
Modeling Non-response Adjustment Factors 
 

Hee-Choon Shin, NORC, 55 East Monroe St., Chicago, IL 60603 
 
Key Words: weighting, non-response 
adjustment, log-linear model. 
 
Introduction 
 
The most common method of adjustment for unit 
nonresponse is weighting, where respondents 
and nonrespondents are classified into 
adjustment cells based on some covariates 
known for all units in the sample, and a 
nonresponse adjustment factor is computed for 
all responding cases in each cell proportional to 
the inverse of the response rate in the cell. 
(Little, 1982; Little, 1986; Little, 1988) 
 The estimated response rates depend on the 
overall cell structure. 
 
Traditional non-response adjustment 
 
An arbitrary and atheoretical approach to non-
response adjustment is to set a minimum cell size 
and minimum response rate (or adjustment 
factor) within each cell. Typically these two 
objectives are achieved by collapsing adjacent 
cells. The problem of this traditional approach is 
arbitrariness of all the decisions involved in 
determining the cell structures: decision on 
minimum cell size, decision on minimum 
response rate, and decision on the way how to 
collapse cells. 
 
Propensity weighting 
 
The theory of propensity scores, pioneered by 
Rosenbaum and Rubin(Rosenbaum & Rubin, 
1983) and applied to survey nonresponse by 
Little (Little, 1986), is a theoretical approach to 
nonresponse adjustment. Define the response 
propensity for the ith unit 
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where im is the indicator for missingness 

(1=missing; 0 = response), and ix  is the set of 

variables for both respondents and 
nonrespondents. The theory is based on the 
following relationship: 
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Respondents are a random subsample within 

strata defined by ( )Xp , the propensity score. As 
succinctly described in Little and Rubin (2002), 
practical application involves the following 
steps: 
 

1) Estimate ( )Xp  as ( )Xp̂  by using 
logistic or probit regression, 

2) Categorize the estimated ( )Xp̂  into 
five or six values, and 

3) Let the adjustment cells be equal to the 
categorized variable. 

 
Even though the propensity weighting is a 
theoretical approach, we can not exclude the 
arbitrariness of the step 2, and the arbitrariness, 
to a less degree, in choosing a particular model 
in step 1. This paper does not challenge the well-
established propensity weighting method itself, 
but attempt to exclude arbitrary decision-making 
activities in applying the method to actual data. 
 
The current work is different from earlier other 
studies utilizing response probabilities in 
adjusting non-response bias (Alho, 1990; 
Sarndal, 1981). The current paper specifically 
deals with the way how to construct the 
adjustment cells. 
 
Estimating non-response adjustment factors 
using multiplicative models 
 
Consider classification variables A with 
categories Ii ,,1 ⋅⋅⋅= ; another classification 

variable B with categories Jj ,,1 ⋅⋅⋅= ; and a 
response indicator variable C with 
categories Kk ,,1 ⋅⋅⋅= . Here K  is usually 2 but 
could be greater than 2. We will show our 
approach with 3-way cross-tabulation but 
extending our approach to higher-dimensional 
tables are straight-forward. Now consider the 
following model, a “saturated” multiplicative 
model with zero degrees of freedom: 
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where ijkπ  is the unconditional cell probability. 

Assuming 0>ijkπ  for all i, j, and k, and letting 

ijkijk πν log= , the τ parameters can be written 

as 
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with similar formulae for B
jτ , C

kτ , BC
jkτ , and 

AC
ikτ . The dot subscript denotes summation with 

respect to the subscript it replaces and the bar 
denotes average. The parameter η is a scale 

factor ensuring 1
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For details on estimation of the parameters can 
be found in Goodman’s work (Goodman, 1970; 
Goodman, 1972). 
 
Let k=1 be the indicator for response and k=2 
otherwise. Non-response adjustment factor in the 

ith A and jth B, 1−
ijρ  is 
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The traditional approach utilizes the saturated 
model to estimate the non-response adjustment 

factor, 1ˆ −
ijρ . Our approach is to find a 

parsimonious best model to calculate 1−
ijρ . 

 
Application 
 
Consider a hypothetical data shown in Table 1. 
The traditional approach would examine the cell 
sizes and the cell specific response rates, and 
would collapse the categories on ad-hoc basis so 
that the predetermined minimum cell size and 
response rate may be maintained. When the 
propensity score method is utilized, we would fit 
a logistic or probit model to the data, and 
construct the adjustment cells by categorize the 
predicted propensity scores on ad-hoc basis. 
 
