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1. Introduction 
 
Most national surveys, including the National Health 
and Nutrition Examination Survey (NHANES), 
produce descriptive statistics such as means and 
proportions.  Major Federal policy decisions and 
funding allocations are made based on these types of 
statistics.  In fact, NHANES often provides the first 
national data or the only national data for many 
relevant health issues. As such, there are major 
implications when assessing the statistical 
significance of NHANES measures.   Assessment of 
statistical significance, even when based on well 
known simple statistical methods, can be problematic 
in certain situations.   If the validity of a statistical 
method is an issue dealing with simple random 
sample data, one can infer that there will also be an 
issue when that method is modified for complex 
survey data.   Certain aspects of the design for the 
NHANES survey make such situations even more 
problematic. 
 
With easily assessable pubic use data files and with the 
complexity of the NHANES data sets, it has been long 
recognized that there is a need for written analytic 
guidelines and for the wide variety of users of the 
publicly released micro-data. NHANES, as with many 
national surveys, is designed with analytic 
specifications in terms of reliability of estimates, yet 
data users often go beyond those design limits.  One 
particularly vexing problem is the analysis and 
interpretation of statistical measures for rare events. 
For NHANES, with many measures collected and 
many possible demographic groups, the number of 
situations involving rare events makes the “rare event” 
a fairly common occurrence.   
 
There are a number of analytic issues related to rare 
events in NHANES.  For complex surveys, 
approximations (usually based on linearization or 
replication) are most often used to estimate sampling 
errors. These methods are based on asymptotic results 
and may not generalize to rare events in a relatively 
small survey such as NHANES.  Even when the 
sample variance is properly estimated, there are several 

alternative methods for computing confidence 
intervals.  Another complication comes from the 
design of NHANES where sample weights can be 
quite heterogeneous, thus creating some controversy 
on when to use weighted versus unweighted data.  The 
issues of alternative methods and weights are then 
confounded by the population heterogeneity of many 
health measures.  This presentation addresses these 
issues and their impact on constructing confidence 
intervals for proportions based on survey data with 
emphasis on rare events. 
  
The following presentation will address the general 
analytic issues for rare events then the focus will shift 
to specific issues in the construction of confidence 
intervals for “rare” proportions.  Section 2 will review 
alternative statistical methods for proportions when the 
data are based on simple random samples.  Section 3 
will review extensions to complex survey case.  For 
the complex survey case, evaluation of methods is 
often done through simulations, so the results may only 
generalize to surveys that correspond to the design 
used in the simulations. Section 4 discusses the 
NHANES design features that impact on the problem 
of confidence intervals for proportions and summarizes 
a set of empirical comparisons of alternative methods 
when applied to NHANES data.  This section also 
includes a brief note on the application of the results to 
the issue of constructing confidence intervals for 
percentile estimates using the Woodruff method. 
Section 5 discusses commercial software 
considerations.   Section 6 provides a preliminary 
recommendation that will be included in the next set of 
NHANES analytic guidelines.    
 
2. The Simple Random Sample Case 
 
Classical statistical methods are applied when data are 
assumed to be collected by a simple random sample.  
The data observations are assumed to be independent 
and identically distributed.  A count of the number of 
events with a specific characteristic is most often 
assumed to follow a binomial distribution. 
 
The binomial distribution arises naturally as the sum of 
n independent Bernoulli random variables.  It is typical 
to define Xi = 1 if the i-th sample person has a specific 
characteristic (success or failure, a positive test result, 
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classified as overweight, etc), with probability p for i = 
1, 2,…, n  or  Xi = 0 if the person does not have the 
characteristic with probability 1-p for i = 1, 2,…, n  
Then X = ∑ iX  is distributed as a Binomial random 

variable with parameters (n, p).  A key consideration is 
the assumption of homogeneity, that p (the Bernoulli 
probability of “success”) is constant for all i 
observations.   
 
A binomial random variable has mean np and variance 
np(1-p).  The maximum likelihood estimate for p is 
given by p̂ = x/n and the variance of p is estimated by 

n p̂ (1 - p̂ ).  The underlying assumption for the 
construction of confidence intervals for proportions in 
the classical setting is, for a sufficiently large number 
of trials, n.  The estimated proportion of successes, p̂ , 
is approximately normally distributed with mean p and 

variance 
N
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This is referred to as the pivotal statistic and is 
approximately normally distributed with zero mean 
and unit variance.  In a survey setting this translates 
into simple random sampling where n is the sample 
size; depending upon the application there may or may 
not be a larger population where N is the population 
size. 
 
