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1. Introduction 
 
In many business settings, the cost of reviewing a 
sample is extremely high, giving rise to the need for 
accurate estimates with narrow confidence intervals 
(CIs) using small samples.  When there is a strongly 
related auxiliary variable, model-based estimation with 
deep stratification is a potential solution.   
 
Generally, deep stratification reduces the sampling 
error and produces conservative confidence intervals.  
Through computer simulations, we explored whether 
there are situations when the confidence interval 
coverage is too conservative or not as robust as 
believed and found examples of both.  We studied the 
effect of the population distribution, model fit, and 
degrees of freedom on confidence interval coverage. 
 

2. Background 
 
Corporations, such as chain stores and other businesses, 
may own or rent multiple buildings across the country.  
The fixed assets at each site (such as carpets, parking 
lots, light fixtures, and sign posts) are assigned to 
depreciation categories for tax purposes.   For example, 
the pavement in a parking lot takes over 30 years to 
completely depreciate while carpet depreciates in just 5 
years.   There are several depreciation categories, such 
as 5 years, 7 years, 15 years and 39 years. Builders 
commonly assign all assets to long life categories.    It 
is beneficial to the company, where appropriate, to 
reassign fixed assets to shorter depreciation categories. 
 
Classification of assets into these categories is a costly 
process requiring engineers or architects to review 
blue- prints and visit the properties as well as lawyers 
or accountants to interpret tax laws and opinions.  Ernst 
& Young, LLP took the lead among the large 
accounting firms to apply a statistical random sampling 
approach. 
 
For cost-effectiveness, feasibility, and time constraints, 
samples need to be as small as possible.  Yet for IRS 
acceptability and sound statistical practice, good 
precision and narrow confidence intervals are desired.   

 
 
 
Design-based sampling and estimation usually will not 
achieve enough precision in the sample size ranges that 
are feasible, but model-based sampling and estimation 
will.  
 
The variable, total assets, usually proves to be a strong 
covariate and models based on assets generally have a 
small Mean Square Error (MSE) allowing much better 
precision than design-based approaches.  We use the 
sampling approach of deep stratification to obtain 
representative samples and reduce variability. 
 

3. Research Questions 
 
With these very small samples, we questioned whether 
the model-based confidence intervals are properly 
formed.  Specifically our questions were in three areas. 
 
1) Our deep stratification methodology eliminates 
highly skewed samples.  Therefore, we would expect 
our confidence intervals would be less likely to fail to 
contain the true values. However, could it be that the 
confidence intervals we create are too wide and much 
more conservative than necessary? 
 
2) Small samples should and do have wider confidence 
intervals due to their smaller degrees of freedom and 
larger t-values.  Are these confidence intervals wide 
enough – especially in the presence of greater 
variability?  That is, will larger variability be properly 
reflected in a sufficient widening of the confidence 
interval or could there be instances of poor coverage in 
the presence of greater variability?  
 
3) Typically after plotting the sample findings, we 
determine the type of model to build; making decisions 
regarding homo or hetero scedasticity, deciding 
whether to incorporate an intercept term, and assessing 
the need to compensate for curvature via a data 
transformation. Yet we make this determination on very 
few data points.  What if we missed/ignored the 
underlying relationship and there are design flaws in 
the model?  Would this be captured by the resulting 
confidence interval or could a modest design flaw 
cause poor coverage? 
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4. Deep Stratification 

 
Deep-stratification is a random sample selection 
method that allows a small representative sample to be 
drawn.1 Our design variable, X, is our covariate or 
independent variable, which typically is the total assets 
at a specific site.  The estimation variable, or dependent 
variable, is the total assets belonging to a specific 
depreciation category.   
 
The population is sorted by X and divided into equal 
sized strata according to counts.  Equally sized random 
draws are made within each of these small strata.  An 
illustration of the stratum cuts is shown in Figure 1. 
Note, of course, that the Y values are not actually 
known at the time of selection except in this simulation.  
 
Figure 1.  Deep Stratification Example 

 
The resulting selections all have an equal probability of 
selection, meeting the definition of a simple random 
sample.  However, unlike ordinary simple random 
samples, deep stratification samples cannot by chance 
have all high values or all low values in the sample.  
Therefore,   deep stratification eliminates many of the 
possible simple random samples that are 
unrepresentative due to a disproportionate number of 
high and low values.  
 

5. Research Method 
 
We performed numerous computer simulations in SAS 
to explore confidence interval coverage in different 
settings.  We generated several population data sets 
creating both an X and Y value for the entire 
population.  Therefore, unlike reality, actual population 
Y values were known in these simulations and could be 
used in the measure of interval coverage.   
 

