
 Generalized Variance Functions for the 2003 Survey of Doctorate Recipients 
 

Y. Michael Yang1, Yongyi Wang2 
National Opinion Research Center, 1350 Connecticut Ave., NW, Washington D.C. 200361 

National Opinion Research Center, 55 E. Monroe St., Chicago, IL 606032 

 
 

Abstract 
 
A generalized variance function (GVF) is a 
mathematical model describing the relationship 
between the variance or relative variance of a survey 
estimator and its expectation.  The Survey of Doctorate 
Recipients (SDR) has been publishing GVF parameters 
for major analysis domains of interest since the early 
1990s.  This paper compares the 2003 SDR variance 
estimates derived from several common GVF models. 
The purpose is to evaluate the existing GVF model and 
search for a potentially superior model than the simple 
linear model that has been used. The predicted 
variance from each model is compared with the 
directly estimated variance and a model is considered 
superior if the predicted variance is closer to the direct 
variance estimate.  
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1. Background 
 
The Survey of Doctorate Recipients (SDR) is a 
longitudinal survey of individuals who have received 
doctorate degrees from U.S. institutions in science and 
engineering (S&E) fields and are pursuing their 
professional careers in the United States. The SDR 
design is complex due to the numerous redesigns since 
its inception in 1973. The 2003 SDR may be 
characterized as a stratified random design where 
stratification is defined by degree field, gender, and 
demographic group. The SDR sample is selected 
systematically within each stratum.  To account for the 
complex design, the Successive Difference Replication 
(SUD) method was used to compute the variance of 
SDR statistics (Wolter, 1984; Fay and Train, 1995; 
Tupek, 2003). GVFs are considered for SDR because it 
is not feasible to directly calculate and publish the 
variance for all SDR statistics. In particular, it is 
impossible to anticipate the various analysis domains 
that may be of interest to SDR data users.  The GVFs 
provide a mechanism for the data users to compute the 
variance of their estimates that are not directly 
provided by SDR. 
 

2. GVF Steps 
 
A GVF is a mathematical model describing the 
relationship between the variance or relative variance 

of a survey estimator and its expectation.  The SDR 
has been publishing GVF parameters for major 
analysis domains or population subgroups since the 
early 1990s. To conduct variance estimation using 
GVF method, the following steps were implemented.  
 
First, to account for potential differences across 
important population subgroups, the GVFs needed to 
be estimated for each subgroup independently. We 
defined 352 subgroups by crossing 32 degree field 
groups and 11 demographic groups. As analysis 
domains, these subgroups are not mutually exclusive. 
Some subgroups represent a subset of other subgroups. 
For example, female Computer and Information 
Sciences doctorate recipients is a subset of all female 
doctorate recipients in Sciences, which is a subset of 
all doctorate recipients. For subgroups that are not 
covered by this classification, the analyst may use the 
GVF estimated for all doctorate recipients combined, 
i.e., Total Doctorate Recipients/Total Population. 
 
In the second step, the set of key SDR variables to be 
used in direct variance estimation was identified. 
These variables have been determined to be important 
analysis variables. In addition, they are sufficiently 
diverse in the sense that the observed totals cover a 
wide range of values within each analysis domain. 
Once the set of key variables were identified, they 
were used to define 103 SDR statistics. All these 
statistics were estimated totals. 
 
The third step computed the direct point and variance 
estimates for the 103 statistics for each population 
subgroup using the successive difference replication 
method.  SUDAAN’s DESCRIPT procedure was used 
to carry out these estimates with the replication method 
of Balanced Repeated Replication (BRR). The finite 
population correction (FPC) factor was applied to all 
direct variance estimates outside SUDAAN.  
 
The final step was to fit the GVF models using the 
direct point and variance estimates from the previous 
step as input. Parameters derived from these GVF 
models would then allow the data users to approximate 
the variances for SDR statistics that are not directly 
estimated under SUD.  
 

3. GVF Models 
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There are several mathematical models that can be 
used as generalized variance functions to describe the 
relationship between the variance of a survey estimate 
and its expectation. Most of the models are based on 
the assumption that the relative variance is a 
decreasing function of the magnitude of the mean or 
expectation.  
 
3.1 The 2003 SDR GVF Model 
 
The GVF model used for the 2003 SDR is as follows: 
 

XbaV +=2                  [1] 
 

where 22 )( XXVarV
∧

= denotes the relative 

variance, X̂ is an estimator of the total number of 

cases possessing some characteristics, )ˆ(XEX = is 

the expectation of X̂ , )ˆ(XVar is the variance of X̂ , 

and a and b  are the generalized variance function 
parameters to be estimated.  
 
