these 
situations, it is desirable to use an alternative set of 
residuals that are uncorrelated with each other.  It is also 
known that innovations from KF provide such a set of 
orthogonal residuals. In the next section, we consider 
how these can be used to provide a versatile set of 
model diagnostics. 
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2.8 Computational Feasibility of estimating Variance 
Components and MSE adjusted for them   
 
There may also be the problems of computational 
infeasibility as well as numerical instability with large 
multi-dimensional data over time, area, and outcome 
variables when estimating variance components by 
using REML and estimating MSE of SAEs adjusted for 
estimation of variance components; see Rao (2003, Ch 
6) for computational formulas.  It would be desirable as 
in the case of BUPs to use a recursive algorithm such as 
the one based on KF for this purpose. In the next 
section, we show this can indeed be done. 
 

3. Proposed Solutions for Incorporating Desired 
Features in the SAE Product 

 
3.1 Features of full accountability of design and 
simple interpretability of SAE under LAMP 
 
In view of the methodology requirements 2.1 and 2.2, it 
was decided to use the basic aggregate level model (2.3) 
and the associated EBLUP estimator sae

yt obtained under 
a semi-parametric framework.  Although there is no 
built-in parameter restrictions to avoid SAEs being 
outside the range (e.g., employment proportions must be 
between 0 and 1), the shrinkage estimator is generally 
known to work well even with discrete outcome 
variables except possibly for rare outcomes.  It would, 
however, be useful in future to generalize the proposed 
methodology to nonlinear models.  
 
3.2 Feature of Objective Collapsing Criterion 
 
For the requirement 2.3, we propose to use the objective 
criterion of minimizing the estimated variance ( 2

ησ ) of 
the model error in choosing between alternative areas 
for collapsing partners. This criterion is data-driven and 
is the proportionality constant in the signal to noise ratio  
( 2 2

dN Vησ d ) appearing as an argument in the leading 
term of the MSE expression of EBLUP.  We also 
propose to use collapsing if necessary to ensure 
approximate normality of the observation error. This 
will give rise to the stronger optimality property of 
EBUP for SAEs along with other benefits mentioned in 
the subsection 2.3.  
 
3.3  Feature of Over/Under dispersion 
 
For the requirement 2.4, we propose to introduce a 
scalar over-dispersion parameter ( 2

0σ ) as a 

multiplicative factor of the error covariance structure V  
as well as the random effects covariance .  Such a 
specification is known to work well in general to 
capture unaccounted clustering effects; see e.g., 
McCullagh and Nelder (1989, pp. 121-4).  Note that in 
the presence of the overdispersion parameter, the 

objective criterion for collapsing should be modified to 

Γ

2 2
0 ησ σ .  

 
3.4 Feature of Built-in Benchmarks 
 
For the requirement 2.5, we propose to enlarge the 
model (2.3) by adding fixed effects corresponding to 
suitably transformed indicator covariates for desired 
benchmark subgroups of areas. Here it is assumed that 
the total number of domains after collapsing, if any, is 
much larger than the total number of revised fixed 
effects (including those for benchmarks) in order to 
have sufficient degrees of freedom for consistent 
estimation of variance components.  To see how exact 
benchmarking works, it is observed that if the additional 
covariates  (where the dth element of 1  is 1 if 1bV b

bd U∈ , denotes the bth large area or subgroup of 

small areas for benchmarking, , B being the 
total number of benchmarks), are included in the model 
(2.3), then the benchmark condition is satisfied if  

bU
1,...,b = B

0

 

           
1

ˆ ˆ1 ( ( ) ( ) )
ˆ1 ( ( ) )

dir
b y

dir
b y

t T x T c

VW t T x

β η

β−

′ ′ ′− −

′ ′− =
           (3.1) 

 
using the result (2.5b). The above relation is indeed true 
in view of the estimating equation for β  given by 

1 ˆ( ) ( ( ) ) 0dir
yT x W t T x β− ′− =  and the fact that the 

new covariates  are elements of the q-vector  1
bd d UV ∈

,x dT  for each d.  It is interesting to note that the above 
result on benchmarking is similar to the one reported by 
Maiti (2006).  While the above result on exact 
benchmarking is appealing as it preserves the optimality 
of SAEs in a wider class, it requires introduction of 
additional covariates as a function of the covariance 
matrix V which may be deemed as an artifact rather 
than being legitimate predictors. As an alternative, it 
would be useful in future to investigate ways to modify 
the BLUP estimating functions themselves so that 
benchmark constraints are built-in.  
 