                                                 
1Mary Batcher & Yan Liu (2003), Ratio Estimation of small 
samples using deep stratification, Proceedings of the 2003 
Joint Statistical Meetings, Survey Methodology Section: 
American Statistical Association, Alexandria VA 

We then drew multiple random samples from the same 
population using deep stratification.  From each 
sample, we estimated Y, a total dollar figure, with 
model-based ratio techniques2, created a confidence 
interval for the estimated value, and determined 
whether the actual value of Y was within the 
confidence interval.  Confidence interval coverage was 
evaluated by the percent of confidence intervals 
containing the true value compared to the ascribed 
confidence level. 
 
Because financial data is highly skewed, we used a 
gamma distribution to create X.  Also, in our real world 
settings, there is a strong relationship between X and Y; 
usually R2 is over 90%.  Therefore, we created strong 
relations in our simulated population data, yet also 
considered some scenarios with larger variances.   
 
With, the exception of when we were evaluating 
curvature or scedasticity assumptions, Y by design was 
created according to a linear relation to X with some 
random normally distributed heteroscedastic noise with 
a mean of zero and variance equal to a constant MSE 
times X. We tested a small, medium, and large value 
for the constant MSE. 
 
In addition, to mimic our setting, Y was restricted to 
range between zero and X. By choosing appropriate 
slopes and using a portion of data that was distant from 
the origin, these restrictions were infrequently applied 
in most scenarios, so we initially believed our analysis 
would not be confounded by the occasional truncation 
of Y in most settings.  We reconsidered the possibility 
of this confounding factor when we analyzed our 
results. 
 
We created populations of size of 36, 180 and 720 
records.  We began with extremely tiny samples of just 
9 and 18 records.  Larger sample sizes may be tested in 
subsequent papers.   
 
We drew ten thousand random samples for each 
scenario (where a scenario is a combination of 
population size, sample size, variance level, and 
relation of Y to X).  For all ten thousand samples in 
each scenario we estimated Y using a heteroscedastic 
model:  

     εβ += XY  
 

under the assumptions:  
 
                                                 
2 Lohr S. (1999) Sampling: Design and Analysis, Duxbury 
Press: Pacific Grove, CA, pages 81-83 
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according to the standard formulas in Lohr .3 
 
Finally, we calculated 80%, 90%, 95% and 99% 
confidence intervals and for each level we determined 
the actual coverage for the 10,000 samples drawn under 
each scenario. 
 

6. Simulation Results 
 
There is insufficient space available to present all of 
our findings, so we will share some of the more 
interesting and puzzling results in this paper.  
 
Variance effect 
 
First, we studied the effect of increasing variance.  
Figure 2 shows three sets of populations of size 180.  
The other size populations are similar, just differing 
numbers of records.  The X values are the same in each 
scenario and the variance was set to be heteroscedastic.  
 
The relation between X and Y is the same with the 
exception that the MSE was increased in each scenario 
causing an increase in data dispersion.  The three levels 
of MSE were 400, 4,900, and 16,000 respectively for 
the small, medium and large variance scenarios.   
 
In practice we are most likely to encounter the small 
variance scenario.  The medium variance is more than 
we normally see and the large variance scenario was 
studied to have an extreme case scenario.   
  
These plots illustrate our first finding. We created our 
simulated population Y values with a heteroscedastic 
relation to X and therefore, expected to see the classic 
fan or funnel shape of heteroscedastic data.  However, 
there is only slight evidence of this pattern in the last 
plot with the largest variance.  
 
We determined this was due to the gamma distribution 
used to generate X.  By design, as in our financial 
records, there are few instances of very large values of 
X, allowing fewer opportunities to observe the widely 
varying values in the tail of the distribution. When we 
applied the same formula for creating Y to a 
rectangular distribution of X, we observed the classic 

                                                 
3 Lohr S. (1999) Sampling: Design and Analysis, Duxbury 
Press: Pacific Grove, CA, pages 81-83 

fan shape expected of heteroscedastic data, even for the 
smallest variance.  
 
Figure 2.  Increasing Variance Simulations 
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 Each variance scenario was tested with two samples 
sizes of 9 and 18 records respectively out of 
populations of 36, 180, and 720 records.  The results 
are presented in Figure 3. 
 
Because the CI coverage demonstrated the same pattern 
for all confidence levels, we only present the 90% CI 
results in this paper. 
 
The y-axis shows the coverage with the reference line 
set at 90% where the coverage should be, as ascribed. 
The x-axis is the population size.  The first plot in each 
row is for a sample size of 9.  The second is a sample 
size of 18.  The plots are ordered according to 
increasing variance.  
 