The corresponding two sided (1- α ) % confidence 
interval is given by 

                   )ˆvar(ˆ 2/ pzp α±                               

where 2/αz  is the standard normal deviate.  This is 
often referred to as the Wald confidence interval.  Note 
that the standard normal critical value is used and this 
is usually based on the assumption that the variance is 
known, not estimated, and that the sample size is large 
enough to apply the Central Limit Theorem.  For small 
sample size, one could replace the standard normal 
critical value with a critical value based on the student 
t with degree of freedom d  = n – 1.  The use of td 
instead of z doesn’t seem to be considered in the 
textbook/simple random sample case (although it will 
be in the complex survey case). 
 
In most textbooks, it is generally stated to use the Wald 
interval if the sample size is greater than 30 and the 
proportion is greater than 0.10 or 10 percent But 
Brown et al (2001) and many others have shown that 

exact coverage of the Wald interval behaves erratically 
even for p close to 0.5 or 50 percent.   
 
One basic problem is due to the discrete outcome space 
for the distribution of a binomial random variable.  
Consider the following table based on n = 10 with a 
true p = 0.50.  The two-sided 95% Wald confidence 
interval is based on the estimate p̂  and not the true p.  
The true p (or p under the null hypothesis) is used in 
the calculation of Pr(X=x).  The coverage of the Wald 
confidence interval is calculated by summing Pr(X=x) 
for all x where the confidence interval includes the true 
value – in this case for x = 3, 4, 5, 6, 7 and the 
coverage is 0.89  (less than the nominal coverage of 
0.95)  
 

X Pr(X=x) p̂  Lower CL Upper CL 

0 .000977 0.0 0.0 0.3 
1 .009765 0.1 -0.08974 0.289737 
2 .043945 0.2 -0.05298 0.452982 
3 .117188 0.3 0.010172 0.589828 
4 .205078 0.4 0.090161 0.709839 
5 .246094 0.5 0.183772 0.816228 
6 .205078 0.6 0.290161 0.909839 
7 .117188 0.7 0.410172 0.989828 
8 .043945 0.8 0.547018 1.052982 
9 .009765 0.9 0.710263 1.089737 
10 .000977 1.0 0.7 1.0 

 
As the true p changes from .5 to .46, each probability 
Pr (X=x) changes slightly, but the intervals containing 
the true p are the same.  Only when p =.45 does the 
interval corresponding to x = 2 now become included 
in the two-sided coverage.  The following illustrates 
how the coverage varies with true p 

 
True proportion Coverage 
0.50 0.089 
0.49 0.088 
0.48 0.086 
0.47 0.085 
0.46 0.084 
0.45 0.945 

 
In the above table, it is seen that only values of 
p̂ corresponding to observations x = 0, 1, 2, … can be 

observed.  The coverage depends on the true value of p 
and the number of intervals containing the true value.  
This illustrates that it is the discrete nature of the 
outcome space that creates the erratic coverage for true 
p in the neighbourhood of 0.5   
 
Because observations from simple random samples 
have equal (or no) weights, a short digression is 
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presented here for the complex survey case with 
differential weights, where the outcome space for 
possible estimates p̂ can be increased.  This is 
illustrated in the following example.  Suppose n = 4 
and the observations have weights 11, 23, 36, and 49.  
Now instead of 5 discrete outcomes for p̂ = (0, 0.25, 
0.5, 0.76 and 1.0), there are 17 possible outcomes. If 
the true proportion is 0.05, then we get the following 
table for the usual Wald two- sided 95%  interval: 
 

Xwt  X P(X=x) p̂  Lower Upper 
0 0 0.6561 0.000 0.0 0.75 
11 1 0.0729 0.092 -0.197 0.382 
23 1 0.0729 0.193 -0.202 0.588 
34 2 0.0081 0.286 -0.166 0.737 
36 1 0.0729 0.303 -0.157 0.761 
47 2 0.0081 0.395 -0.094 0.884 
49 1 0.0729 0.412 -0.080 0.904 
59 2 0.0081 0.496 -0.004 0.996 
60 2 0.0081 0.504 0.004 1.004 
60 3 0.0009 0.504 0.004 1.004 
72 2 0.0081 0.605 0.116 1.093 
83 3 0.0009 0.697 0.238 1.156 
85 2 0.0081 0.714 0.262 1.166 
96 3 0.0009 0.807 0.412 1.201 
108 3 0.0009 0.908 0.618 1.197 
119 4 0.0001 1.000 0.25 1.000 

 
The above table indicates that, with the estimation 
space being increased when data are weighted, perhaps 
the erratic behaviour for the coverage of the Wald may 
not be as great in the complex survey case. 
 