3.5 Feature of Recursive Computation via Multi-
dimensional Kalman Filtering 
 
For the requirement 2.6, we rank-order the domains in 
an ad hoc manner (e.g., in the order of decreasing 
effective domain sample size) so that the domain rank 
serves as a pseudo-time variable for the state-space 
modeling of state parameters ( , )dθ θ β η′ ′ ′= =  
consisting of all the fixed and random parameters and 
has dimension q D+ .  We can now define the state 
space framework as 
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Measurement Eqn :                  (3.2a) ,
dir
y d d d dt F eθ= +

Transition Equation : 1d dθ θ −=                  (3.2b) 

where the covariate matrix  is simply dF

, ,( , )x d c dT T′ ′ where  is the vector of zero counts 

except for the domain population  as the dth 
element.  Note that the state vector is defined to be time-
invariant implying that the transition error in (3.2b) is 
identically zero. Now two conditions are needed for 
using Kalman filtering : First, conditional independence 
of   measurement errors  given the state vector 

,c dT

dN

de dθ ; 
this can be satisfied by making an orthogonalizing 
transformation (such as the one based on Gram-
Schmidt) on the vector  to make the measurement 
error covariance matrix V diagonal. Second, Markovian 
dependence of the state vectors  

dir
yt

dθ  over d.  This is 
satisfied trivially as it is time-invariant.   
 
The process of KF is an alternative computationally 

efficient way of obtaining BUP (̂ )D Dθ  and the 

corresponding naive MSE ( )D DθΣ ; see Appendix II 

for details.  Unlike the usual KF, here we don’t need the 
smoothing steps after filtering because fixed-interval 
smoothing is built-in as the state vector is time-
invariant. To compute BUP, we need prediction and 
updating equations or equivalently prior and posterior 
distributions via innovations when the variance 
components ( 2 2

0 , ησ σ ) are assumed known. The initial 
proper prior is defined by sacrificing the first few 
observations, i.e., as many as the number q of fixed 
parameters ' sβ .  At , the prediction step 

corresponds to the prior of 

1d q= +

1qθ +  based on past q 
observations and  is given by  
 

( )1 1 ( 1 )
ˆ ,q q D q q q qq N θθ θ+ + + +⎡ ⎤ = Σ⎣ ⎦       (3.3a) 

while the innovation step provides the next independent 
piece of information in the new observation , 1y qt +  at 

, and is given by 1d q= +

 1 , 1 1 ( 1 )
ˆo o

q y q q q qt Fν + + + += − θ          (3.3b) 

where the superscript ‘o’ denotes that the 
orthogonalizing transformation has been applied, and 
finally, the updating step corresponds to the posterior of 

1qθ + , and is given by 

 (1 ( 1 1) ( 1 1)
ˆ1 ,q q D q q q qq N θθ θ+ + + + + +⎡ ⎤+ = Σ⎣ ⎦ )       (3.3c) 

The above steps of prediction, innovation, and updating 
are continued recursively until we reach d , and 
obtain  

D=

( )( ) ( )
ˆ ,D q D D D D DD N θθ θ+⎡ ⎤ = Σ⎣ ⎦  . 

 
If the linear mixed model is multivariate, we propose a 
two-dimensional KF for computing BUPs and MSE.  
The related reference of Fay (1987) and Datta et al. 
(1992, 1998) consider the usual BUP approach without 
filtering. Here it is assumed that  where J is 
the dimension of the multivariate outcome. For the two-
dim KF with the domain subscript , and 
the multivariate outcome subscript  , we 
first order all the data points lexicographically (say) as  

D q J+

1,...,d D=
1,...,j J=

 
(1,1) (1,2) ...(1, ) (2,1) ...( , )J D J→ → → → , and then 
apply an orthogonalizing transformation to make the 
DJ DJ×  matrix V diagonal.  The basic idea of the two-
dim KF entails two sets of transition equations, one over 
the outcome dimension given the area, and the other 
over areas given the outcome. Now sacrifice the first 
few observation vectors to get the prior 