The small variance scenario is what we expected.  The 
coverage was very near or slightly above 90%.   
However, we did not attribute the slight increase to 
deep stratification because the pattern did not hold 
consistently.   
 
In the medium variance scenario the confidence 
interval coverage is even higher, near 95%, for the 
small population.  Better coverage was an unexpected 
result of increasing the variance.   This small 
population does have the largest sampling fraction, but 
it did not consistently have better coverage than other 
populations.  
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Figure 3.  Increasing Variance Results 
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In the large variance scenario, all coverage is below 
90% in every scenario, with the smallest population 
showing the worst coverage.  This puzzling finding 
caused us to revisit whether the truncation of Y could 
have caused these results.  We did have more difficulty 
limiting the frequency of truncation, with the extremely 
large MSE.   
 
Truncating Y could have caused less extreme values in 
the population than assumed by the model and 
therefore less extreme values available to sample 
resulting in narrower confidence intervals and hence 
poorer coverage.  Although the instances of truncation 
were infrequent, we cannot dismiss their potential 
effect in light of these findings.   This will be a subject 
of study in our next paper. 
 
Still, we have demonstrated that while the larger 
variance did create wider confidence intervals, the 
resulting intervals were not wide enough. If this were a 
result of the truncations on Y, so that our model 
assumptions were not truly met, we need to consider 
that our real-life settings have the same practical 
limitations on Y and may not exactly fit the model 
assumptions either.  Fortunately, however, we have 
much stronger relations between X and Y than was 
tested in the large variance scenario.  
This was intended to be the series of scenarios where 
the model assumptions were met, yet we may have 
inadvertently introduced a truncation issue violating the 
assumptions.  The next series of tests were on scenarios 
where the model assumptions were deliberately 
violated. 
 

Scedasticity Assumption Effect 
 
Next we tested the variance assumption effect if we 
estimated using a heteroscedastic model when the 
underlying data were actually homoscedastic. 
 
Note that the homoscedastic data in Figure 4 looks 
quite similar to the heteroscedastic data in Figure 2 for 
the small and medium variances, leaving us to wonder 
whether we should ever trust a visual inspection to 
determine the variance assumption from a small 
sample.  Note also that in this series, we allowed visibly 
severe truncation of Y in the largest variance setting. 
 
Figure 4.  Homoscedastic Simulations 
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The resulting confidence interval coverage is similar to 
the findings above with a few exceptions.  We found 
slight undercoverage with a sample of 9 from a 
population of 36 with the small variance and severe 
undercoverage (70%) from a sample of 18 in a 
population of 36 with the large variance.  See Figure 5. 
 
The sample of 18 records from a population of 36 is an 
interesting result. It is counter intuitive that increasing 
the sample size from 9 to 18, which is half of the 
population, would worsen the coverage.  In addition, 
the increase in variance between the small and medium 
scenarios increased coverage, while a further increase 
caused the coverage to plummet. 
 
One would expect that as the sample size increases, the 
confidence intervals would narrow, yet the coverage 
should stay the same.  In addition, we would expect 
that 
as variance increases, the confidence intervals would 
widen, while the coverage still remained the same.  
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Figure 5.  Homoscedastic Results 
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Yet, in our simulations with the large variance, we 
found the confidence intervals narrowed too much 
when increasing the sample from 9 to 18.  In addition, 
with the larger sample size of 18, the confidence 
intervals widened too much with the medium variance 
and not enough with the large variance. 
 
However, it should be noted that now our truncation 
and scedasticty effects are clearly confounded here.   
We varied both from the previous set of scenarios.  In 
addition, as seen in the large variance plot of Figure 4, 
the dispersion of Y about smaller values of X appears 
smaller than larger values due to the truncation.   
 
Therefore, ironically the effect of truncation may have 
been to create heteroscedastic data after all.  We need 
to perform more testing un-confounding with 
truncation, variance and scedasticity pattern 
unconfounded.   Again, fortunately in modeling 
depreciation, we do not encounter such extreme 
distributions with the pattern of the large variance 
shown in Figure 4. 
 
Intercept Effect 
 
At first it may seem that it makes no business sense to 
include an intercept in our models because if there are 
zero assets, there cannot be a positive number assigned 
to a depreciation category.  On the surface it may seem 
that a negative intercept could also produce nonsense 
because the regression line would cross the x-axis,  
placing a negative amount of Y into a depreciation 
category.  This would result in total nonsense in our tax 
setting.  

 
However, in statistical practice, the inclusion of an 
intercept will improve the model and an intercept often 
is included in the model regardless of its interpretation, 
especially when the data are far from the origin, as is 
often our case.  Furthermore, the intercept can have a 
reasonable business interpretation as well.  Often a 
property must be a sufficient size before finding any 
significant shorter term assets.  Thus, rather than 
crossing into negative values of Y, the regression line 
could stop at the x-axis.  
 