The above tables illustrate that a confidence interval 
for p can be calculated even when the observed 
number of “successes” is zero, that is x = 0 and p̂  = 0.  
Hanley (1995) gives a 95 percent confidence interval 
for p in this case as (0, 3/n).  Alternatively, when x =n 
and p̂  = 1.0, the 95 percent confidence interval is 
given by (1-3/n, 1).  This is supported by Louis (1976).   
The (0, 3/n) interval is used in the above examples; but 
alternatives have been proposed for the x = 0 case, see 
(Olivier and May, 2006)  
 
When p is close to 0 or 1, the binomial assumption has 
an additional problem.  The underlying distribution of 
p̂ is not symmetric, it is skewed.  This is illustrated in 
the following figure for n = 40, p = 0.05 where the 
normal with the binomial mean (np = 2) and variance 
(np(1-p) = 1.9) is compared to the comparable 
Beta(a,b) distribution with parameters a=20 and b= 20. 

  
For the Wald confidence interval for p̂  it is possible to 
obtain a negative lower limit. This is recognized in 
standard texts; there are a number of ways of avoiding 
this problem. 
  
One way to avoid the possibility of obtaining a 
negative lower limit is to apply a transformation that 
results in a standard normally distributed random 
variable on the transformed scale, construct a Wald 
confidence interval on the transformed scale, then back 
transform using the inverse transformation to get the 
confidence interval on the original scale.   Two 
particular transformations are the most widely used, 

the arcsine (square root) )ˆ(sin 1 py −=  and the logit, 

defined for values of p greater than zero but less than 
unity, ))ˆ1/(ˆlog( ppy −= . 
 
The confidence interval for the arc-sine square root is   
given by 
 
 
 
The confidence interval for the logit is given by 
 
 
 
 
Another variation on the Wald concept, similar to a 
continuity correction for discreteness, was considered 
by Agresti and Coull (1998).  The Agresti-Coull 
Interval is given by  
 

nqpp ~/~~~ κ±  

 
Where  κ  = normal deviate; x* = x+c; n* = n + c ; 
p~ = x*/n* and q~  = 1 - p~ .  Agresti and Coull  use c = 

2 but Olivier and May (2006) consider the more 
general case. 
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The above approaches are all variations of the Wald 
confidence interval.  A slightly different approach is to 
use the Wilson Score confidence interval (Wilson, 
1927).  This confidence interval uses the pivotal 
statistic 
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which is approximately normally distributed and is 
based on the quadratic form   
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This is obtained by solving the equations 
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for  p. 
 
Note that the denominator of the pivotal statistic is 
given in terms of the population parameter, p,  where 
the denominator of the Wald pivotal statistic is given 
in terms of p̂  rather than p.   
 
In order to deal with both discreteness and skewness, it 
can be recognized that the discrete binomial 
distribution corresponds to either a beta or F-
distribution (Johnson and Kotz, 1978).  This is 
analogous to the discrete Poisson distribution 
corresponding to a Chi-square distribution.  By using 
the formulation as a continuous distribution, “exact” 
binomial confidence intervals can be constructed as 
originally done by Clopper and Pearson (1934).  These 
intervals always achieve at least the nominal coverage, 
but can be conservative (that is too wide).  In terms of 
the Beta distribution, the lower limit of the Clopper-
Pearson Interval for x=n p̂  is given by 
 

LCP ( ) ( )1,;2/ +−= xnxx αβ  
 
And the upper limit for x is given by 
 

UCP ( ) ( )xnxx −+−= ,1;2/1 αβ  
 
Alternatively, the Clopper-Pearson can be given in 
terms of the F-distribution as  
 

LCP(x) = 
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Where  1ν  = 2x, 2ν  = 2(n –x +1),  

and 3ν  = 2(x+1), 4ν  = 2(n – x)     

The Clopper-Pearson interval corresponds closely to a 
Bayesian confidence interval (see Brown et al 2001).  
In this a Bayesian approach, using a Jeffreys prior, the 

lower and upper confidence limits are given as:  
 