( 1,1) ( , )q q Jθ +⎡ ⎤⎣ ⎦  at ( 1,1q )+ , and continue filtering 

until we get  

( )( , ) ( ) ( , ) ( , ) ( , , )
ˆ( , ) ,D J q D J D J D J D J D JD J N θθ θ+⎡ ⎤ = Σ⎣ ⎦

              (3.4) 
If we need to combine longitudinal and cross-sectional 
data for multivariate SAE, then we can as before order 
the data  

( , , , ) , 1,..., ; 1,..., ; 1,...,y r d jt r R d D j J= = =  over 
three dimensions suitably, and then use a three-dim KF.  
Here one of the dimensions is in fact time, and so we 
will first use that to order data over occasions 

1,...,r R=  , and then within each r, we can order (d ,j) 
as before.   
 
3.6 Features of Variance Component-based 
Covariate Selection and Innovation Diagnostics 
 
For model selection requirement 2.7, we divide the 
covariates into groups such as one-factor effects and 
two-factor effects in a hierarchical manner. The model 
is then enlarged by adding groups in a stepwise manner 
using the likelihood ratio test. Now before adding the 
next group, factors within a group are ranked based on 
the significance probability under a backward procedure 
for dropping factors. Next at each step of inclusion of 
the most significant factor, the decision is based on 
whether there is appreciable decrease in the estimated 
variance component.  Thus the mixed model feature is 
brought into the covariate selection. 
 
For the model diagnostics requirement, we propose to 
use innovations : 1,...d d q Dν = +  of (3.3b) suitably 
standardized for several diagnostics (see e.g., Harvey, 
1989, Ch 5, p. 236) such as chi-square test for 
over/under dispersion, random pattern in the 
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standardized innovation plots over areas for different 
orderings of areas, Q-Q plot for normality, Ch-square 
tests for goodness of fit and for model adequacy, and 
CUSUM test for any systematic over/under prediction 
as well as for any structural change. For measuring 
impact of outlier observations, case deletion-type 
diagnostics could be performed. For this purpose, first 
randomly assign observations deemed to be outliers 
toward the end of ordering and then check the 
innovation plot to see if they continue to be outliers. 
Also check coefficient sensitivity (for fixed regression 
coefficients and variance components) by using partial 
data (or innovations) when observations deemed as 
outliers are placed at the end of ordering.  Finally, 
prediction or post-sample diagnostics, somewhat similar 
to cross-validation, can be performed. For this purpose, 
we can take 100 or so random reorderings of domains or 
observations and compute (one-step ahead) prediction 
errors    
 

, , ,( 1) ( 1)
ˆ ˆ( ), 1,...,y d x d c dd d d dt T T d qβ η− −

′ ′− + = + D  

                          (3.5) 
and then plot the average absolute relative prediction 
errors against sample sizes used for prediction to check 
for a decreasing trend. 
 
3.7 Features of KF recursions for estimating 
variance components and MSE of SAEs 
 
For the requirement 2.8, we first show how REML can 
be computed using innovations. Here for the sake of 
simplicity, we will assume that the overdispersion 
parameter 2

0σ  is known.  The proposed method is 
similar to the one used by Sallas and Harville (1988).  
First we sacrifice the first q observations to get a proper 
initial prior and then define the normal log-likelihood of 
(D-q) innovations 
as

2
2
( )21 1

( )

1log log
2

.

D Dd
dd q d q

d

L

const

ν
ν

ν σ
σ= + = +

⎡
= − +⎢

⎢⎣
+

∑ ∑
⎤
⎥
⎥⎦

               (3.6) 
where  is the variance of 2

( )dνσ dν .  Now REML is 

simply the MLE of 2
ησ  based on the above likelihood 

obtained by Newton-Raphson iterations.  The gradient 
and Hessian at each iteration can be obtained 
recursively using the standard KF theory. Note that a 
suitable approximation to the Hessian can be obtained 
from only first derivatives of innovations and their 
variances.   
  
