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Abstract

In this paper, we apply the recently developed paramet-
ric bootstrap method in constructing prediction intervals
of small area means for the well-known small area mod-
els: the Fay-Herriot model. Using a Monte Carlo simu-
lation study, we compare our method with different rival
methods in terms of coverage probabilities and average
lengths. We then demonstrate the utility of the paramet-
ric bootstrap method by analyzing a real life dataset.

Keywords: Parametric bootstrap, Prediction intervals,
Fay-Herriot model, ADM estimator.

1 Introduction

The term small domain or area typically refers to a pop-
ulation for which reliable statistics of interest cannot be
produced due to certain limitations of the available data.
Small-area statistics are needed in regional planning, ap-
portioning congressional seats, and fund allocation in
many government programs and thus the importance of
producing reliable small-area statistics cannot be over-
emphasized.

In a sample survey, the sampling design usually aims
to provide reliable data for large areas and leads very
few samples or even no sample in the certain small areas.
Thus the design-based small area estimators are unreli-
able, and various model-based indirect methods are con-
sidered to combine information from the related sources
to derive reliable small area estimators. Mixed effects
models are widely used in small area estimation. Such
a model includes certain fixed effects to explain the be-
tween area variations in the interested variables, and area
specific random effects to account for the between area
variations not explained by the fixed effects. The Fay-
Herriot Model, a mixed regression model is a well-known
mixed models in the small area estimation.

In this paper, we concern the interval prediction under
a mixed regression model in the context of small area esti-
mation. For the ith small area mean θi, we are interested
in the 100(1−α)% prediction interval PIi(Y), which sat-
isfies Pr(θi ∈ PIi(Y)) = 1 − α, where the probability is
with respect to the marginal distribution of Y.

In Section 2, we introduce the parametric bootstrap
prediction interval proposed by Chatterjee et al.(2006)
for different small area parameters of interest using the
general linear mixed model. In Section 3, we present the
ADM (adjustment for density maximization) method for
making inferences about the random effect parameters.
This new estimators can improve the prediction interval

constructed by parametric bootstrap method. We com-
pare the different prediction intervals under the simple
Fay-Herriot model in Section 4. In Section 5, we present
results from a Monte Carlo simulation study.

2 Parametric Bootstrap Prediction Interval

The following general linear mixed model covers a wide
range of multi-level small area models:

Y = Xβ + Zv + e, (1)

where X(n × p) and Z(n × q) are known matrices,
Y (n × 1) is the observed data, v and e are indepen-
dently distributed with N(0, D) and N(0, R) separately.
D = D(ψ)(q × q) and R = R(ψ)(n × n) depend on
ψ = (ψ0, ψ1, · · · , ψk)

′
, a (k + 1) × 1 vector of fixed vari-

ance components. Note that the dispersion matrix of the
observed data Y is given by Σ(ψ) = R + ZDZ

′
.

We are interested in investigating the distribution of
T = cT (Xβ+Zv), where c is any fixed and known (n×1)
vector. When cT = (0, 0, · · · , 1, · · · , 0) where only the ith

element is 1, T represents the ith small area mean. When
φ = (β, ψ) are known,

T |Y ∼ N(µT , σ2
T ).

where µT and σ2
T are the posterior mean and variance of

T given Y respectively,

µT = c
′
Xβ + c

′
ZDZ

′
Σ−1(Y −Xβ) (2)

= c
′
RΣ−1Xβ + c

′
ZDZ

′
Σ−1Y, (3)

σ2
T = c

′
Z(D −DZ

′
Σ−1ZD)Z

′
c.

Naturally we can construct the prediction interval for T
as:

PI(t) = [µT − zα/2σT , µT + zα/2σT ],

where zα/2 is the upper α/2 percent point of the normal
distribution.

In practice φ are usually unknown and need to be es-
timated from the marginal distribution of Y . Then an
EBLUP of T is µ̂T , obtained from µT with φ replaced
by φ̂. Also a naive variance estimator of T is given by
σ̂2

T , obtained by replacing φ with φ̂. A naive prediction
interval for T is constructed as:

PInaive(t) = [µ̂T − zα/2σ̂T , µ̂T + zα/2σ̂T ].

