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Abstract

We compare alternative estimators for regression co-
efficients estimated with data from a complex survey.
The ordinary least squares estimator is a common
choice of researchers, but under an informative de-
sign, the ordinary least squares estimator is biased.
The probability weighted estimator is consistent but
may have a large variance. Design consistent estima-
tors based on instrumental variable procedures are
compared theoretically and in a Monte Carlo study.

KEY WORDS: informative design, endogenous ex-
planatory variable, instrumental variable

1 Introduction

In a simple random sample, an unbiased estimator
of the population regression coefficient is the ordi-
nary least squares (OLS) estimator, and an estima-
tor of its variance is easy to calculate. In many sur-
veys, the elements enter the sample with unequal
probabilities. In these cases, the sampling weights,
commonly the inverses of the selection probabilities,
can be used to construct the probability weighted
(PW) estimator. In complex analyses such as regres-
sion, the weighted estimator requires a more compli-
cated calculation, and often gives a larger variance
than the unweighted version of the estimator. The
OLS estimator and PW estimator are straightfor-
ward procedures, but for complex sampling designs,
the OLS estimator and the PW estimator do not
always perform well.

It is known that the presence of errors of measure-
ment in the explanatory variable and the presence
of endogenous explanatory variables in the regres-
sion model make the OLS estimator inconsistent and
biased. For such cases, additional information is
needed to obtain consistent parameter estimators. A
variable that is correlated with the explanatory vari-
able but uncorrelated with the error is one type of
additional information. If a variable meets these two
requirements, we call this variable an instrumental

variable (IV). The method of instrumental variables
has been used for more than sixty years. See Reiers∅l
(1941, 1945). Sargan’s (1958) work and the instru-
mental variable character of two-stage least squares
(2SLS) have made instrumental variable estimation
widely used.

In Section 2, the regression models are presented and
two common estimators, OLS estimator and PW es-
timator, are given. In section 3 we introduce the
instrumental variable estimator, describe some lim-
iting properties, and describe a test for endogeneity
in the instrumental variable procedure. In section
4, a Monte Carlo simulation study is constructed to
compare the estimators.

2 Models and Common Estimators

2.1 Regression Model

We assume the finite population to be generated by
a random process, called the superpopulation. We
will use script F to denote the finite population, U
to denote the set of indices of the finite population,
and A to denote the set of indices of the sample. We
assume that there is a function p(·) such that p(A)
gives the probability of selecting sample A from U .

Consider a regression model relating yi to xi as

yi = xiβ + ei, (1)

where ei are independent (0, σ2) random variables
independent of xj for all i and j. The model for the
finite population can be written as

yN = XNβ + eN , (2)
eN ∼ (0, INσ

2),

where yN = (y1, y2, . . . , yN )′ is the N dimensional
vector of values for the dependent variable, XN =
(x′1,x

′
2, . . . ,x

′
N )′ is the N × k matrix of values of

explanatory variables, and the error vector eN =
(e1, e2, . . . , eN )′ is an N dimensional vector which is
independent of XN .
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Assume a simple random sample (SRS) of size n is
selected from the finite population. Then we can
write the model for the sample as

y = Xβ + e, (3)
e ∼ (0, Iσ2),

where y = (y1, y2, . . . , yn)′ is the n dimensional col-
umn vector of observations, X = (x′1,x

′
2, . . . ,x

′
n)′ is

the n× k matrix of observations on the explanatory
variables, and e = (e1, e2, . . . , en)′ is the n dimen-
sional error vector. Because the sample is a simple
random sample, e is independent of X.

2.2 Ordinary Least Squares Estimator

On the basis of model (3), the ordinary least squares
(OLS) estimator of β is

β̂ols = (
∑
i∈A

xix
′
i)
−1

∑
i∈A

xiyi = (X ′X)−1
X ′y. (4)

An estimator of the variance of β̂ols is

V̂ (β̂ols) = (X ′X)−1
σ̂2

ols, (5)

where
σ̂2

ols = (n− k)−1
∑
i∈A

ê2i,ols,

k is the dimension of xi and êi,ols = yi−xiβ̂ols. The
OLS estimator is the best linear unbiased estimator
(BLUE) of β, given model (3).