LJ ( ) ( )2/1.2/1;2/ +−+= xnxx αβ  

UJ ( ) ( )2/1.2/1;2/1 +−+−= xnxx αβ  
 
For simple random sample data, the Wald, transformed 
Wald, Agresti-Coull, Clopper-Pearson and Bayesian 
approaches have been compared by a number of 
authors.  Newcombe (2001) found that the coverage of 
Logit intervals vary slightly when the intervals are 
narrow, but much more marked when they are wide 
(i.e. n small or p close to 0 or 1).  Chen (1990) 
concluded that, among transformations, the arcsine is 
“almost the optimal transformation.” However, Brown, 
et al (2001) found that while the arcsine preformed 
well for many values of p, it did not perform well for p 
close to 0 or 1. Newcombe (1998) found that the 
Clopper-Pearson method “unnecessarily conservative.”  
And that the Wilson method produced reasonable 
intervals for all values of p, including extreme ones.  
However, Brown, et al (2001) found the “Wilson 
performs quite well in terms of coverage for p away 
from 0 or 1 but the interval was unnecessarily long and 
exceeded that of the Clopper-Pearson interval when p 
was close to 0 or 1.  Despite some inconsistencies, the 
general conclusions in the simple random sample case, 
as summarized by Brown et al (2001) are: 
 

1. Do not use text-book Wald interval for any p. 
2. Confidence intervals for transformations are 

generally too wide.   
3. The Clopper-Pearson is too conservative 

(others affirm that the Clopper-Pearson is the 
preferred interval).   

4. Likelihood ratio interval (not examined here) 
was too hard to compute for the average user. 

5. For not so rare events - use the Wilson Score 
interval or Agresti-Coull (easier to compute). 

6. For rare events– use the Wilson Score interval  
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3. Applications  to Complex  Samples  
 
Adjustments to statistical methods are generally 
needed when data come from a Complex survey rather 
than a simple random sample.  Observations from a 
complex survey may not be independent. Many 
complex survey designs involve clustering of sample 
persons (as do many clustered-randomization trials).  
Not only are the observations not independent, but the 
complex variance for clustered designs are typically 
larger than the hypothetical simple random sample 
variance for the same sample size. Many surveys 
involve differential sampling fractions for specified 
demographic sub-domains (age, race, and sex); that 
and ratio adjustments (for non-response and post-
stratification) yield differential sampling weights.  
Ignoring sample weights can lead to biased estimates 
for proportions and the differential weighting also 
increases the complex variance.   For many variables, 
especially in health data, the assumption of 
homogeneity for p across sample persons (or between 
geographic areas) is also violated. 
 
Before examining the alternative methods for 
confidence intervals for proportions based on survey 
data, it is useful to summarize a few issues and 
concepts in variance estimation for complex surveys. 
These issues are (1) alternative methods for variance 
estimation for complex survey data, (2) the 
relationship of complex variance to simple random 
sampling variance (the design effect) and (3) issues in 
the stability of complex survey variance estimates (the 
degrees of freedom). 
 
For simple random samples, variance estimators can be 
given as closed form expressions.  For complex survey 
estimators, the design and the ratio adjustments create 
a situation where there are no closed form expressions 
for variance estimators.  Asymptotic approximations 
for complex variance estimators have been developed.  
The most widely used of these estimators fall into two 
distinct classes: linearization and replication. 
Replication methods are typically some form of 
balanced repeated replication or a jackknife approach.  
For a more complete discussion see Rust (1998) or 
Wolter (1985) 
 
In many instances, the linearization and replication 
variance estimates produced for many statistics are 
very similar, but there can be differences depending 
upon the statistic and the survey design.  For small 
proportions and an NHANES type survey design, 
further investigation is required to determine if the 
asymptotic results of previous studies really hold for a 
design with few Primary sampling units (PSU’s) or for 

the estimation of a rare proportion.  However, for the 
rest of this presentation we shall simply assume that a 
reasonable estimator exists for our situation. 
 
Kish (1965, 1995) has popularized the term design 
effect, often denoted Deff, as an indicator of the 
increase (usually) in variance for an estimate when a 
complex design is used.  He defined the Deff as   
 
        Deff = Varcomplex(p)/Varsrs (p)  
 
 It should be noted that the Varsrs(p) is a hypothetical 
value that assumes the same estimate of p as if it were 
based on the same sample size.  Kish assumes simple 
random sampling with replacement. For a complex 
design involving clustering and differential weighting, 
the Deff can be modeled ( Kish, 1992) as  
 

          Deff = { }{ }21)1(1 WtsCVm +−+ ρ  

 
Where m  is the average cluster size, ρ  is the intra-
class correlation and CV2

wts is the coefficient of 
variation of the sampling weights.  This formulation 
has been further justified by Park and Lee (2004) and 
by Gabler, Haeder and Lahiri (2001).  Usually the deff 
is greater than 1 as the complex variance is greater 
than the hypothetical simple random sampling 
variance.  Some efficient designs can yield a true Deff  
less than 1.  In practice, because the complex sample 
variance is estimated and subject to it’s own sampling 
error, an estimated Deff can be less than 1. 
 