Obviously, this prediction interval is usually too narrow
to attain the target converge probability due to the lack
of the variability caused by estimation of φ in σ̂T .
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Chatterjee et al.(2006) proposed a parametric boot-
strap prediction interval. In their method, they employed
the µ̂T and σ̂2

T to construct prediction interval. Since
(T − µ̂T )/σ̂T is no longer a normal distribution, in which
case zα/2 is not a proper cut-off point, they find the cut-
off points t from the parametric bootstrap samples. Their
prediction interval is given as:

PIboot(t) = [µ̂T − t1σ̂T , µ̂T + t2σ̂T ], t ∈ R

In the above, (t1, t2 is obtained using

P ∗{T ∗ ∈ [µ̂∗T − t1σ̂
∗
T , µ̂∗T + t2σ̂

∗
T ]} = 1− α

where the probability P ∗ is with respect to the parametric
bootstrap distribution and T ∗, µ̂∗T and σ̂∗T are like T ,
µ̂T and σ̂T , except that bootstrap samples are used in
place of original sample. The coverage probability of this
prediction interval is accurate up to O(m−3/2).

3 ADM method

Motivated by the Morris’ discussion of Jiang and Lahiri
(2006), we consider the application of ADM(adjustment
for density maximization, see Morris(1988)) method in
the interval prediction. ADM method is designed to ap-
proximate the posterior means and variances correspond-
ing to a superharmonic prior on the between group vari-
ance component. In this section we describe how to use
ADM method to estimate the between area variance R
instead using the ML/REML methods and apply it to
the previous parametric bootstrap interval prediction.

In the practice, the variance components are usually
unknown. MLE and REML methods are widely used to
estimate them. However, when the number of small area
is limited, MLE works poorly. Morris suggested the ADM
method to estimate shrinkage factors. Regard the REML
adjusted likelihood L(R) as the marginal posterior den-
sity of R, one can get the posterior mode by maximizing
L(R). L(R) is right-skewed, noticeably so if m is not
large, so the mean of R exceeds its mode. The ADM
method is to maximize R∗L(R) instead L(R), which gives
better approximation than does the mode. This multipli-
cation by R corrects for underestimation of R and also for
convexity of Bi. Unlike estimates from MLE and REML
maximizations, ADM estimates of R are always positive
and shrinkage factors B = D/(D + R) automatically are
constrained to [0, 1].

Tang(2002) shows that the point and interval estimates
stemming from an ADM application with the superhar-
monic prior have much better accuracies and coverages
in frequency evaluations than MLE and REML. In this
paper, we will compare the parametric bootstrap predic-
tion interval prediction using the REML estimator and
the ADM estimator.

4 The Fey-Herriot Model

Fay and Herriot (1979) used the following two level model
to estimate per capita income (PCI) for small places in

the United States with population less than 1,000.

Level 1: yi|θi
ind∼ N [θi, Di], i = 1, · · · ,m,;

Level 2: θi
iid∼ N [x

′
iβ, A], i = 1, · · · ,m,.

The above two level model can be written as the fol-
lowing mixed model:

yi = θi + ei = x
′
iβ + vi + ei, i = 1, · · · ,m,

where vi ∼ N(0, A) and ei
ind∼ N(0, Di). The area-specific

random effect vi
ind∼ N(0, A) is used to link the true small

area means θi to a vector of p known auxiliary variables
xi, which are often obtained from various administrative
and census records. The paremeters β and A are gener-
ally unknown and are estimated from the marginal dis-
tribution of y. The sampling variances Di are usually
assumed known.

We are interested in obtaining the prediction interval
for the true small area means θi = xT

i β +vi. We consider
the following 4 methods.
Method 1: Direct Method

The method is based on the data [Level 1] only and
does not use any prior model [Level 2] information. The
direct prediction interval θi is given by

PID
i (α) = [yi − zα/2

√
Di, yi + zα/2

√
Di]

where zα/2 is the upper α/2 percent point of N(0, 1). Ob-
viously, for this prediction interval, the coverage probabil-
ity is 1− α. However, it is not efficient since its average
length is too large to make any reasonable conclusion.
This is due to the high variability of the point predictor
yi.
Method 2: Synthetic Parametric Bootstrap
Method

When β and A are known, we can construct the pre-
diction interval of θi as [x

′
iβ±zα/2

√
A] without using the

data. It relies totally on the prior model and hence is
synthetic.