Table 2 shows fitted cell probabilities for each 
model and goodness of fit statistics by applying 
the proposed multiplicative model. There are 
only two models: Model 8 and Model 9. As 
shown in Table 2, the model with all the effects 

including the three-way interaction fits the data 
perfectly (P-value=1). The traditional approach 
utilizes the saturated model (Model 9) to 
estimate the non-response adjustment 

factor, 1ˆ −
ijρ .  The model (Model 8) with all two-

way interaction or no-three way interaction 
model is the most parsimonious model (P-value 
= .2452). Considering parsimoniousness, we 
have to choose Model 8 to calculate the non-
response adjustment factors. 
 
Estimated adjustment factors and sizes of 
weighting effect for each model are shown in  
Table 3. The weighting effect is measured with 
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where Wσ̂  is the estimated standard error of the 

weight and W  is the arithmetic average of the 
weights. 
 
Estimated non-response adjustment factors in 

each cell for Model 1, )1(ˆ 1 Mij
−ρ  for example, is 
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The estimated adjustment factors for Model 

1 )1(ˆ 1 Mij
−ρ  are a constant (1.6000) for all 

adjustment cells. Model 1 is equivalent to 
collapsing A and B into single-category variables 
respectively. Therefore Model 1 uses the 
marginal distribution of C to calculate the non-
response adjustment factors. Since the weight 
adjustment was done by multiplying a constant, 
the weighting effect is 1 or no weighting effect. 
The weighting effect of Model 9 is 1.0661, the 
highest among possible models. The model 
(Model 8) with all two-way interaction or no-
three way interaction model is the most 
parsimonious model (P-value = .2452) and the 
weighting effect of Model 8 is 1.0506, which is 
smaller than the one for Model 9. Estimated non-
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response adjustment factors in each cell for 

Model 8, )8(ˆ 1 Mij
−ρ is 

 

1

211

ˆ

ˆˆ
)8(ˆ

ij

ijij
ij M

π
ππ

ρ
+

=− , 

BC
j

AC
i

AB
ij

CB
j

A
i

BC
j

AC
i

AB
ij

CB
j

A
i

BC
j

AC
i

AB
ij

CB
j

A
i

111

222111

τττττητ
τττττηττττττητ +

=  

BC
j

AC
i

C

BC
j

AC
i

CBC
j

AC
i

C

111

222111

τττ
ττττττ +

= . 

The estimated cell-specific adjustment factors for 

Model 8, )8(ˆ 1 Mij
−ρ  depends on given levels of i 

and j. 
 
Concluding Remarks 
 
A new method of adjusting for non-response bias 
has been proposed. By applying the proposed 
method, we could develop non-response 
adjustment factors simply from the estimated cell 
frequencies under the most parsimonious model, 
given a set of variables which were observed for 
all sampled units. 
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Table 1. Hypothetical Data 
 

Variable 

A(i) B(j) C(k) 

Frequency 
( ijkn ) 

Probability 
( ijkπ ) 

1 1 1 20 0.0294 
1 1 2 10 0.0147 
1 2 1 15 0.0221 
1 2 2 15 0.0221 
1 3 1 10 0.0147 
1 3 2 20 0.0294 
2 1 1 30 0.0441 
2 1 2 10 0.0147 
2 2 1 55 0.0809 
2 2 2 15 0.0221 
2 3 1 70 0.1029 
2 3 2 30 0.0441 
3 1 1 80 0.1176 
3 1 2 30 0.0441 
3 2 1 70 0.1029 
3 2 2 30 0.0441 
3 3 1 75 0.1103 
3 3 2 95 0.1397 
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Table 2. Fitted Models and Goodness-of-fit Statistics 
Model Variable 