One application of the Deff is to compute what has 
become known as the effective sample size, that is if n 
is the sample size for a complex design then the 
effective sample size is given by ne = n/Deff.  The 
effective sample size can be interpreted as the 
hypothetical simple random sample size required  
yielding the same variance.  For example, if a complex 
design of sample size 300 yields a complex variance 
with a deff of 1.5, then the effective sample size is 200 
and a hypothetical simple random sample variance 
based on that sample size of 200 is the same as the 
complex variance based on the true sample size of 300.  
The effective sample size can be used to compare 
alternative survey designs or to adjust simple random 
sample test statistics for complex designs.  
 
There are some issues in computing the Deff for 
NHANES.  The definition of Deff, as used in 
commercial software, can vary. For example, 
SUDAAN has options for 4 different definitions 
(NHANES typically uses the second definition, namely 
simple random sampling with replacement). WESVAR 
uses simple random sampling without replacement in 
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defining the Deff.  In NHANES, Deff vary by 
demographic sub domain which creates another 
problem of heterogeneity in the data.  When sample 
size is small, or an event is rare, demographic groups 
are often combined to yield a statistically reliable 
estimate.  The Deff for the combined domain, say all 
ages combined, is typically greater than the individual 
Deff for the sub domain, in this case, age-specific 
Deff. This is mostly due to the differential sampling 
weights by domain.  Even for small demographic 
domains, some Deff are very large (see Lacher, Curtin, 
and Carroll, 2001); it is not clear if the adjustments for 
complex survey data, to be discussed below, will 
generalize to the case of very large Deff. 
 
One further background issue must be addressed.  As 
previously stated, an estimated variance is also subject 
to (sampling) variation.  Under appropriate regularity 
conditions, a variance estimator can be considered to 
follow a Chi-square distribution with d degrees of 
freedom.  For complex variance estimators, and a 
classic two PSU per stratum design, the nominal 
degree of freedom is considered to be the number 
PSUs minus the number of strata (see Cochran, 1977 
or Korn and Graubard, 2002).  Again, this is an 
asymptotic result and may not hold for estimates from 
the NHANES survey.   Alternative characterization for 
the degrees of freedom has been proposed by 
Satterthwaite (1934) and, specifically for NHANES, 
by Jain and Eltinge (1998).  
  
The degrees of freedom has an impact on the critical 
value to use when hypothesis testing or calculating 
confidence intervals.  For estimates based on survey 
data, simple hypothesis tests for comparing sub-
domain differences often use the student t statistic td 
instead of the standard normal score z.  The NHANES 
survey also used the nominal degrees of freedom as 
publication criteria in the NHANES III analytic 
guidelines (reference). Specifically, a statistical 
reliability criteria is considered where a minimum of 
12 degrees of freedom should be used as the criteria 
for displaying a sample error estimate (24 PSUs in 12 
strata). Note the nominal degrees of freedom can differ 
in a survey for specific race/ethnic groups as not every 
PSU has members of that race/ethnic group in the 
underlying finite population of inference. 
 
Because Deff are themselves estimates, and subject to 
sampling error, average deff effect models are 
sometimes used (for NHANES, see Johnson and 
Kovar, 1982).  When analysis uses an average deff, it 
is not clear if the degrees of freedom should also be 
modified. This is an area that requires additional 
research.  This presentation is restricted to the case 
where average deff are not used. 

 
Given these background issues, several references in 
the literature have examined alternative methods for 
computing confidence intervals for proportions based 
on complex survey data.  Approximations for complex 
survey variance estimation for proportions are 
discussed in Rust and Rao (1998). For confidence 
intervals for proportions, some references are Gross 
and Frankel (1971), Korn and Graubard (1998), Kott et 
al (2003). A re-sampling approach is given by Grey et 
al (2004) but this is beyond the scope of this 
presentation. Software manuals for survey data (in 
particular STATA and WESVAR) also contain 
explanatory information. 
 
Korn and Graubard (1998) examined the Wald, the 
Logit transformation, a Poisson approximation 
(Breeze, 1990) and the Clopper-Pearson, or exact 
binomial.  In addition, the text by Korn and Graubard 
(1999) examines the Wilson score method (although 
they use the terminology “quadratic form” and do not 
specifically refer to this as a Wilson score interval). 
Kott et al (2004) examined Wald, a modification due 
to Andersson-Neurman (2001), the Wilson interval and 
a proposed Modified Wilson approach. 
 
