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Abstract

We describe a multivariate, multilevel, pseudo maxi-
mum likelihood estimation method for multistage strati-
fied cluster sampling designs, including finite population
and unequal probability sampling. Multilevel models can
be estimated with this method while incorporating the
sampling design in the standard error computation. De-
sign based adjustment of the likelihood ratio test (LRT)
statistic is proposed. We also discuss multiple group
and subpopulation analysis in this context. Simulation
studies are conducted to evaluate the performance of the
proposed estimator and test statistic. We also compare
the estimators and the LRT adjustments implemented in
Mplus and LISREL in simulation studies.
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1 Introduction

Multilevel models are frequently used to analyze data
from multistage sampling designs. Such sampling de-
signs use unequal probability of selection at each sam-
pling stage, stratified sampling, cluster sampling and fi-
nite population sampling. Multilevel models are used to
study the effect of cluster level variables on the individ-
ual outcomes, however in multistage samples there are
various levels of clustering. For example consider a sur-
vey of school aged children. School districts can be the
primary sampling units (PSU), classrooms can be the sec-
ondary sampling units (SSU) and the students within the
classroom can be the third level sampling unit (TSU). In
addition the school district sampling can be stratified by
more homogeneous regions to improve the quality of the
estimation. For example urban schools districts may form
one stratum, suburban school district can form another
stratum and rural school districts can form another stra-
tum.

Typically two-level models will be used to study the
effects of the lowest level of clustering, e.g. classrooms,
on individual outcomes. This is because the lowest level
of clustering usually has the greatest impact and because
it is of greater substantive interest. In addition, to model
the cluster level effects a relatively large number of units
are needed. In our example the teacher’s effect on the
students performance can be included in the model, while
school district effects and strata effects will typically not
be included in a two-level model. Since the SSUs are
nested within the PSUs they will not be independent.

Thus inference assuming independence of the SSU, which
is the basic assumption of the two-level model, will not
be accurate. In addition if we ignore the stratification in
the sampling design the precision gains obtained by this
design feature will be unaccounted for.

To adjust the estimation for the unequal probability of
selection, sampling weights are assigned at one or both
levels in the two-level model. Let pj be the probability
of selection for SSU j and let pi|j be the probability that
individual i in SSU j is selected, given that SSU j is
selected. The sampling weights on the cluster (between)
level are then obtained by

wj = 1/pj .

The sampling weights on the individual (within) level are
then obtained by

wi|j = 1/pi|j .

If the sampling weights are ignored at either level the
parameter estimates can be substantially biased. There
are a number of articles that propose two-level estima-
tion methods that utilize the sampling weights to reduce
or eliminate the bias. None of these proposed methods
have achieved this objective completely. In general, the
unequal probability of selection for the within level units
remains problematic especially when the within level se-
lection is highly informative and the cluster sample sizes
are small. For large cluster sample sizes however it is
possible to obtain consistent parameter estimates. For a
detailed discussion on two-level estimation with sampling
weights see Asparouhov (2006).

Unlike unequal probability of selection it is easy to in-
corporate stratification, cluster sampling and finite pop-
ulation sampling in the estimation of two-level mod-
els. We build upon the pseudo-maximum likelihood es-
timation method developed by Skinner (1989), follow-
ing ideas of Binder (1983). The pseudo-maximum likeli-
hood (PML) is generally defined for a single level mod-
els, however it has been adopted for two-level mod-
els as well, see Grilli and Pratesi (2004), Asparouhov
(2004), Asparouhov (2006) and Rabe-Hesketh and Skron-
dal (2006). We call the two-level version of the PML esti-
mator the multilevel pseudo maximum likelihood estima-
tor (MPML). The main advantages of the MPML estima-
tor over other two-level weighted estimators is that it ap-
plies to all two-level models, including all multilevel mod-
els implemented in Mplus such as two-level latent variable
models, multilevel Probit and logistic regressions, multi-
level multinomial logistic regression, multilevel mixture
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models and multilevel continuous and discrete time sur-
vival models. Another advantage of the MPML estimator
is that it can easily incorporate missing data under the
standard assumption of missingness at random (MAR).