Unless guided by a pattern in the residuals, we typically 
do not include an intercept in our models.  In this next 
set of scenarios we test the effect of failing to include 
an intercept term when the underlying data actually has 
one. The tested distribution is illustrated in Figure 6. 
 
Figure 6.  Intercept Simulation  
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We found that when we neglected the intercept, there 
were large residuals resulting in inappropriately wide 
confidence intervals.  So wide for the small variance 
scenario, that coverage was near 100%. See Figure 7. 
Again coverage was reduced as the variance was 
increased, and again we are uncertain how much the 
truncation of Y may have confounded our results.   
 
We concluded that even if we fail to recognize the need 
for an intercept in practice, our confidence intervals 
would probably be conservatively overstated because 
our real-life scenarios typically have smaller variances.  
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Figure 7.  Intercept Results 
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Curvature 

Finally we present the preliminary results of our 
curvature analyses. In this set of simulations, we 
explored the effect of neglecting to transform the data 
when there is some curvature present.  That is, we 
created populations where Y is related to a power of X, 
Y=BXk +e.  See Figure 8. 
 
Figure 8.  Curvature Simulations 

Design Variable (X)

Es
tim

at
io

n 
V

ar
ia

bl
e 

(Y
)

Power = 1.02

Power = 1.05

Power = 1.1

 
In our simulation, even a slight power caused large 
residuals resulting in wide confidence intervals which 
in turn caused over coverage.   

Figure 9.   Curvature Results 
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7. Conclusions and Next Steps 
 
We have not yet addressed in our testing whether our 
deep stratification is causing confidence intervals to be 
too conservatively wide.  To properly analyze this issue 
we need to un-confound the truncation of Y and the 
other issues tested as well as run similar scenarios both 
with simple random samples and deep stratification in 
order to ascertain whether any observed over coverage 
is attributable to the sample selection methodology.  
Due to time constraints, this analysis will be deferred to 
a subsequent paper.   
 
We found instances of both over- and undercoverage 
when the relationship between X and Y fails to comply 
with our model and assumptions. The possible 
confounding of the truncation of Y was primarily an 
issue with the large variance scenarios.  There was little 
if any truncation with the small variance scenarios and 
little truncation occurrence with the medium variance 
scenarios. Therefore, we comment only on these at this 
time.  
 
For the small and medium variances we found that 
failing to include an intercept results in overly 
conservative confidence intervals in our simulations.  
More testing is needed to determine whether this 
pattern holds in general.    
Also for the small and medium variances we found that 
failing to account for very modest curvature caused a 
startling amount of overcoverage.   More testing with  
larger powers and fractional powers should be 
conducted.  
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Before concluding on the apparent reduction in 
coverage occasionally observed between the small and 
medium variance scenarios, we should assess whether a 
small truncation effect on the medium variance data 
could possibly be the cause of our findings. We also 
need to un-confound the issue of truncating Y  before 
concluding on any of the substantial undercoverage 
examples we found with in our large variance 
scenarios.   
 
In addition, until now, we have only studied two-sided 
coverage.  We should also study one-sided confidence 
intervals to determine whether there is any asymmetry 
in coverage. We have not yet begun analyzing the 
distribution of the estimated values.  This would be a 
high priority in our next paper especially in scenarios 
where we found over- or undercoverage of the 
confidence intervals. 
 
Finally while we varied the simulated relations between 
X and Y, we assumed heteroscedasticity in all of our 
models for the purpose of estimation and construction 
of confidence intervals.    Additional analyses with a 
homoscedastic assumption would be interesting. 
 
Although there is still much work to be conducted, we 
have already found some surprising results.  Our 
confidence intervals, while highly over covering, were 
at least conservative in the presence of modest amounts 
of curvature in the underlying data. Confidence interval 
coverage percentages from heteroscedastic models 
were nearly accurate or were conservatively over 
covering in the presence of low and moderate variance 
- whether the underlying data were actually 
heteroscedastic or homoscedastic. 
 
The only egregious example of under coverage we 
found was with a small population and a large variance 
using a heteroscedastic model when the underlying data 
were actually the result of highly truncating 
homoscedastic data.  If encountered, this kind of data 
would likely appear heteroscedastic in a sample plot.  
Statisticians should use caution when reporting 
confidence interval statements in settings where 
truncation may be present or is even exhibited in the 
sample findings. 
 
In general, for the kinds of data we are most likely to 
encounter in the practice of sampling for tax 
depreciation, our confidence intervals can be robust 
under a wide variety of failures to meet the model 
assumptions.   
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