The general approach of Koran and Graubard is to 
consider the alternative methods as derived for the 
simple random sample case, consider p̂ as the 
weighted estimate based on the survey, calculate the 
complex variance of p̂  and it’s estimated Deff, and 
calculate the nominal degrees of freedom as the 
number of PSU’s minus the number of strata.  There 
are two alternatives for adjusting the sample size.  One 
is to use the classic effective sample size ne=n/Deff 
and the second is to also adjust the sample size for the 
degrees of freedom by considering ne* = (td/z)ne .  
Korn and Graubard suggest that the adjusted sample 
size should not be used if the effective sample size 
becomes less than the original sample size.  Given the 
revised sample size, a “scaled” number of observations 
(the x in the usual binomial notation) can be calculated 
as xe = p̂ ne  or xe* = p̂ ne* .  To modify the alternative 
methods for confidence intervals, simply substitute ne 
or ne* for n and xe or xe* for x.  If using ne instead of 
ne*, also substitute td for z.  Thus, in the complex 
sample setting, the alternative methods are modified as 
follows: 
 
Wald, or normal, interval 
 

)ˆ(ˆ pVarp κ±     with  κ  = td    Using the definition 

of Design effect, this is equivalent to  
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nqpDEFFp /ˆˆ*ˆ κ±  and in terms of effective sample 

size this is also equivalent to 
 

enqpp /ˆˆˆ κ±  

 
The transformation such as arcsine and logit follow 
directly as: 
 
 
 
 
And 
 
 
 
  
There has been no attempt to modify the generalized 
Agresti-Coull interval in complex survey setting;  
although the Korn and Graubard type substitution 
could be used it is not clear if the additive constant “c” 
should also depend on the survey design.. For the 
generalized Agresti-Coull, a further simulation is 
planned to see if the constant “c” can be optimized for 
survey data. 
 
The modification to the Wilson Score Interval is 
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Note: If ne is used, κ  becomes td if ne* is substituted 
for ne is used, κ  becomes z. 
 
For the Jeffreys and Clopper–Pearson intervals, the 
deviate κ  (td versus z) is not directly used, so ne* and 
xe* should be substituted for the sample observed 
values of n and x.   
 
The Jeffreys interval for x (not p) becomes 
 

LJ ( ) ( )2/1,2/1;2/ **** +−+= eee
e

xnxx αβ  

 

UJ ( ) ( )2/1,2/1;2/1 **** +−+−= eeee xnxx αβ  

 
Clopper-Pearson Interval for x (not p), given as a Beta 
is 
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And the Clopper Pearson given as an F distribution (as 
k is not directly used) becomes 
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Where  1ν  = 2xe*, 2ν  = 2(ne* –xe* +1),  

and 3ν  = 2(xe*+1), 4ν  = 2(ne* – xe*)     

Again, the Beta and F-distribution approaches do not 
explicitly use td or z so the Korn and Graubard 
approach is to use the degrees of freedom adjusted 
effective sample size ne*.  Once the confidence interval 
for the number of events is calculated, the confidence 
intervals for the estimated proportion follow directly  
 
Based on their simulations, Korn and Graubard 
concluded that the Wald interval was not good for rare 
events and the Logit transform was too wide; they 
recommended the Modified Clopper-Pearson interval 
using the effective sample size adjusted for the 
survey’s nominal degrees of freedom.  Kott et al 
(2004) did not examine the exact binomial but 
concluded to use modified Wilson score method. 
 

4.  Issues specific to NHANES design 

There are several survey design characteristics that 
affect the application of these methods to NHANES 
survey data.  The current NHANES survey is actually 
a continuous series of annual surveys that can be 
aggregated into 2, 4, 6 or more years for estimation.  
There are 15 clusters (PSUs) per year, with a sample 
size of approximately N = 5,000 per year. Because 
NHANES can combine years of data as 2, 4 or 6 years, 
the degrees of freedom for the estimated sampling 
error changes accordingly as 15, 30, and 45.  There are 
specified sampling fractions for each of 72 age-race-
ethnic-sex domains, with “oversampling” so that 50 
percent of the sample is below age 20 years; Mexican 
Americans and Black Americans are also oversampled.  
This creates sampling weights that are very 
heterogeneous.  Most survey measures vary by age 
race and sex; many characteristics have a large 
between PSU variance component and/or a large intra-
class correlation within clusters.  The design 
specifications require that an estimate for a 10 percent 
statistic have less than or equal to 30 percent RSE. 
With a desired Deff = 1.5 this implies n = 150 per 
analytic subdomain (or ne = 100). 
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Given the design characteristics of NHANES, it can 
not be assumed that previous results, based on 
particular simulations, necessarily apply to the 
NHANES situation.  In terms of simulations, Korn and 
Graubard (1998) let p vary by PSU, used simplified 
weights (either 1 or 10 and either informative or non-
informative with respect to the probability of success), 
32 Strata, a sample size of n = 100 per strata, and 
conducted 100,000 draws when comparing the 
coverage of alternative methods.  Kott et al (2004) 
used p as constant between PSU, they allowed more 
heterogeneity in the sample weights by assuming the 
weights followed a chi-square distribution, and their 
results were based on 50,000 draws.  Neither simulated 
design was quite like NHANES.   
 