Incorporating stratification, cluster sampling and finite
population sampling into the MPML estimator amounts
to adjusting the variance computation of the score vec-
tor. Variance computation for stratified cluster samples
with and without replacement are well established tech-
niques, see for example Cochran (1977) or SUDAAN User
Manual (2002). In Asparouhov and Muthen (2005) this
approach was used to derive explicit estimation formu-
las for the PML estimator for single level models and for
the three most common multistage survey designs: WR
(with replacement sampling), WOR (without replace-
ment sampling) and WORUNEQ (without replacement
unequal probability sampling). This terminology was pi-
oneered in the software program SUDAAN and it has
been adopted widely in practice. The WOR design is a
stratified multistage sampling design with equal probabil-
ities without replacement sampling at the PSU level and
equal probabilities with or without replacement sampling
at the subsequent stages. The WORUNEQ is a stratified
multistage design with unequal probabilities without re-
placement sampling at the PSU level and with or without
replacement equal probabilities sampling at subsequent
stages. In Section 2 we review the MPML estimator and
provide explicit formulas for the variance estimation for
the three cluster designs using the same approach as in
Asparouhov and Muthen (2005). In Section 4 we de-
scribe a design based adjustment to the likelihood ratio
test (LRT) that can be used with the MPML estimator.
In Section 4 we discuss Multiple Group and Subpopu-
lation Analysis for multilevel models. In Section 5 we
conduct a simple simulation study to evaluate the per-
formance of the MPML estimator and the adjusted LRT
test for a stratified three-stage cluster sample design. In
Section 6 we compare the adjusted LRT implemented in
Mplus with the adjusted LRT implemented in LISREL
in a simulation study using a cluster sampling design. In
Section 7 we conduct a simulation study to compare the
parameter estimates and their standard errors obtained
by Mplus and LISREL for a two level regression model
with sampling weights at both levels. All computations
are performed with Mplus 4.2 (Muthen & Muthen, 1998-
2006) and LISREL 8.8 (SSI, 2006).

2 Multilevel Pseudo Maximum Likelihood
Estimation in Multistage Sampling

In this section we describe the MPML estimator for a
general parametric model and the three sampling designs
WR, WOR, and WORUNEQ. We describe the MPML
estimator for a 3-stage stratified cluster sampling design.
Suppose that the population is divided into S strata. In
stratum s we sample ns PSUs. From the k-th PSU in
stratum s we sample nsk SSUs (clusters) and finally from
the j-th SSU in the k-th PSU in stratum s we sample

nskj TSUs (individuals). Denote the observed individual
variables yskji for individual i in cluster j in PSU k in
stratum s. Denote the cluster random effect by ηskj , the
individual level covariates by xskji and the cluster level
covariates by xskj . Denote the density function of yskji

by f(yskji|xskji, ηskj , θ1) and the density function of ηskj

by φ(ηskj |xskj , θ2), where θ1 and θ2 are the parameters
to be estimated on the within and the between level re-
spectively. Let wskj = 1/pskj and wskji = 1/pskji be the
sampling weights for the cluster and the individual level.
The within level weights wskji are consequently scaled to
improve the estimation method. A number of different
scaling methods have been considered in the literature,
see for example Pfeffermann et al. (1998), Stapleton
(2002) and Asparouhov (2006). Several scaling meth-
ods are implemented in the software package Mplus, see
Muthen & Muthen (1998-2006). In this article we con-
sider only the most common scaling method where the
weights are standardized to add up to the sample size of
the corresponding cluster

w′
skji = nskj

wskji∑
i wskji

. (1)

Let lskj be the weighted pseudo likelihood of the observed
data in the j−th cluster

lskj =
∫ ( ∏

i

f(yskji|xskji, ηskj , θ1)w′
skji

)
φ(ηskj |xskj , θ2)dηskj . (2)

The MPML estimates θ̂ = (θ̂1, θ̂2) are obtained by maxi-
mizing the total weighted pseudo likelihood

l =
∏
s,k,j

l
wskj

skj . (3)

Denote by L = log(l) the weighted pseudo log-likelihood
and by Lskj = log(lskj) the weighted log-likelihood of
the j-th cluster. The asymptotic covariance matrix of
the parameters θ is then given by

(L′′)−1V ar(L′)(L′′)−1, (4)

where ′ and ′′ refer to the first and the second derivative
of the log-likelihoods with respect to the parameters θ.
The middle term

V ar(L′) = V ar(
∑
s,k,j

wskjLskj)

is computed according to the formulas for the variance of
the weighted estimate of the total described in Cochran,
Chapter 11 (1977) taking the appropriate design into ac-
count.

We now describe V ar(L′) for the three sampling de-
signs WR, WOR and WORUNEQ. Let Zskj = wskjLskj .
Also define Zsk =

∑
j Zskj , Zs =

∑
k Zsk and

ssk =
∑

j

(Zskj − Z̄sk.)T (Zskj − Z̄sk.)
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ss =
∑

k

(Zsk − Z̄s.)T (Zsk − Z̄s.)