Assume now that a probability sample is selected
with unequal probabilities πi’s. Then, under the
model,

E{β̂ols − β}=̇E{(
∑
i∈U

xiπix
′
i)
−1

∑
i∈U

xiπiei}.

The approximate bias is zero if xiπi and ei are uncor-
related. If xiπi and ei are correlated, the expected
value of X ′e is not zero and the OLS estimator is
biased.

2.3 Probability Weighted Estimator

The probability weighted (PW) estimator, con-
structed with the inverses of the selection probabil-
ities, is

β̂PW = (
∑
i∈A

xiπ
−1
i x′i)

−1
∑
i∈A

xiπ
−1
i yi (6)

= (X ′WX)−1
X ′Wy,

where

W = diag(π−1
1 , π−1

2 , . . . , π−1
n )

=: diag(w1, w2, . . . , wn).

Under the model,

E{β̂PW − β}=̇E{(
∑
i∈U

xix
′
i)
−1

∑
i∈U

xiei}.

The probability weighted regression coefficient β̂PW

is design consistent for the finite population parame-
ter and is a consistent estimator of the superpopula-
tion parameter β, because xi and ei are independent
under the superpopulation model.

If the selection is such that yiπ
−1
i is uncorrelated

with yjπ
−1
j for i 6= j, an estimated covariance matrix

of β̂PW is

V̂ (β̂PW ) = (X ′WX)−1
X ′WD̂ee,πWX (X ′WX)−1

,
(7)

where

D̂ee,π = diag(ê21,π, ê
2
2,π, . . . , ê

2
n,π)

and êi,π = yi − xiβ̂π. In most cases the variance of
the PW estimator is larger than the variance of the
OLS estimator.

3 Instrumental Variable Estimator

3.1 Introduction

In the regression model

yi = xiβ + ei, (8)

assume some members of xi are not independent
of ei. If an explanatory variable is correlated with
the error term, this explanatory variable is some-
times called an endogenous explanatory variable.
The OLS estimator is generally inconsistent when
one or more explanatory variables are endogenous
in a regression model.

Assume some additional variables, denoted by ri,
are available with the superpopulation properties

E{r′iei} = 0 (9)

|E{x′irir
′
ixi}| 6= 0, (10)

where |C| is the determinant of the matrix C. Vari-
ables satisfying (9) and (10) are called instrumental
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variables. Thus, an instrumental variable must have
two properties: (1) it must be uncorrelated with the
error term of the structural equation; (2) it must
be correlated with the endogenous explanatory vari-
able. For details see Wooldridge (2000).

3.2 Central Limit Theorem

In this section, we show that the IV estimator is
consistent for the population parameter under mild
assumptions and has a limiting normal distribu-
tion. We begin with Lemma 1 which is adapted
from Schenker and Welsh (1988). See also Legg
(2006). Let E{·|FN} be the expectation over re-
peated samples holding the particular finite popu-
lation FN fixed. Let V {·|FN} be the variance over
repeated samples holding the particular finite popu-
lation FN fixed.

Lemma 1. Let {FN} be a sequence of finite popula-
tions and let θN be a function on Rk of the elements
of FN such that

N1/2(θN − θ) L−→ Nk(0,V11). (11)

Let a design and an estimator, θ̂N , and a sequence
of conditional variance matrices V22,N be such that

N1/2(θ̂N − θN )|FN
L−→ Nk(0,V22) a.s., (12)

lim
N→∞

V22,N = V22 a.s., (13)

where V11+V22,N is positive definite for all N . Then

N1/2(V11+V22,N )−1/2(θ̂N−θ) L−→ Nk(0, Ik), (14)

where Ik is the k × k identity matrix.

Theorem 1. Let {(yi,xi, ri)} be a sequence of in-
dependent identically distributed random variables
with bounded eighth moment. Let {UN ,FN : N =
k + 3, k + 4, . . .} be a sequence of finite populations,
where UN is the set of indices identifying the ele-
ments and FN = ((y1,x1, r1), . . . , (yN ,xN , rN )). In
the superpopulation yi is related to xi through a re-
gression model, that, for the finite population, can
be written as

yN = XNβ + eN , (15)
eN ∼ (0, INσ

2).