Finally, we propose to compute estimated MSE of SAEs 
adjusted for variance component estimation using KF.  
This is an area of considerable activity; important 
related references in the non-KF context are Kackar and 

Harville (1984), Prasad and Rao (1990), Datta et al. 
(1992), Singh, Stukel, and Pfeffermann (1998), Datta 
and Lahiri (2000), while in the KF context is 
Quenneville and Singh (2001). It can be shown that 
under regularity conditions of Datta and Lahiri (2000), 

the second order adjusted MSE of (̂ )
sae bup
y D Dt Fθ=  is 

given by   

( )

1 2
( ) ( )2 2

( )

ˆ ˆ ( )

sae
y D D

D D D D

MSE t F F

F F

θ

I η
η η

θ θ σ
σ σ

−

′Σ +

⎡ ⎤′⎛ ⎞⎛ ⎞∂ ∂⎢ ⎥′⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥∂ ∂⎝ ⎠⎝ ⎠⎢ ⎥⎣ ⎦

          (3.7) 

where F is the D x(q+D) matrix ( ( . ), ( ))T x T c
 
The required derivatives can be easily computed using 
KF recursions. The inverse of the information matrix is 
already available from the Newton-Raphson iterations 
for REML.  For estimating MSE, the estimate of the 
variance component is plugged in as well as the second 
term in (3.7) is multiplied  by a factor of 2 to account 
for downward bias analogous to the original result of 
Prasad and Rao (1990). 
 
4. Statistics Canada’s SAE Product BUPF : A Brief 

Description 
 
The SAE product (termed BUPF to signify best 
unbiased prediction via filtering) of Statistics Canada is 
designed to meet a number of user requirements.  A 
pilot test of an initial version was successfully 
conducted for producing employment estimates at the 
three digit occupation code for LFS.  The SAE product 
consists of twelve linked modules which can be run 
interactively.  In the following, these modules are 
described briefly in terms of the LFS application 
mentioned above. 
 
Module 1 (Data Specification)   In this module, the 
user is asked to define SAE parameters such as annual 
averages of monthly total employed by 3-digit 
occupation codes by province, target variables such as 
employment status, and target domains such as 3-digit 
occupation codes by province; the target domain may be 
multi-dimensional, e.g., the two dimensions of 
occupation and province in this case.  Next the user is 
asked to define direct data sources such as the cross-
sectional 2003 LFS data for province of Newfoundland 
and Labrador, and indirect data source for each direct 
estimate such as again the cross-sectional 2003 LFS 
data for provinces other than the target province of 
Newfoundland and Labrador, or LFS data from past 
years for the same target province. Next information 
about auxiliary sources is needed such as demographic 
counts at province or subprovincial level, taxfiler counts 
by gender, and employment insurance beneficiaries data 
by gender and occupation. Finally, small area modeling 
domains (may be different from target domains) are 
specified such as province or subprovince; note that the 
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number of modeling domains should be sufficiently 
large for adequate modeling purposes. Also, modeling 
variables are specified such as the outcome of total 
employed by occupation codes and covariates such as 
the demographic counts, taxfiler counts, and EI 
beneficiary counts, all at the modeling domain level. 
 
Module 2 (Task Specification) Here the user is asked 
to choose outcome variables for a given modeling 
problem such as employment for the code H52-Printing 
Operators and commercial divers, auxiliary variables 
among possible ones such as the taxfiler counts by ER, 
and specify the two variance-covariance matrices for the 
error covariance structure in the direct estimates, one 
under the actual design, and the other under the working 
design of simple random sampling. 
 
Module 3( Benchmark Constraints) Here the user is 
asked to choose subgroups of modeling domains such as 
the overall national subgroup whose direct estimates are 
desired to be equal to the sum of the SAEs of the 
domains in the subgroup. The sample size in the 
subgroup should be large enough for the direct estimate 
to be precise. 
 
Module 4 ( Domain Collapsing)  Here the user is 
asked, based on subject matter considerations, how to 
choose collapsing partners for domains with very small 
or no sample size or with zero estimates due rareness of 
the outcome of interest.  Technically speaking, the 
partners should be chosen with similar domain-specific 
random effects. In practice, however, areas with similar 
economic activity and geographic proximity might serve 
as good candidates for collapsing partners. The 
objective criterion of minimizing the estimated variance 
of the model error is used to choose between potential 
collapsing partners. 
 