Let fsk and fs be the sampling fractions at each of the
corresponding sampling stages if the sampling at that
stage is without replacement. If the sampling is with
replacement these quantities are assumed to be 0.

For the WR design the variance of the score is given
by

V ar(L′) =
∑

s

ns

ns − 1
ss.

For the WOR design the variance of the score is given by

V ar(L′) = V1 + V2,

where
V1 =

∑
s

(1 − fs)
ns

ns − 1
ss

V2 =
∑
sk

(1 − fsk)fs
nsk

nsk − 1
ssk

For the WORUNEQ design we need the joint probabil-
ity of selection. The probability that PSU k in stratum s
is selected is denoted by pk|s. The probability that both
PSUs k1 and k2 in stratum s are selected in the sample
is denoted by pk1k2|s. The variance of the score is given
by

V ar(L′) = V1 + V2,

where

V1 =
∑

s

∑
k1

∑
k2>k1

pk1|spk2|s − pk1k2|s

pk1k2|s
(Zsk1 − Zsk2)

2

V2 =
∑
sk

(1 − fsk)pk|s
nsk

nsk − 1
ssk

3 Likelihood Ratio Test

Hypotheses involving several parameters are frequently
tested in multivariate modeling. Here we will explore the
possibility to use the MPML pseudo maximum-likelihood
value to perform likelihood ratio test (LRT). The dis-
tribution of the LRT statistic based on the maximized
weighted log-likelihood value is not a chi-square distri-
bution. This distribution depends on the sampling de-
sign just as the asymptotic covariance of the parame-
ter estimates depends on the sampling design. In As-
parouhov and Muthen (2005) we describe an adjustment
of the single level LRT statistic which takes into account
the sampling design and produces a test statistic with a
chi-square distribution. This adjustment is constructed
similarly to the adjustments of the Yuan-Bentler (2000)
and the Satorra-Bentler (1988) robust chi-square tests
for mean and variance structures. Similar first and sec-
ond order adjustments are described also in Rao-Thomas
(1989) for contingency tables. In the multilevel context
we know that when the cluster sample sizes are large the
MPML log-likelihood can be approximated by PML log-
likelihood, see Asparouhov(2006), thus for designs with

large cluster the adjustment of the PML-LRT can be used
to adjust the MPML-LRT. In this section we will explore
the quality of this approximation through a simulation
study.

First let’s describe the LRT adjustment and see how
it applies in the multilevel context. We assume a general
hypothesis testing for two nested models M1 and M2.
Let θi be the true parameter values and θ̂i the param-
eters estimates for model Mi that maximize the pseudo
log-likelihood function Li. Let di be the number of pa-
rameters in model Mi. The corrected LRT statistic is

T ∗ = c · 2(L1 − L2), (5)

where c is the correction factor

c =
d1 − d2

Tr((L′′
1)−1V ar(L′

1)) − Tr((L′′
2)−1V ar(L′

2))
. (6)

The above description of the adjusted LRT can be used
with the MPML estimator as well. For single level
models and multilevel models with large cluster size
the statistic T ∗ has approximately a chi-square distri-
bution with d1 − d2 degrees of freedom. The compo-
nents Tr((L′′

i )−1V ar(L′
i)) are easily available since they

are part of the asymptotic covariance for the parameter
estimates given in (4).

4 Multiple Group and Subpopulation Analysis

A multiple group model is a model which estimates sev-
eral submodels for several subpopulations or groups. The
different submodels can have some parameters that are
held equal across the different subpopulations and some
parameters that are different across the subpopulations.
The subpopulations can be defined by a grouping variable
such as gender or race. The grouping variable is essen-
tially a categorical predictor variable. In linear regression
for example when a categorical variable is included as a
predictor, a regression model is essentially equivalent to
a multiple group model with different means across the
subpopulations. In multivariate modeling however mul-
tiple group models are more general than the regression
models in that they allow not only means to vary across
subpopulations but also slopes and variance covariance
parameters as well.

Subpopulation analysis is conducted when only a par-
ticular subpopulationD is of interests. If the complement
of the subpopulation is D1 the subpopulation analysis es-
timates a model for group D while it does not estimate a
model for the complement D1. Subpopulation analysis is
equivalent to a multiple group analysis based on the two
groups D and D1 where the models for D and D1 have
no parameters in common. In that respect subpopulation
analysis is a special case of multiple group analysis.