When β and A are unknown, we can get the esti-
mates of them from the marginal distribution of y, and
derive the cut-off points by the parametric bootstrap
method(See Rao(2005)). The prediction interval is given
by:

PISyn
i (t) = [x

′
iβ̂ − t1

√
Â, x

′
iβ̂ + t2

√
Â], t ∈ R,

where β̂ = (X
′
X)−1X

′
Y and Â is the REML estimator.

In the above, (t1, t2) are obtained using

P ∗[θ∗i < x
′
iβ̂
∗ − t1

√
Â∗] = α/2

P ∗[θ∗i > x
′
iβ̂
∗ + t2

√
Â∗] = α/2

where the probability P ∗ is with respect to the parametric
bootstrap distribution and θ∗, µ̂∗ and Â∗ are like θ, µ̂
and Â, except that bootstrap samples are used in place
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of original sample. The bootstrap samples (y∗i , θ∗i ), i =
1, · · · , N are generated according to θ∗i

iid∼ N [x
′
iβ̂, Â] and

y∗i |θ∗i ind∼ N [θ∗i , Di].
Since this method only use the second level of the

model, the prior variance of θi is usually larger than the
posterior variance of θi|Y . The average length of the syn-
thetic parametric bootstrap is always larger than the one
based on the conditional distribution θi|Y , which is used
in CLL parametric bootstrap prediction interval. In ad-
dition, we can show that this prediction interval attains a
coverage probability 1−α with margin of error O(m−1/2).

Theorem 4.1 For (t1, t2) obtained by the above para-
metric bootstrap scheme, the following holds:

P{θi ∈ [x
′
iβ̂ − t1

√
Â, x

′
iβ̂ + t2

√
Â]} = 1−α + O(m−1/2).

The coverage probability can be improved in Hall and
Maiti(2006).
Method 3. CLL Parametric bootstrap method
with REML estimator

Chatterjee, Lahiri and Li(2006) proposed a new para-
metric bootstrap method. They constructed the predic-
tion interval using the EB(Empirical Bayes) estimator
and its naive variance estimator. Their prediction inter-
val for the Fay-Herriot model is given as:

PICLL
i = [(1− B̂)yi + B̂x

′
iβ̂ − t1

√
Di(1− B̂),

(1− B̂)yi + B̂x
′
iβ̂ + t2

√
Di(1− B̂)]

where B̂ = Â/(Â + Di), β̂ = (X
′
X)−1X

′
Y and Â is

the REML estimator. The cut-off points (t1, t2) are com-
puted from the bootstrap samples using:

P ∗[θ∗i < (1− B̂∗)y∗i + B̂∗x
′
iβ̂
∗ − t1

√
Di(1− B̂∗)] = α/2

P ∗[θ∗i > (1− B̂∗)y∗i + B̂∗x
′
iβ̂
∗ + t2

√
Di(1− B̂∗)] = α/2

where the probability P ∗ is with respect to the parametric
bootstrap distribution and θ∗, β̂∗ and B̂∗ are like θ, β̂
and B̂, except that bootstrap samples are used in place
of original sample. The bootstrap samples (y∗i , θ∗i ), i =
1, · · · , N are generated according to θ∗i

iid∼ N [x
′
iβ̂, Â] and

y∗i |θ∗i ind∼ N [θ∗i , Di].
They also showed that this prediction interval has

a coverage probability 1 − α with marginal error of
O(m−3/2). Hence, the CLL parametric bootstrap method
is more accurate than the synthetic parametric bootstrap
method.
Method 4: Parametric bootstrap method with
ADM estimator

In this method, all the schemes to construct the pre-
diction interval are the same as we used in method 3,
except that we use ADM estimator of A instead of the
REML estimator. When we use the REML method, it is
possible to get negative value for the estimation of A, in

which case we let Â = 0. Those zero estimates will make
the variance estimation of θi problematic, and also cause
trouble in the computing procedure. We will discuss it
further in the simulation section.

5 Simulation Study

In this section, we compare four prediction intervals men-
tioned in the previous section using the simplest Fay-
Herriot model with Di = 1 and no covariates:

Level 1: yi|θi
ind∼ N [θi, 1], i = 1, · · · ,m;

Level 2: θi
ind∼ N [µ,A], i = 1, · · · ,m;

In the simulation, we took m = 20. For each of
the different values of A = 0.2, 0.5, 1, 1.5, we simulated
n = 10, 000 independent data sets {(yi, θi), i = 1, · · · , 20}
from the above model. In each iteration we do the
following steps to construct 4 prediction intervals for
θi, i = 1, · · · ,m:

1. Compute µ̂ and Â:

µ̂ = ȳ;
ÂREML = max(0, s2 − 1),

s2 =
∑

(yi − ȳ)2/(m− 1);

ÂADM = (
∑

(yi − ȳ)2 −m + 4 +
√

(m− 4−
∑

(yi − ȳ)2)2 + 8(m− 2))/(2m− 4).