Assume ri is independent of ei and assume that
E{(RNΓN )′RNΓN} is nonsingular, where RN is

the N × r matrix of observations on ri and ΓN =
{E(R′

NRN )}−1E(R′
NXN ). Let tj = (yj ,xj ,zj),

let
MTπT,N = n−1

N T ′
NDπ,NTN (16)

and
MTπT = E{MTπT,N}, (17)

where zj = N−1nNπ
−1
i ri, Dπ,N =

diag(π1, π2, . . . , πN), πi is the inclusion proba-
bility for element i, and TN = (t′1, t

′
2, . . . , t

′
N )′.

Assume KL < Nn−1
N πi < KN for some positive KL

and KN .

Let dj = (yj ,zj). Assume the sequence of sample
designs is such that for any d with bounded fourth
moments

lim
N→∞

d̄HT = E{yj ,zj} a.s.,

lim
N→∞

nNV {d̄HT − d̄N |FN} = V∞,d̃d̃ a.s., (18)

where
d̄HT = N−1

∑
i∈A

π−1
i di,

d̄HT is the Horvitz-Thompson mean of d, d̄N is the
finite population mean of d, and V {d̄HT − d̄N |FN}
and V∞,d̃d̃ are positive definite. Assume

[V {d̄HT−d̄N |FN}]−1/2(d̄HT−d̄N )|FN
L→ N(0, I) a.s..

(19)
Let V̂ {d̄HT } be the Horvitz-Thompson variance es-
timator of V {d̄HT |FN}, and assume

V̂ {d̄HT } − V {d̄HT |FN} = op(n−1
N ) (20)

for any d with bounded fourth moments.

Let the instrumental variable estimator be

β̂IV = L̂XZn
−1
N Z ′y, (21)

where

L̂XZ = [n−1
N X ′Z(Z ′Z)−1Z ′X]−1X ′Z(Z ′Z)−1.

Then
β̂IV − β = LXZ b̄ +Op(n−1

N ), (22)

where

LXZ = [MXπZM−1
ZπZMZπX ]−1MXπZM−1

ZπZ ,

b̄ = n−1
N

∑
i∈A

bi,

and bi = ziei.
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Then

[V̂ {β̂IV }]−1/2[β̂IV − β] L→ N(0, I), (23)

where

V̂ {β̂IV } = L̂XZ [V̂ {b̄}+ n−2
N Z ′DπD̂eeZ]L̂′XZ ,

V̂ {b̄} is the Horvitz-Thompson estimated variance
of b̄ calculated with b̂i = ziêi, D̂ee = diag(ê2i ) and
êi = yi − xiβ̂IV .

Proof. Omitted

3.3 A Test for Endogeneity

In this section, we describe a test for endogeneity in
the context of instrumental variable estimation. The
general idea of using a pretest to determine an es-
timation procedure is discussed by Bancroft (1944),
Mosteller (1948) and Huntsberger (1955). Suppose
we have a regression model written as

y = Xβ + e, (24)
e ∼ (0, Iσ2).

The Z is a known instrumental variable for X. For
example, in the survey situation, a possible Z is Z =
WX. The two-stage least squares form of the IV
estimator constructed using Z can be written as

β̂IV = (X̂ ′X̂)−1X̂ ′y, (25)

where
X̂ = Z(Z ′Z)−1Z ′X.

Wooldridge (2000) gives a test for exogeneity based
on the two-stage least squares estimator. We extend
the test to the complex survey case. If the design is
such that π−1

i ei is independent of π−1
j ej , i 6= j, an

estimated covariance matrix of β̂IV is

V̂ (β̂IV ) = (X̂ ′X̂)−1X̂ ′D̂ee,IV X̂(X̂ ′X̂)−1, (26)

where
X̂ ′D̂ee,IV X̂ = V̂ {nb̄},

D̂ee,IV = diag(ê21,IV , ê
2
2,IV , . . . , ê

2
n,IV ),

b̄ is defined in (22) and êi,IV = yi − xiβ̂IV .