One way to conduct a subpopulation analysis with
complex survey data is to estimate a two-group model.
However for single level models a more popular approach
is to estimate one model for the entire population by us-
ing zero sampling weights for all observations that are not
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in the domain of interest D, see for example Korn and
Graubard (1999) Section 5.4. Let’s call this approach the
zero-weight approach. For single level models the zero-
weight approach and the two-group approach are equiv-
alent. For multilevel models however the two-group ap-
proach is better than the zero-weight approach because
the zero-weight approach could underestimate the stan-
dard errors.

To demonstrate this, we first focus on the definition of
a multiple group multilevel model. One popular approach
is to assume that there is one set of cluster level random
effects that applies to all groups. The multiple group
version of the pseudo loglikelihood (2) is then given by

lskj =
∫ ( ∏

i

fg(yskji|xskji, ηskj , θ1, gskji = g)w′
skji

)
φ(ηskj |xskj , θ2)dηskj (7)

where g is the grouping variable taking values 1, ..., G
where G is the total number of groups. This however is
not the most general formulation. A more general formu-
lation is to assume that there are different cluster level
random effects ηskjg for each group, which may or may
not be correlated. In this case the pseudo loglikelihood is

lskj =
∫ ( ∏

i

fg(yskji|xskji, ηskjg, θ1, gskji = g)w′
skji

)
φ(ηskj |xskj , θ2)dηskj (8)

where ηskj is the vector of all random effects
(ηskj1, ..., ηskjG). The model with likelihood (7) is a spe-
cial case of the model with likelihood (8). The model
with likelihood (7) essentially assumes that the random
effects ηskjg have correlation 1 and equal variance across
groups.

If we now estimate subpopulation analysis by the zero-
weight approach the pseudo loglikelihood is

lskj =
∏
g

∫ ( ∏
i,gskji=g

fg(yskji|xskji, ηskjg, θ1)w′
skji

)
φ(ηskjg|xskj , θ2)dηskjg. (9)

The model with likelihood (9) is also a special case of the
model with likelihood (8). This model assumes that the
random effects ηskjg are independent. This assumption
could be incorrect in practical applications because these
random effects usually are highly correlated. Such incor-
rect independence assumptions could result in underesti-
mation of standard errors of the parameter estimates and
even in biased parameter estimates.

In conclusion, for correct multilevel subpopulation
analysis it is best to use the multiple group approach
rather than the zero-weight approach. Note however that
when the subpopulations are nested above the cluster
level the two approaches are equivalent and thus the zero-
weight approach is still valid. Also if the correlation be-
tween the random effects is small the two approaches will
produce the similar result.

Another obstacle to the zero-weight approach is the
fact that some software packages automatically rescale
the weights. Thus adding observations with zero weights
to the sample will actually inflate the weights for the ob-
servations in the subpopulation of interest. Such weight
inflation produces unscaled weights, which results in bi-
ased estimates, see Asparouhov (2006). To avoid this
problem the zero-weight approach should be used with
software packages that allow model estimation with-
out automatic weights scaling or software packages that
have a special subpopulation implementation. Both ap-
proaches are possible in Mplus.

5 Simulation Study

In this section we conduct a basic simulation study to
evaluate the performance of the variance computation
and the LRT adjustment described in Sections 2 and
3. First we construct a target population of size 50000,
which consists of 5000 clusters of size 10. Each observa-
tion consist of 10 dependent observations Y1,..., Y10 which
are generated from a two-level factor model with one fac-
tor on the between level and two factors on the within
level. For a general discussion on multilevel structural
equation models and their applications for example see
Muthen (1994).

We denote the r−th observation for individual i in clus-
ter j by Yjir. The model used to generate the target
population is described by the following equation

Yjir = Yjrb + Yjirw

where Yjrb is the between, cluster specific, part of Yjir

and Yjirw is the within, individual specific, part of Yjir,
i.e., Yjrb is the random intercept in a two-level hierarchi-
cal settings and Yjirw is the residual variable. The unob-
served random variables Yjrb and Yjirw are assumed to be
independent of each other and are normally distributed.
The following equations describe the distribution of Yjrb

and Yjirw used in the data generation process

Yjirw = λrwηji1 + εjir, r = 1, ..., 5

Yjirw = λrwηji2 + εjir, r = 6, ..., 10

Yjrb = µi + λrbηj + εjr, r = 1, ..., 10

where λrw = 1, for i = 1, ..., 5, λrw = 0.7, for i = 6, ..., 10,
λrb = 0.8 are the within and the between level loading
parameters that are to be estimated. The variables ηji1