For this presentation, the NHANES 1999-2002 data 
was combined as a single, 4 year survey to empirically 
examine the alternative confidence interval methods 
for proportions.  A number of variables/outcomes were 
examined for age, sex and race/ethnic groups: Elevated 
blood lead (Prevalence varies by age), Rubella 
seropositivity (prevalence close to 99%), Rubella 
seronegativity (prevalence 1% ),  Stahlococcus aureus 
(SA) (prevalence 32.4%), Methicillin Resistant 
Staphlococcus aureus (MRSA) (prevalence 0.4%) and  
HIV Status (prevalence 0.5%).  Estimated proportions, 
standard errors, design effects, and alternative 
confidence intervals were constructed for these 
measures over age, sex, and race/ethnicity sub-
domains.  Different sub-domains also provided a range 
in the nominal degrees of freedom. 
 
The empirical results for two-sided 95 percent 
confidence intervals were generally consistent across 
the range of estimates produced.  The lower Wald 
confidence interval may be negative, the width of the 
arcsin is comparable to the Wald but shifted upward 
(thus avoiding negative lower limits), the width of the 
Wilson is greater than the arcsin and the logit gives the 
widest confidence interval.  The Wilson interval is 
generally, but not always, slightly smaller than the 
Clopper-Pearson interval. Across all measures and 
subdomains, there was little variability between 
methods when analyzing all confidence intervals or 
when looking at sub-domains where estimates are 
stable (sufficient degrees of freedom).  Methods varied 
more among estimates with high relative standard 
errors, smaller numbers of positives, lowest 
seroprevalence, and fewer degrees of freedom.    
 
The following table (from Carroll and Curtin, 2001), 
for percent Rubella seropositivity, is typical.  In this 
table, the upper confidence limit is multiplied by the 
population size to get an “estimated number” with the 
positive test result.  The logit confidence interval is 

important because it is the most widely used of the 
alternative methods for rare events.   

 
Method Lower CL Upper CL Upper Est 
Logit 0.8 9.3 334,000 
Wilson 0.8 8.5 305,000 
Arcsin 0.4 7.2 258,000 
Wald -0.7 6.2 223,000 

 
The results are comparable to the next table for HIV 
status (also from Carroll and Curtin).  Both of these 
tables illustrate a problem with the logit 
transformation.  Although in a probability sense, the 
logit works well because the coverage is greater than 
the nominal coverage, there is a practical 
consideration.  Using the upper confidence limit for the 
proportion to get an upper confidence limit for the 
estimated number, it can be seen that the alternative 
methods give a very different upper limit; this upper 
limit could be quite important as planning on a 
possible 50,000 cases per year (based on arcsin) is 
quite different from planning on nearly twice as many, 
98,900 for the logit interval. 
 

Method Lower CL Upper CL Upper Est 
Logit 0.1 3.7 98,900 
Wilson 0.1 2.8 74,900 
Arcsin 0.0 1.9 50,800 
Wald -0.5 1.4 37,450 

 
For a very rare event, Rubella seropositivity and 
seronegativity, results are presented below, showing 
the symmetry in the methods for p and 1-p 
 

 Pos(+) Pos(+) Neg(-) Neg(-) 
Method Lower Upper Lower Upper 
Logit 97.0 99.9 0.1 3.0 
Wilson 97.3 99.8 0.2 2.7 
Exact 97.6 99.9 0.1 2.4 
Arcsin 98.0 100 0.0 2.0 
Wald 98.3 100.3 -0.3 1.7 

 
As opposed to previously reported results for the Wald 
interval, for the complex survey case the Wald was 
quite similar to other methods for p or (1-p) close to 
0.5 This is illustrated in the following table for 
Stahlococcus aureus. 
 