Module 5 (Variance Smoothing)  This module 
computes estimated true design-based error covariance 
structure and working design-based covariance for 
direct estimates corresponding to collapsed domains. 
Then suitable eigen-values and eigenvectors are 
computed for variance smoothing. 
 
Module 6 (Model Selection) Here the model with an 
initial set of covariates is enlarged to account for 
benchmarks.  Scatter plots are used to select the initial 
set of covariates. Then likelihood ratio tests combined 
with variance component estimates are used to choose 
between covariates. 
 
Module 7 (Variance Components) In this module, 
innovations from Module 8 are used to define the 
likelihood ratio and then REML (restricted maximum 
likelihood) estimates of variance components are 
computed.  This module is rerun if the model is revised 
under Module 6. 
 

Module 8 (Innovation Sequence)  Given the selected 
model from Module 6, and given variance components 
from Module 7 and with a flat prior on fixed 
parameters, this module computes innovation in 
sequence and corresponding variances.  The Kalman 
filter is used after the linear mixed model is cast into a 
state-space framework. 
 
Module 9 (Model Diagnostics) Here, for a given 
ordering of domains such as that given by decreasing 
order of realized domain sample sizes,  standardized 
innovations are plotted to check for trends and potential 
outliers. Also CUSUM (cumulative sum) of 
standardized innovations are used to test for any 
structural changes. 
 
Module 10 (SAE) This uses a two-step approach. First, 
filtering (from Module 8) is used to compute 
innovations for estimating variance components and, 
second, state parameters consisting of fixed and random 
effects are estimated.  SAEs are then computed as BUPs 
(best unbiased predictors) via filtering, hence the name 
BUPF for the SAE system. 
 
Module 11 (Evaluation of SAEs) Here, SAEs are 
checked for how well they satisfy the benchmarks as 
well as internal and external validation (whenever 
possible based on local area knowledge) of SAEs are 
performed. For internal validation, large areas are 
randomly split to create pseudo small areas and their 
SAEs are checked against large area direct estimates. 
Also effect of potential outliers identified from 
innovation plots is analyzed by comparing SAEs with 
and without outliers. 
 
Module 12 (Overall Summary) This consists of point 
estimates (direct, indirect and SAE), their SE adjusted 
for the downward bias due to estimated variance 
components, and plots before and after modeling.  
Diagnostic measures such as CUSUM tests and 2R -
type goodness-of-fit measures are provided with 
cautionary remarks if any. Also if necessary, results for 
both with and without outliers are presented. 
 
After each module is run, user is asked to review the 
choices and results and confirm to proceed to the next 
module.  The modular nature of the BUPF system 
allows for all modules to be interconnected and any 
module can be rerun at any stage of model building. 
 

5. Summary and Future Work 
 
In this paper, a methodology based on best unbiased 
prediction via filtering for SAE under linear mixed 
models at the area level was proposed for computational 
and statistical efficiencies with several desirable 
features such as benchmarking for robustification to 
model breakdowns, face validity, and avoiding 
overshrinkage, collapsing to produce SAEs for areas 
with few or zero observations, filtering for versatile 
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diagnostics, and multivariate modeling for internal 
consistency and improved efficiency. It is based on a 
suitable generalization of Kalman Filter to two and 
higher dimensions when the data is not necessarily a 
time series.  The alpha version of the BUPF product is 
planned to be completed in Fall ’06 while a more 
efficient beta version in Spring ’07.  Next year, 
applications of the BUPF product are being planned for 
production of  SAEs  for the Labour Force Survey and 
the Canadian Community  Health Survey . 
 
In future, it would be useful to develop a generalization 
of BUPF to the case of nonlinear models so that suitable 
range restrictions on SAE parameters could be built-in; 
see Singh and Verret (2006b) for some preliminary 
results.  It would also be useful to investigate ways to 
modify estimating functions for BLUP so that 
benchmark constraints are automatically satisfied 
without enlarging the model. 
   
Acknowledgments : The author is grateful to late Dr. 
M.P. Singh, Jack Gambino, Don Royce, Jean-Louis 
Tambay and Jon Rao for their crucial support and 
encouragement at the initial stages of this research 
endeavor.  Thanks are also due to Francois Verret and 
Claude Nadeau of Statistics Canada for several useful 
discussions. This research was partially supported by 
Statistics Canada’s Methodology Block Fund, Labour 
Statistics Division, FLMM-LMI working Group, and a 
grant from NSERC of Canada held at Carleton 
University under an adjunct research professorship. 
 