and ηji2 are zero-mean within level factors which are nor-
mally distributed random variables with variance 1 and
correlation parameter to be estimated ρ = 0.5. The vari-
able ηj is the normally distributed between level factor
with zero mean and variance 1. The variables εjir and
εjr are zero-mean normal residuals with variance θrw = 1
and θrb = 0.5. The intercept parameters are µr = 0. We
call the parameter values used in the generation routine
the true parameters. First we estimate the above model
using the entire target population. We call the resulting
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Table 1: Bias of MPML Parameter Estimates and Population Value Coverage

True Population
Parameter Value Value L = 10 L = 20 L = 30

λ1w 1.0 0.996 0.007(89%) -0.002(93%) -0.005(96%)
λ6w 0.7 0.698 -0.004(94%) -0.007(91%) -0.007(92%)
λ1b 0.8 0.789 -0.006(100%) -0.008(98%) 0.002(97%)
ρ 0.5 0.492 0.008(92%) 0.002(93%) -0.002(94%)
µ1 0.0 -0.023 -0.002(96%) 0.011(94%) -0.001(97%)
θ1w 1.0 1.003 -0.004(91%) -0.004(93%) -0.001(97%)
θ1b 0.5 0.480 -0.016(94%) 0.000(96%) -0.012(91%)

parameter estimates the population values. As expected,
the population parameters are very close to the true pa-
rameters because the sample size is very large.

To construct strata and PSUs within our target pop-
ulation we first compute the following two cluster level
variables

Mj =
∑
i,r

Yjir

Sj =
∑

i

∑
r

(Yjir − Y ji.)2.

Mj is the sum of all observations in a cluster while Sj is
a multiple of the sum of the sample variances of all ob-
servations in the cluster. We now reorder the entire tar-
get population so that the cluster variable Mj increases
monotonically as j increases. We use the first 1000 clus-
ters to form stratum 1, the next 3000 clusters to form
stratum 2, and the last 1000 clusters to form stratum
3. Thus the clusters with large Yjir will appear in the
first stratum, the clusters with small Yjir will appear in
the last stratum and the clusters with medium Yjir will
appear in the second stratum. Within each stratum we
order the clusters in ascending Sj order and we combine
every 10 consecutive clusters to form a PSU. Thus strata
1 and 3 have 100 PSUs and stratum 2 has 300 PSUs. This
choice of constructing the strata and the PSUs guaran-
tees that the multistage sampling is informative and that
it is not equivalent to simple random sampling.

We then construct the sampling scheme as a stratified 3
stage random sampling as follows. From each stratum we
select L PSUs at random with replacement. From each
PSU we select 5 clusters at random with replacement.
Finally from each cluster we select 5 observations at ran-
dom without replacement. It is very important that at
the last sampling stage we use without replacement sam-
pling. We will discuss this point later in this section.
The total sample size is 75L and the total number of
PSUs in the sample is 3L. We conduct simulation study
with L = 10, 20 and 30. For each value of L we select 100
samples and estimate the correct two-level factor model.
We compute the parameter estimates and their standard
errors, as well as the LRT statistic and the adjusted LRT
statistic.

Table 2: Rejection LRT rates

Test L = 10 L = 20 L = 30
Unadjusted LRT 88% 92% 89%
Adjusted LRT 20% 13% 7%

The results of the simulation study are presented in
Tables 1 and 2. Table 1 contains the bias of the pa-
rameter estimates, computed as the difference between
the average parameter estimates and the population val-
ues. Table 1 also contains in brackets the coverage values,
which represent the percentage of replications for which
the population values are covered by the estimated 95%
confidence intervals. We include the results only for a
representative selection of parameters. The results in
Table 1 show that in all cases the bias of the parame-
ter estimates is very small and the coverage value is very
close to the nominal 95% value. Table 2 contains the
rejection rates of the adjusted and the unadjusted LRT
tests for the true factor model against the saturated two-
level mean and variance/covariance model. The rejection
rate is the percentage of replications with p-value smaller
than 5%. Since the model is correct we expect the rejec-
tion rates to be close to the nominal value of 5%. The
estimated factor model has 51 parameters while the sat-
urated model has 120, and therefore there are 69 degrees
of freedom. Table 2 shows that the unadjusted LRT has
very poor performance. The unadjusted LRT overesti-
mates the test statistic, underestimates the p-value and
inflates the rejection rate. On the other hand the unad-
justed LRT appears to perform well especially when the
number of PSUs increases.