Methods Lower CL Upper CL 
Logit 34.3 39.3 
Wilson 34.6 39.2 
Exact 34.8 39.1 
Arcsin 34.6 39.2 
Wald 34.6 39.2 
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The logit almost always gave the widest confidence 
intervals and the largest upper confidence limit, again 
leading to an interpretation that the logit is too 
conservative.  Over the range of estimates, the Wilson 
and Clopper-Pearson were almost always very similar.  
Usually the Wilson provided wider intervals than the 
Clopper-Pearson but not always.  Of course, there will 
always be extreme examples, as illustrated for MRSA 
below: 
 

Method Lower CL Upper CL 
Logit 0.1 100 
Wilson 3.2 99.0 
Exact 37.0 89.0 
Arcsin 48.0 20.1 
Wald -95.4 228.9 

 
Here both the Wald and the arcsin give nonsensical 
results, but the prevalence is so small and the observed 
number so small that even the Wilson and logit 
basically indicate the prevalence is between 0 and 100 
percent.  Considering the exact method (Clopper-
Pearson) meets the nominal coverage, its confidence 
interval performs reasonable well even in this extreme 
example 
 
A brief note on the application of these results to the 
calculation of confidence intervals for percentiles.  
NHANES data are often used to estimate percentile 
distribution for environmental containments such as 
blood lead, mercury, persistent pesticides and other 
chemicals (see NCEH, 2002).  One procedure for 
estimating the Confidence intervals for percentiles is 
the Woodruff procedure (Woodruff, 1952).  This 
method requires the calculation of the corresponding 
estimates for proportions (that is the 99 percentile 
requires the confidence interval for a proportion 
corresponding to 99 percent.  Therefore, any 
recommendation for the confidence interval for a 
proportion should carry over to implementing the 
Woodruff procedure.  The NCEH report used the Korn 
and Graubard modification to the Clopper-Pearson in 
implementing the Woodruff method.  
 
5 Software considerations 
 
As previously stated, analytic guidelines for NHANES 
need to take into consideration methods as currently 
available in commercial software packages. Software 
such as SUDAAN and SAS currently include only the 
Wald and the logit transformations for survey data. In 
STATA, one has to be careful in that different 
procedures implement different approaches. The 
procedure sysmean can be used to estimate a 
proportion (as the mean of a 0,1 variable) but gives a 
Wald confidence interval.  The STATA manual states 

the logit is used for procedure sysprop, but the 
example of output shows a “adjusted wald” that 
appears to be the modified Clopper-Pearson interval 
(although the documentation in the manual and 
associated technical report is not specific).  WESVAR 
appears to be the only package that currently (as of 
September, 2006) uses the Wilson score confidence 
interval for survey data. The options available for these 
survey packages are summarized below 
 

 SUDAAN STATA WESVAR SAS 
Var Lin, Rep Lin Rep Lin 
DEFF 4 1 2 1 
DF Nom Nom,Sa Nom Nom 
CL Yes Yes Yes Yes 
Trans Logit Logit Logit Logit 
Wilson No No Yes No 
Exact No Yes No No 

 
6  Preliminary Conclusions for NHANES 
Analytic Guidelines 
 
Based upon previous published research and empirical 
assessment using NHANES 1999-2004 data, a set of 
recommendations is being prepared for publication on 
the CDC/NHANES website as a new set of analytic 
guidelines, replacing the NHANES III analytic 
guidelines.  The basic recommendation will include: 
(1) Always use weights to compute the estimated 
proportion and it’s standard error, 
(2) No specific recommendation is planned on 
preference for linearization versus replication methods. 
 (3)  The Wald interval may be used for .25 < p < .75  
 (4)  The Wald interval should be avoided for small p, 
say p < 0.25  The choice of an alternative method is 
dependent on software availability. If the data analyst 
is limited to SAS or SUDAAN and must use the logit, 
it should be recognized that the interval is conservative 
and the data analyst should consider using a 90% 
confidence interval and  not a  95% interval. 
 (5) If using WESVAR, for small p (p < .25) the 
recommended procedure is the Wilson Score interval.  
For STATA users, the “adjusted Wald” in the sysprop 
procedure (i.e. the modified Clopper-Pearson interval) 
should be used. 
 
 For SUDAAN and SAS users, CDC/NHANES plans 
on incorporating sample programs in Analytic 
guidelines to compute both the Wilson interval and 
Clopper-Pearson interval as modified by Korn and 
Graubard.  Once these programs are available, 
recommendation (4) will be revised to recommend the 
use of either the Wilson or the Clopper-Pearson for 
NHANES data when p or 1-p is small. 
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These should be considered preliminary 
recommendations as additional research is required for 
the nuances of the NHANES design.  For rare events 
and small degrees of freedom additional simulations 
are needed  (1) to compare replication versus 
linearization for Var(p), (2) to examine the use of the 
estimated DEFF or an average DEFF, and (3) to 
determine the most appropriate estimate for the 
degrees of freedom.   Such a research project is 
currently under way. 
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