2. Generate bootstrap samples: θ∗i
ind∼ N [µ̂, Â],

y∗i |θ∗i ind∼ N [θ∗i , 1], i = 1, · · · ,m, then get µ̂∗ and
Â∗ by replacing original data yi’s in the formulae of
step 1 with bootstrap samples y∗i ’s. Repeat this step
for N = 100, 000 times.

3. For each bootstrap sample, we can compute the pivot
values for synthetic method and CLL method sepa-
rately:

pSyn = (θ∗i − µ̂∗)/
√

Â∗;

pCLL = (θ∗i − (1− B̂∗)y∗i − B̂∗µ̂∗)/
√

(1− B̂∗),

where B̂∗ = Â∗/(1 + Â∗).

For each method, those 100, 000 pivot values can be
used to build the empirical distribution, from which
we can locate the two equal-tail α/2 cut-off points
(t1, t2).

4. Finally, we get the following prediction intervals:

PINaive
i = [yi − zα/2, yi + zα/2];

PISyn
i = [µ̂− t1

√
Â, µ̂ + t2

√
Â];

PICLL
i = [(1− B̂)yi + B̂µ̂− t1

√
(1− B̂),

(1− B̂)yi + B̂µ̂ + t2

√
(1− B̂)].
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Table 1: Average Coverage Probability of Prediction In-
tervals.

A=0.2 A=0.5 A=1.0 A=1.5
Naive Method 0.9490 0.9503 0.9501 0.9500
Synthetic PB 0.6284 0.7979 0.9202 0.9531
CLL PB 0.6305 0.7988 0.9178 0.9495
CLL PB(ADM) 0.9698 0.9521 0.9461 0.9475
Prasad-Rao 0.8374 0.8484 0.897 0.9214

We report the coverage probability(CP) and average
length(AL) for the four prediction intervals. They are
defined as:

CPi =
∑

[θi ∈ PIi]/n;

ALi =
∑

(length of PIi)/n, i = 1, · · · ,m.

To save the space, we omit the detailed number for each
small area, and only report the average number of 20
small areas.

The results showed that although the coverage proba-
bility of naive prediction interval can always attain the
nominal value 0.95, the length of it is too large to draw
any reasonable conclusion.

Comparing synthetic method and CLL method, they
both apply the parametric bootstrap strategy to find the
cut-off points, but based on different level of data. The
former use the prior model only to derive the point esti-
mator and its variance estimator, although its unknown
parameters are estimated from the marginal distribution
of y. The latter use the conditional distribution of θi|yi

to construct prediction interval by combining the infor-
mation from the data and prior model. From table 1, we
can see the coverage probabilities of those two method
are almost same for different true values of A. However,
the synthetic prediction interval have much larger aver-
age length than the CLL method. When A = 1 and 1.5
its lengthes are even larger than the naive method. That
may due to the fact that when A is large, the prior model
is nor so reliable, in which case the composite estimator
shows its superiority.

Next we look at the CLL method with the ADM es-
timator of A. The prediction interval constructed using
this method is much better than the other three meth-
ods. Not only because its coverage probabilities are very
closed to the nominal value 0.95, but also because its av-
erage lengthes are very small. Look at the last row of
table 2, when A is small, the REML estimator is prone
to produce negative estimator, correspondingly the pre-
diction interval estimate does not perform well neither.
The ADM estimator has no such problem, and it always
gives positive estimate. This also suggests that when we
use the REML method, we can truncate it to a small
value like does the Stein estimator.

Table 2: Average Length of Prediction Intervals.
A=0.2 A=0.5 A=1.0 A=1.5

Naive Method 3.92 3.92 3.92 3.92
Synthetic PB 2.12 3.25 4.54 5.34
CLL PB 1.76 2.53 3.20 3.44
CLL PB(ADM) 2.35 2.64 2.98 3.19
Prasad-Rao 1.68 2.16 2.70 3.01
counts of ÂREML = 0 3245 1472 369 109
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