Let’s now evaluate the individual effect of the stratifi-
cation and the clustering on the variance estimation. In
Table 3 we compute the ratio between the average of the
standard errors and the standard deviation of the param-
eter estimates. When the standard error computation is
correct this ratio should be close to 1. Any deviation
from 1 would indicate underestimation or overestimation
of the standard errors. In Table 3 we report this ratio for
the full design variance computation, for the full design
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Table 3: Ratio of Average Standard Errors to Standard
Deviation of Parameter Estimates

Full Excluding Excluding
Parameter Design Stratification Clustering

λ1w 1.000 0.991 0.911
λ6w 0.947 0.939 0.886
λ1b 1.062 1.491 0.931
ρ 0.985 0.977 0.882
µ1 1.017 1.496 0.900
θ1w 1.048 1.032 0.959
θ1b 1.014 1.007 0.869

but excluding the stratification in the sampling and for
the full design but excluding the clustering in the sam-
pling. The full design excluding the clustering is a strati-
fied multistage sampling design where we ignore the PSU
sampling and we assume that the clusters are sampled at
random and not as they really are.

Table 3 contains the results for L = 20. The results
show that excluding the stratification results in overesti-
mation of the standard errors for some of the parameters,
namely the intercepts and the between level loadings. Ex-
cluding the clustering, results in a small underestimation
of the standard errors for all parameters. For the full
design the results suggest that the estimated standard
errors are very close to the correct values.

Finally, let’s focus on the sampling method at the last
sampling stage in the multistage sampling. For single
level analysis when the sampling at the primary stage is
WR, the method of sampling at the consecutive stages
does not affect the variance estimation. This however is
not the case for multilevel models. The sampling method
for the lowest level, the level that is included in the model
has to be WOR. If the WR method is used instead, any
repetitions of observations can inflate the correlation be-
tween the observations in the cluster which will result in
bias estimates. To illustrate this we compare the results
for sample designs with WR sampling at the last stage
and with WOR sampling at the last stage. Again we
present the results for L = 20. Table 4 contains the bias
of the parameter estimates and the coverage of the pop-
ulation values by the estimated confidence intervals. The
results indicate that the parameter estimates based on
the design with WR sampling at the last sampling stage
are biased and the coverage for some of the parameters
is low. Thus we conclude that the estimator described in
Section 2 is inappropriate for multilevel modeling based
on sampling designs with WR sampling at the last sam-
pling stage.

6 Comparing Mplus and LISREL LRT
Adjustments

An alternative LRT adjustment has been proposed and
implemented in the LISREL software package. In this

Table 4: Bias of MPML Parameter Estimates and Pop-
ulation Value Coverage for WOR and WR Sampling at
the Last Stage

Last Stage Sampling WOR WR
λ1w -0.002(93%) -0.049(76%)
λ6w -0.007(91%) -0.042(87%)
λ1b -0.008(98%) 0.040(93%)
ρ 0.002(93%) -0.010(95%)
µ1 0.011(94%) -0.012(97%)
θ1w -0.004(93%) -0.094(67%)
θ1b 0.000(96%) 0.106(84%)

section we explore the differences between the LISREL
adjustment and the adjustment described in this article
and implemented in Mplus. As described in the LISREL
documentation (2005) accompanying the software pack-
age, the adjustment is given by equation (5) where the
correction factor c is computed by

c =
d2

Tr((L′′
2)−1V ar(L′

2))
. (10)

This formula can also be found in Stapleton (2006). The
adjustment is available in LISREL for single level models.

We illustrate the differences between the two adjust-
ments with a simple simulation study. For simplicity we
use a single level model but this discussion applies to mul-
tilevel models as well. We generate a target population
of size 5000 with two observed variables Y1 and Y2 from
a bivariate normal distribution with means µ1 = µ2 = 0,
variances ψ1 = ψ2 = 1 and covariance ρ = 0. We reorder
the target population so that the values of Y1 are in as-
cending order. Clusters of size 10 are then constructed
as follows. The first 10 observations are placed in cluster
1, the next 10 observations are placed in cluster 2, etc.
The target population then contains 500 clusters. We
select 100 samples from the target population by clus-
ter sampling, i.e., for each sample we select at random L
clusters and use all observations from that cluster. Thus
the sample size is 10L. Using the entire target popu-
lation we estimate the population values µ1 = −0.018,
µ2 = 0.014, ψ1 = 1.011, ψ2 = 1.041 and ρ = 0.025.
The LRT is used to test between the following two mod-
els, the saturated model where all 5 parameters are esti-
mated and a restricted model where the parameters µ1,
ψ1 and ρ are fixed to their population values. Since the
model restrictions are correct the LRT test should have
a rejection rate of approximately 5%. The test between
the two models has 3 degrees of freedom and thus the
mean value of the LRT statistic should be approximately
3. Table 5 shows the rejection rates for the three LRT
statistics, the Mplus LRT adjustment, the LISREL LRT
adjustment and the Unadjusted LRT. Tables 6 shows the
average values of these test statistics. It is clear from
these results that the Mplus LRT adjustment performs
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Table 5: LRT Rejection Rates