Appendix I 
 

Separate Estimates of Random Effects for Small 
Areas in the Collapsed Subgroup 

 
Collapsing can be viewed as subdividing the target 
population into a smaller number of domains  such that 
sample sizes for the revised domains are sufficiently 
large for smoothing variance of revised direct estimates 
as well as their approximate normality for effective 
model diagnostics.  Suppose collapsing is done based on 
prior considerations, and thus is not data-driven.  This is 
often reasonable in practice for repeated surveys 
because past data are available.  Then despite having 
domains with few or no observations, the direct estimate 
of the collapsed domain would be approximately 
unbiased and normal under general conditions.  Now, 
the small area modeling with collapsed domains does 
preserve the identities of area-specific random effects. 
Therefore, separate BLUP estimates can be obtained 
(assuming for simplicity that the covariance V is 
diagonal) by simply apportioning the observed residual 

, ,
ˆdir

y d x dt T β−  (where denotes the collapsed domains 

consisting of small area modeling domains 

d
&d d ′ , 

say,) to random effects &d d d dN Nη η′ ′  relative  to 

their contributions to the variance similar to the usual 
formula (2.5b). 
 
More specifically, suppose the total variance (i.e., 
including both model and the observation error) for the 
direct estimate about the model mean ,

dir
y dt ,x dT β  is 

2 2 2( )d d dN N Vησ′+ + , then the BLUP estimates of 

&d d d dN Nη η′ ′ based on the reduced model after 
collapsing are obtained as 
 

2 2 2 2 2 1
, ,

ˆˆ [( ) ] ( )dir
d d d d d d y d x dN N N N V t Tη ηη σ σ −

′ ′= + + − β     (A.1) 
2 2 2 2 2 1

, ,
ˆˆ [( ) ] ( )dir

d d d d d d y d x dN N N N V t Tη ηη σ σ −
′ ′ ′ ′ ′= + + − β

0

   (A.2) 
It should be noted that the above estimates are optimal 
only in the reduced class, and would be suboptimal had 
there been no collapsing. 
 

Appendix II 
 

BLUP via KF 
 
Using the formulation of extended least squares, the 
BLUP equations can alternatively be expressed as  
 
 1( )X y X θ−

∗ ∗ ∗ ∗′Σ − =             (A.3) 

where the 2D-vector , the (q+D)-vector ( ,0)dir
yy t∗ ′= ′

( , )θ β η′ ′ ′= while the 2D x (q+D) matrix X∗  and the 

2D x 2D matrix ∗Σ  are given by 
 

( ) ( )T x T c
X

O I∗

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

,             (A.4) 
V O
O η

∗

⎛ ⎞
Σ = ⎜ Γ⎝ ⎠

⎟

)

 

It follows that the BLUP  and the corresponding 

(naïve) are given by 

ˆBLUPθ
ˆ( BLUPMSE θ

 

 ( ) 11ˆBLUP 1X X X yθ
−− −

∗ ∗ ∗ ∗ ∗ ∗′ ′= Σ Σ         (A.5a) 

 ( ) 11ˆ( )BLUPMSE X Xθ
−−

∗ ∗ ∗′= Σ          (A.5b) 

Now the SAEs are given by ˆsae BLUP
yt Fθ=  where F is 

defined in (3.7) ,and the corresponding MSE can be 
obtained as 

( )
( )

11

11 1 1( ) ( ) ( ) ( ) ( )

F X X F

V VW V VW T x T x W T x T x W V

−−
∗ ∗ ∗

−− − −

′ ′Σ =

′ ′− + 1−

               (A.6) 
To obtain the above BLUP and its MSE via KF, first use 
an orthogonal transformation on the vector to obtain 

 such that the covariance matrix becomes 

dir
yt

o
yt oV
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diagonal which in turn makes diagonal.  In the 
formulation of extended least squares, the observation 
vector now becomes , the covariate matrix 

oW

oy∗
oX ∗ , and 

the covariance matrix o
∗Σ .  Clearly, after the 

transformation, the BLUP estimator of θ  and its MSE 
don’t change.  Now to start the KF, rank order the 
domains such that the initial (q+D) x (q+D) covariate 
matrix for the first q observations is non-singular, and 
then for the initial distribution of θ , we have 
 