9 8 7 6 5 4 3 2 1 
A B C {A,B,C, 

AB,AC, 
BC,ABC} 

{A,B,C, 
AB,AC, 

BC} 

{A,B,C, 
AC,BC} 

{A,B,C, 
AB,BC} 

{A,B,C, 
AB,AC} 

{A,B,C, 
BC} 

{A,B,C, 
AC} 

{A,B,C, 
AB} 

{A,B,C} 

1 1 1 0.0294 0.0265 0.0202 0.0319 0.0221 0.0253 0.0175 0.0276 0.0219 
1 1 2 0.0147 0.0176 0.0130 0.0123 0.0221 0.0097 0.0175 0.0165 0.0131 
1 2 1 0.0221 0.0243 0.0218 0.0309 0.0221 0.0272 0.0195 0.0276 0.0243 
1 2 2 0.0221 0.0198 0.0156 0.0132 0.0221 0.0117 0.0195 0.0165 0.0146 
1 3 1 0.0147 0.0154 0.0241 0.0228 0.0221 0.0302 0.0292 0.0276 0.0365 
1 3 2 0.0294 0.0287 0.0376 0.0213 0.0221 0.0282 0.0292 0.0165 0.0219 
2 1 1 0.0441 0.0493 0.0697 0.0425 0.0434 0.0590 0.0603 0.0368 0.0511 
2 1 2 0.0147 0.0095 0.0159 0.0163 0.0154 0.0227 0.0214 0.0221 0.0307 
2 2 1 0.0809 0.0832 0.0751 0.0721 0.0760 0.0636 0.0670 0.0643 0.0568 
2 2 2 0.0221 0.0197 0.0190 0.0309 0.0270 0.0272 0.0238 0.0386 0.0341 
2 3 1 0.1029 0.0954 0.0831 0.0760 0.1085 0.0704 0.1006 0.0919 0.0852 
2 3 2 0.0441 0.0517 0.0460 0.0711 0.0385 0.0659 0.0357 0.0551 0.0511 
3 1 1 0.1176 0.1153 0.1012 0.1168 0.0958 0.1068 0.0876 0.1011 0.0925 
3 1 2 0.0441 0.0464 0.0447 0.0449 0.0660 0.0411 0.0603 0.0607 0.0555 
3 2 1 0.1029 0.0984 0.1090 0.1029 0.0871 0.1151 0.0973 0.0919 0.1027 
3 2 2 0.0441 0.0487 0.0536 0.0441 0.0600 0.0493 0.0670 0.0551 0.0616 
3 3 1 0.1103 0.1172 0.1207 0.1292 0.1480 0.1274 0.1460 0.1563 0.1541 
3 3 2 0.1397 0.1328 0.1296 0.1208 0.1020 0.1192 0.1006 0.0938 0.0925 

            
Degree of freedom 0 4 8 6 6 10 10 8 12 
Goodness of fit 
Chi-Square 

0 5.44 23.88 30.34 37.84 43.5 51.01 57.46 70.63 

P-value 1 0.2452 0.0024 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 
 
Table 3. Nonresponse Adjustment factors and Weighting Effects 

Model 
Variable 9 8 7 6 5 4 3 2 1 

A B {A,B,C, 
AB,AC, 

BC,ABC} 

{A,B,C, 
AB,AC, 

BC} 

{A,B,C, 
AC,BC} 

{A,B,C, 
AB,BC} 

{A,B,C, 
AB,AC} 

{A,B,C, 
BC} 

{A,B,C, 
AC} 

{A,B,C, 
AB} 

{A,B,C} 

1 1 1.5000 1.6640 1.6410 1.3846 2.0000 1.3846 2.0000 1.6000 1.6000 
1 2 2.0000 1.8166 1.7143 1.4286 2.0000 1.4286 2.0000 1.6000 1.6000 
1 3 3.0000 2.8691 2.5591 1.9355 2.0000 1.9355 2.0000 1.6000 1.6000 
2 1 1.3333 1.1925 1.2275 1.3846 1.3548 1.3846 1.3548 1.6000 1.6000 
2 2 1.2727 1.2367 1.2535 1.4286 1.3548 1.4286 1.3548 1.6000 1.6000 
2 3 1.4286 1.5419 1.5532 1.9355 1.3548 1.9355 1.3548 1.6000 1.6000 
3 1 1.3750 1.4026 1.4416 1.3846 1.6889 1.3846 1.6889 1.6000 1.6000 
3 2 1.4286 1.4951 1.4921 1.4286 1.6889 1.4286 1.6889 1.6000 1.6000 
3 3 2.2667 2.1333 2.0741 1.9355 1.6889 1.9355 1.6889 1.6000 1.6000 

           
Weighting Effect 1.0661 1.0506 1.0375 1.0254 1.0169 1.0254 1.0169 1.0000 1.0000 
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