Test L=50 L=100 L=200
Mplus LRT adjustment 10% 5% 6%

LISREL LRT adjustment 66% 67% 65%
Unadjusted LRT 68% 69% 67%

Table 6: LRT Average Values

Test L=50 L=100 L=200
Mplus LRT adjustment 3.2 2.7 2.8

LISREL LRT adjustment 19.7 16.3 16.7
Unadjusted LRT 21.0 18.3 18.6

very well in all cases, the rejection rates are close to the
nominal 5% value and the average test statistic values is
close to 3. In contrast the LISREL LRT adjustment and
the unadjusted LRT produced incorrectly large rejection
rates and average inflated test statistic values.

7 Comparing Mplus and LISREL Estimation of
Hierarchical Regressions with Sampling

Weights

Recently several structural equation modeling and mul-
tilevel software packages have implemented more accu-
rate statistical methodology for analyzing complex sur-
vey data, see Asparouhov (2005). Despite these improve-
ments large differences in the results obtained from differ-
ent packages are being reported in practical applications,
see Chantala and Suchindran (2006) for example. In this
section we conduct a simulation study to evaluate the
performance of the estimation methods implemented in
Mplus and LISREL for estimating a two-level random ef-
fect regression model with informative sampling weights
on both levels. The Mplus estimation is based on the mul-
tilevel pseudo maximum likelihood estimation method
described in this article while LISREL implements the
PWIGLS method described in Pfeffermann et al. (1998).
In both software packages we use the scaling to cluster
sample size for the within level sampling weights given in
equation (1).

We conduct a simulation study on a two-level regres-
sion model with a normally distributed dependent vari-
able Y and two normally distributed independent vari-
ables X and Z. The covariate Z has a fixed effect on Y
while the covariate X has a random effect on Y . This
two-level regression model is described as follows

Yji = αj + βjXji + γZji + εji (11)

where αj and βj are normally distributed cluster level
random effects with means α = 0.5 and β = 0.1 and
variances ψα = 1 and ψβ = 0.2 and covariance ρ = 0.3.
The residual effect εij is a mean zero independent normal

random variable with variance θ = 1. The covariates
Xji is generated from a normal distribution with mean
3 and variance 2 while Zji is generated from a standard
normal distribution. The fixed effect γ is set at 0.5. The
model has a total of seven parameters. We generate 100
samples of size 25000. Each sample has 1000 clusters of
size 25. To introduce unequal probability sampling on
the within level we retain each observation in the sample
with probability

pi|j =
1

1 + Exp(−Yij/2)
. (12)

For all observations in the sample we compute the weight
variable as

wji =
1
pi|j

= 1 + Exp(−Yij/2). (13)

Consequently we rescale the within level weights using
formula (1). To introduce unequal probability sampling
on the between level we retain clusters in the sample with
probability

pj =
1

1 + Exp(−αj)
. (14)

For all clusters in the sample we compute the between
level weight as

wj =
1
pj

= 1 + Exp(−αj). (15)

We estimate model (11) for each sample using Mplus and
LISREL. Within the LISREL software package this kind
of models are estimated by the MULTILEV module.