We describe a test that a set of variables can be used
as instrumental variables, given a set that is known
to be exogenous. We partition the Z as (Z2,Z3).
The Z2 is a set of variables known to be exogenous
and Z3 is a set for which we wish to test

H0 : E{Z ′
3e} = 0. (27)

The test is the test that H0 : δ = 0 in the represen-
tation

y = X̂β + (Z3 − Ẑ3)δ + e∗, (28)

where
Ẑ3 = Z2(Z ′

2Z2)−1Z ′
2Z3,

X̂ = Z(Z ′Z)−1Z ′X,

and Z = (Z2,Z3). We compute(
β̂

δ̂

)
= (X̃ ′X̃)−1X̃ ′y, (29)

where x̃i = (x̂i,z3i − ẑ3i). An estimated covariance
matrix is

V̂

(
β̂

δ̂

)
= (X̃ ′X̃)−1V̂ (X̃ ′e)(X̃ ′X̃)−1,(30)

V̂ (X̃ ′e) is a variance estimator calculated with X̃ ′ê,
where êi = yi − (xi,z3i − ẑ3i)(β̂′, δ̂′)′. The null
hypothesis is H0 : δ = 0 and the test statistic is

δ̂′[V̂ (δ̂)]−1δ̂. (31)

If the test is statistically significant at the chosen sig-
nificance level, we reject the hypothesis that Z3 can
be used as an instrumental variable. Under the null
model, the distribution of the test statistic (31) is
approximately a Chi square with degrees of freedom
equal to the dimension of Z3.

4 Monte Carlo Study

4.1 Introduction

To illustrate the instrumental variable procedure, a
simulation study was conducted. We create each
sample in the simulation by the following selection
procedure. Let (xi, ei, ai, ui) be a vector, where xi

is a normal (0, 0.5) random variable, ei is a normal
(0, 0.5) random variable, ai is a normal (0, 0.5) ran-
dom variable, ui is a uniform (0, 1) random variable,
and the variables xi, ei, ai, and ui are mutually
independent. Let the selection probability pi be a
function of xi, ei and ai,

pi(xi, ei, ai) = 0.25r(xi)+1.75r(ψ0.5ei+[1−ψ]0.5ai),
(32)

where

r(x) =

 0.025 if x < 0.2
0.475(x− 0.20) + 0.025 if 0.2 ≤ x ≤ 1.2
0.5 if x > 1.2

(33)
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and ψ is a parameter that is varied in the experi-
ment. The parameter ψ determines the correlation
between πi and ei.

If ui > pi, we reject the vector (xi, ei, ai, ui). If
ui ≤ pi, the vector (xi, ei, ai, ui) is accepted and yi

is defined by

yi = 0.5 + xi + ei. (34)

For each sample, we draw 1000 vectors. This pro-
cedure gave an expected sample size of about 220.
Results are reported for 10000 samples created in
this way.

4.2 Instrumental Variable Estimator

Under the regression model, E{
∑

i∈U ei} = 0 and
E{

∑
i∈U xiei} = 0. Thus wi and wixi are possible

instrumental variables. We consider xi as a potential
instrumental variable.

We construct two instrumental variable (IV) esti-
mators. In computing the IV estimators, estimated
probabilites p̂i’s are constructed, where p̂i is the pre-
dicted value from the regression of pi on (1, r(xi)).
This procedure is suggested by Pfeffermann and
Sverchkov (1999). The first IV estimator is based
on four instrumental variables, wi, wi(xi−x̄n), wip̂i,
and wip̂i(xi− x̄n). The second IV estimator is based
on five instrumental variables, wi, wi(xi− x̄n), wip̂i,
wip̂i(xi − x̄n), and xi.

The first IV estimator is

β̂IV 1 = (X̂ ′
2X̂2)−1X̂ ′

2y, (35)

where z2,i = (wi, wi(xi − x̄n), wip̂i, wip̂i(xi − x̄n)),
Z2 = (z2,1,z2,2, . . . ,z2,n)′ be n× 4 matrix, and

X̂2 = Z2(Z ′
2Z)−1

2 Z ′
2X.

Because the design is such that π−1
i ei is independent

of π−1
j ej , i 6= j, an estimated covariance matrix of

β̂IV 1 is

V̂ (β̂IV 1) = (X̂ ′
2X̂2)−1X̂ ′

2D̂IV 1X̂2(X̂ ′
2X̂2)−1,

(36)
where

D̂IV 1 = diag(ê21,IV 1, ê
2
2,IV 1, . . . , ê

2
n,IV 1),

and êi,IV 1 = yi − xiβ̂IV 1.