( )1 1

1

1

[ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ]

ˆ o o o o o o
q q q q q qq q

o o
q q

X X X y

X y

θ
− −

−

−

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗

′ ′= Σ Σ

=
         (A.7a) 

( )1 1

[ ] [ ] [ ]( )

1 1
[ ] [ ] [ ]( ) ( )

o o o
q q qq q

o o o
q q q

X X

X X

θ

− −

∗ ∗ ∗

− −
∗ ∗ ∗

′Σ = Σ

′= Σ
         (A.7b) 

where the subscript [q] simply denotes that only the 
first q observations are incorporated.  Next, at d=q+1, 
we define  

[ ] [ ]
[ 1] [ 1]

, 1 1

,
o o

q qo o
q qo o

y q q

y X
y X

t F
∗ ∗

∗ + ∗ +

+ +

⎛ ⎞ ⎛
⎜ ⎟ ⎜= =
⎜ ⎟ ⎜
⎝ ⎠ ⎝

⎞
⎟
⎟
⎠

⎟⎟

              (A.8a) 

[ , ]
[ 1, 1]

( 1, 1)

o
q qo

q q o
q q

O
O w
∗

∗ + +
+ +

⎛ ⎞Σ
Σ = ⎜⎜

⎝ ⎠
                      (A.8b) 

where is the (q+1)st diagonal element of 

.  Now the BLUP and its MSE using the first 
(q+1) observations are, after some algebra, given by 
(here the diagonal structure of the total covariance 
matrix is crucial), 

( 1, 1)
o
q qw + +

( 1, 1)
o
q qW + +

oW
 

( )1

1

1

[ 1] [ 1] [ 1] [ 1] [ 1] [ 1]( 1 1)

2
1 ( 1) 1( ) ( )

ˆ

ˆ

o o o o o o
q q q q q qq q

o
q q qq q q q

X X X y

F νθ

θ

θ σ ν

−

−

−

∗ + ∗ + ∗ + ∗ + ∗ + ∗ ++ +

+ + +

′ ′= Σ Σ

′= + Σ

1−

             (A.9a) 

( )1

1

1

[ 1] [ 1] [ 1]( 1 1)

2
1 ( 1) 1( ) ( ) ( )

o o o
q q qq q

o o
q q qq q q q q q

X X

F F

θ

νθ θ θσ

−

−

−

∗ + ∗ + ∗ ++ +

+ + +

′Σ = Σ

′= Σ −Σ Σ
  

             (A.9b) 
where 1qν + is defined by (3.3b), and its variance by 

12
( 1) ( 1, 1) 1 1( )

o o o
q q q q q qw Fν θσ

−

+ + + + ′= + Σ o
qF + .                (A.10) 

 

The above recursions are continued to obtain as ˆBLUPθ

(̂ )D Dθ  and its MSE as ( )D DθΣ . The algebra behind 

(A.9a &b) is briefly outlined below. 
 

( )
( )

1

1 1

( 1 1)

1
1

1 ( 1, 1) 1( )

[ ] [ ] [ ] 1 ( 1, 1) , 1

ˆ
q q

o o o
q q q qq q

o o o o o o
q q q q q q y q

F w F

X y F w t

θ

θ
−

− −

+ +

−
−

+ + + +

∗ ∗ ∗ + + + +

=

′Σ + ×

′ ′Σ +

     (A.11) 

 
The matrix inverse in the first term on the R.H.S of 
(A.11) can be expressed using the inverse partitioned 
matrix formula as ( 1 1)q qθ + +Σ  (this is how (A.9b) can be 
obtained), and so we can simplify (A.11) as 

1

1

( )

2
1 ( 1)( )

2 0
( 1) 1 1 ( 1, 1) . 1 1( ) ( )

ˆ

ˆ{( ) }

q q

o
q qq q

o o o o
q q q q q y q qq q q q

F

F F w t F

νθ

ν θ

θ

σ

σ θ

−

−

+ +

+ + + + + + +

+

′Σ ×

′− Σ −
             (A.12) 
which reduces to (A.9a) as desired. 
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