Table 7 contains the bias, the mean squared errors
(MSE) and the confidence interval coverage for both soft-
ware packages. The Mplus bias for all parameters is very
close to 0, however the LISREL bias is relatively large
for the α and ψα parameters. When conducting the sim-
ulation study with informative selection on the within
level only or on the between level only the parameter es-
timates and standard errors between Mplus and LISREL
are identical. The differences reported in Table 1 occur
only when we use sampling weights at both levels. The
LISREL bias is also directly affected by the informative-
ness of the selection on the between level. The stronger
the association between αj and the probability of selec-
tion the bigger the bias is. This fact also explains why
only the mean and the variance parameters αj have this
bias. If the selection on the between level was associated
with βj we would see this bias for the mean and variance
of βj . The LISREL bias also resulted in larger MSE when
compared to Mplus MSE. The coverage probabilities were
overall better in Mplus although both packages were far
from the nominal 95% probability. The ratio between the
standard deviation of the parameter estimates and the
standard errors were close to 1 in both programs. This
means that the drop in the coverage is caused primarily
by the bias in the parameter estimates, which tends to
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Table 7: Bias and MSE of parameter estimates for two-level regression estimation in Mplus and LISREL.

Para- True Mplus LISREL Mplus LISREL Mplus LISREL
meter Value Bias Bias MSE MSE Coverage Coverage
α 0.5 0.03 0.10 0.004 0.013 0.94 0.51
β 0.1 0.02 0.01 0.001 0.001 0.88 0.94
γ 0.05 -0.01 -0.01 0.000 0.000 0.88 0.90
ψα 1.0 0.03 -0.12 0.011 0.019 0.98 0.61
ψβ 0.2 -0.01 -0.02 0.000 0.001 0.81 0.64
ρ 0.3 -0.03 -0.03 0.002 0.002 0.78 0.67
θ 1.0 -0.03 -0.02 0.001 0.001 0.61 0.79

disappear as the number of clusters in the sample and
the cluster sample sizes increase.

Even though in our simulation study the results ob-
tained with Mplus were somewhat more accurate than
those obtained with LISREL, there is no guarantee that
this will be the case for other simulation studies or in spe-
cific practical applications. When the data is obtained via
simple random sampling the maximum likelihood estima-
tor (MLE) is known to be the most accurate estimator
at least when the sample size is sufficiently large. Con-
sequently most software packages are based on the MLE
and the applied researchers are accustomed to obtain-
ing the same results from different statistical packages.
When the data is obtained from a complex survey de-
sign however, there is no one estimator that is always
more accurate than all other estimators. Such a most
accurate estimator does not exist even for the most ba-
sic estimation problems with sampling weights. Consider
for example the case when the sampling weights are non-
informative. An estimator that completely ignores the
weights will be more accurate than an estimator that fa-
cilitates the weights. However this will not be the case
if the weights are informative. Because there is no one
estimator that is the most accurate in all cases, the ap-
plied researchers should not expect to obtain identical re-
sults from different software packages since the packages
could be based on different estimators. In cases when the
software packages show critical differences, the applied
researcher should conduct a simulation study similar to
the one described in this note to evaluate the accuracy of
the different packages. Note however that even if all soft-
ware packages show identical results, these results may
still not be very accurate. One example is the case of
uninformative sampling weights. Thus the applied re-
searcher should always include sampling weights analysis
as an essential part of their overall data analysis.

Stephen Du Toit communicated to the authors that the
problems with the LISREL estimation are due to the LIS-
REL implementation rather than the Pfeffermann et al.
(1998) estimation method. A future release of the LIS-
REL program implementing correctly the Pfeffermann et
al. (1998) method yields results that are very close to the
Mplus results.

8 Conclusion

In this article we described the MPML method which can
used to estimate multilevel models with survey data. The
estimator incorporates survey sampling features such as
stratification, multistage sampling, cluster sampling, fi-
nite population sampling and unequal probability sam-
pling at every sampling stage. The method is likelihood
based and thus applies to multivariate outcomes from any
parametric family of distributions, including for example
the generalized linear models. In the simulation study
described in this article the MPML estimator performed
very well.

We also conducted simple simulation studies to com-
pare the estimation methods available in Mplus and LIS-
REL. We found substantial differences between the two
software packages. In our simulations studies the results
obtained in Mplus were more accurate than those ob-
tained in LISREL.

The biggest challenge in estimating a two-level model
with survey data remains the presence of within level
sampling weights. While our study did not address this
topic, detailed information can be found in Asparouhov
(2006). There are a number of factors that can have a
substantial impact on the quality of the estimation when
within level sampling weights are present in the data. In
order of importance these factors are the cluster sam-
ple size, the informativeness of the within level weights,
the ICC (intra class correlation) and the UWE (unequal
weighting effect).

In the past researchers frequently had to make a choice
between estimating a multilevel model or estimating a
single level model but incorporating the sampling design
in the standard error estimation. The MPML estimator
implemented in Mplus allows the researcher to combine
these two techniques and thus conduct more accurate and
informative analyses.
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