Z2 is a set of variables known to be exogenous and
if z3,i = xi is also exogenous, we can construct the
second IV estimator of β

β̂IV 2 = (X̂ ′X̂)−1X̂ ′y, (37)

where zi = (wi, wi(xi−x̄n), wip̂i, wip̂i(xi−x̄n), z3,i),
z3,i = xi, z3 = (x1, x2, . . . , xn)′, Z = (Z2,z3) is an
n× 5 matrix, and

X̂ = Z(Z ′Z)−1Z ′X.

An estimated covariance matrix for β̂IV 2 is

V̂ (β̂IV 2) = (X̂ ′X̂)−1X̂ ′D̂IV 2X̂(X̂ ′X̂)−1, (38)

where

D̂IV 2 = diag(ê21,IV 2, ê
2
2,IV 2, . . . , ê

2
n,IV 2)

and êi,IV = yi − xiβ̂IV 2.

4.3 Preliminary Testing Procedure

We constructed a pretest estimator based on the
OLS estimator and the two IV estimators. The
pretest procedure is a two-step testing approach.
The first step test is a test for importance of weights.
This test is based on two regressions: the regression
of yi on (1, xi, wi, wixi) (full model) and the regres-
sion of yi on (1, xi) (reduced model). The F -statistic

F 2
n−4 =

(SSEred − SSEfull)/2
MSEfull

(39)

is computed, where SSEfull and SSEred are error
sum of squares for the full model and the reduced
model respectively, and MSEfull is mean squared
error for the full model. If F 2

n−4 is not statistically
significant, we use β̂ols, otherwise we proceed to the
second test.

The second test is a test for endogeneity. We com-
pute the OLS regression of yi on (x̃0, x̃i, xi − x̂i) as
defined in (29) where x̃0 is the predicted value from
the regression of 1 on [wi, wi(xi−x̄n), wip̂i, wip̂i(xi−
x̄n), xi], x̃i is the predicted value from the regression
of xi on [wi, wi(xi− x̄n), wip̂i, wip̂i(xi− x̄n), xi], and
x̂i is the predicted value from the regression of xi on
[wi, wi(xi − x̄n), wip̂i, wip̂i(xi − x̄n)]. The t-statistic
for the hypothesis that H0 : δ = 0 is

t = δ̂/v̂(δ̂), (40)

where δ̂ is the ordinary least squares coefficient for
xi − x̂i in the regression of (29). Under the null
model, the distribution of the t statistic (40) is ap-
proximately a normal distribution. If t is not statis-
tically significant, we conclude that xi can be used as
an instrumental variable. Thus the pretest estima-
tor β̂pre = β̂ols, if F < F2,n−4(α). If F ≥ F2,n−4(α),
the pretest estimator is

β̂pre =
{

β̂IV 2 if |t| < Z(α/2)
β̂IV 1 if |t| ≥ Z(α/2),

ASA Section on Survey Research Methods

3896



where α is the size of the test.

We can compute a standard error for β̂pre using
the variance estimation procedure appropriate for
the estimator chosen. Then an estimated covariance
matrix is V̂ (β̂pre) = V̂ (β̂ols), if F < F2,n−4(α). If
F ≥ F2,n−4(α),

V̂ (β̂pre) =
{
V̂ (β̂IV 2) if |t| < Z(α/2)
V̂ (β̂IV 1) if |t| ≥ Z(α/2),

where V̂ (β̂IV 1) is defined in (36) and V̂ (β̂IV 2) is
defined in (38).

4.4 Simulation Results

Table 1: Monte Carlo Mean Squared Error (×1000) for
estimators of β0 (10,000 samples)

ψ β̂ols,0 β̂π,0 β̂IV 1,0 β̂IV 2,0 β̂pre,0

α = 0.10
0 2.33 5.92 5.71 5.33 3.39
.0025 3.35 5.82 5.65 5.18 4.38
.01 6.77 5.71 5.55 5.14 6.97
.02 10.82 5.75 5.53 5.10 8.94
.03 15.16 5.58 5.44 5.08 9.61
.05 23.94 5.60 5.41 4.99 9.35
.07 32.45 5.65 5.47 5.02 8.01
.10 45.11 5.58 5.42 5.06 6.55
.14 62.13 5.60 5.45 5.12 5.58
.17 75.90 5.65 5.53 5.22 5.47
.20 88.22 5.67 5.55 5.18 5.41
.25 109.28 5.42 5.31 4.99 5.17
.30 131.22 5.44 5.34 4.89 5.11
.40 174.09 5.32 5.25 4.89 5.07
.50 217.28 5.26 5.23 4.88 5.07

Table 1 contains the mean squared error for estima-
tors of β0. Table 2 contains the mean squared error
for estimators of β1. The pretest estimator is for
α = 0.10. The mean squared error of β̂ols,0 and β̂ols,1

are the smallest among estimators of β0 and β1, re-
spectively, when ψ = 0, that is, when there is no
correlation between pi and ei. When the correlation
between pi and ei increases, the mean squared error
of β̂ols,0 and β̂ols,1 increase because of the squared
bias. The IV estimators are more efficient than the
PW estimator, because the selection probability pi

is a function of xi. The pretest estimator is a com-
promise between alternative IV estimators. As ψ
gets larger, the mean squared error of the pretest

Table 2: Monte Carlo Mean Squared Error (×1000) for
estimators of β1 (10,000 samples)

ψ β̂ols,1 β̂π,1 β̂IV 1,1 β̂IV 2,1 β̂pre,1

α = 0.10
0 4.16 9.62 8.53 4.29 5.12
.0025 4.22 9.82 8.71 4.31 5.22
.01 4.30 9.87 8.61 4.32 5.61
.02 4.41 9.71 8.63 4.32 5.93
.03 4.62 9.74 8.64 4.45 6.16
.05 4.66 9.54 8.49 4.34 6.18
.07 4.94 9.80 8.64 4.46 6.49
.10 5.32 9.69 8.57 4.58 6.52
.14 5.92 9.62 8.57 4.69 6.58
.17 6.21 9.41 8.32 4.80 6.42
.20 6.47 9.48 8.39 4.84 6.56
.25 7.04 9.47 8.37 4.96 6.63
.30 7.91 9.30 8.25 5.20 6.66
.40 8.85 8.95 8.05 5.43 6.70
.50 10.29 9.10 8.25 5.76 6.97

estimator becomes closer to the mean squared error
of the IV estimator. The reason for this is that the
pretest procedure rejects the null hypothesis more
frequently when the correlation between pi and ei

increases.

Figure 1 is the plot of the mean squared errors of
β̂ols,0, β̂IV 2,0 and β̂pre,0 relative to the mean squared
error of β̂IV 1,0 as a function of the correlation be-
tween pi and ei. The shape of the mean squared
error of the pretest estimator is typical of pretest
procedures. In Figure 1 the solid line always equal
to one is the mean squared error efficiency of β̂IV 1,0

relative to itself. The β̂ols,0 is the best if pi and ei are
independent, but has very poor performance when
the correlation between pi and ei is large. The IV2
estimator is always better than the IV1 estimator.
The pretest estimator has mean squared error that is
between that of the OLS estimator and that of the
IV estimators. The pretest estimator is never the
best, nor the worst, so it is a compromise in terms
of mean squared error.

Figure 2 is the plot of the mean squared errors of
β̂ols,1, β̂IV 2,1 and β̂pre,1 relative to the mean squared
error of β̂IV 1,1 for α = 0.10. The pretest estima-
tor is always superior to the IV1 estimator because
Cov(pixi, ei) = 0 for all parameter sets represented
in this plot. If we changed the x-axis to be the corre-
lation between pixi and ei, we would see the typical
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Figure 1: Plot of MSE ratios relative to β̂IV 0,0
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