For each of the 352 population subgroups, the GVF 
parameters a and b were estimated through an 
iterative weighted linear regression procedure using 
the direct point and variance estimates as input. The 
purpose of using weighted linear regression is to 
improve the reliability of the fitted model by assigning 
relatively smaller weights to less reliable direct 
variance estimates and larger weights to more reliable 
direct variance estimates. The iterative weighted linear 
regression procedure involves four steps at each 
iteration. The regression weight at each step for model 
1 is described in Table 1.  
 
The initial regression weight at step 1 is the inverse of 
the squared relative variance.  In the subsequent steps, 
the regression weight is replaced by the inverse of the 
squared relative variance that is estimated from the 
previous step. At the end of step 4, observations with 
an absolute standardized residual exceeding 3 were 
identified as outliers and were removed from further 
consideration.  After that, the second iteration starts 
and the four-step regression procedure is repeated on 
the remaining observations. This iterative process 
continues until all absolute standardized residuals are 
smaller than 3. At the conclusion of the regression 
procedure, we obtain the estimated parameters a and b 
from the final model.   
 
3.2 Four other GVF Models 
 
We now consider the four additional models below.  

 
 
 
 
 
 
 
 
 
All these models are discussed in Wolter (1985). Our 
interest is to see if any of these models would perform 
better than Model 1. A model is considered better if 
the model-predicted variance is closer to the directly 
estimated variance. For each of the four models, we 
estimated the model parameters using the same 
iterative weighted linear regression procedure as 
applied to estimating model 1. The regression models 
and their regression weights at each step for Models 2-
5 are summarized in Tables 2-5.  
 

4. Model Evaluation 
 
To evaluate the five models, we divided the 103 SDR 
statistics into two sets: an estimation set and a 
validation set. Statistics in the estimation set were used 
to estimate the GVF parameters for each of the five 
models and for each of the 352 domains based on the 
procedures described above. The estimated parameters 
were then used to predict the relative variance for the 
statistics in the validation set for each of the domains. 
These GVF predicted relative variances were then 
compared with the relative variances that were 
estimated “directly” under the SUD method.  
 
To form the estimation and validation sets, we first 
sorted the 103 SDR statistics by the magnitude of the 
direct variance estimate. Then we selected a systematic 
sample of 68 statistics to form the estimation set and 
used the remaining 35 statistics as the validation set. 
The purpose of sorting was to ensure that estimates of 
various magnitudes were represented in both groups.  
 
For each GVF model and population subgroup, we 
estimated the GVF parameters based on the direct 
estimates of the 68 statistics in the estimation set. 
These estimated GVF parameters were then used to 
predict the relative variance for the 35 statistics in the 
validation set. Thus, for each of the 35 statistics in the 
validation set, two variance estimates were available: 
one from direct estimation under SUD and one from 
the GVF estimation. This pair of estimated variances 
formed the basis for our evaluation. We call the 
estimates from SUD the “direct variances” or “actual 
variances” and the estimates from GVF the “predicted 
variances.” The performance of each GVF model was 
to be evaluated by comparing the predicted variances 
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with the actual variances. A GVF model was 
considered superior if on average its predicted 
variances were closer to the direct variances. 
 
For each of the 35 statistics in the validation set, we 
obtained a pair of predicted and actual variances for 
each of the 352 population subgroups with at least 20 
cases. The smallest subgroups were dropped because 
their estimates would be less reliable. In addition, we 
deleted data points where the point estimate was 0. 
This left us 8,967 pairs of predicted and actual 
variances under each GVF model, representing various 
statistics by domain combinations (there were initially 
35*352=12,320 possible statistics by domain 
combinations).  For each pair of estimated variances, 
we computed the difference of the predicted variance 
from the actual variance. Then, for each GVF model, 
we computed the mean difference over all pairs.  
 
Table 6 reports the mean and standard deviation of the 
relative differences between the predicted and the 
actual variances under each model. The relative 
difference is defined as the difference between the 
predicted variance and the actual variance divided by 
the actual variance, with the result expressed as a 
percentage.  Table 6 shows that, relative to the actual 
variances, all but one models tend to overestimate the 
variance on average.  Under Model 1, the predicted 
variances are on average 17.2 percent higher than the 
actual variances.  For Model 2, the predicted variances 
are on average 15.4 percent higher. Similarly, Model 5 
overestimates the variances by 36.6 percent on 
average.  Model 4 is almost on target on average but 
the relative differences have large variations.   Model 
3, an obvious aberration here, by far has the least 
predictive power.  
 
Table 7 compares the predictive power of the five 
models in terms of absolute relative differences 
between the predicted variance and the actual variance.  
The calculation of absolute differences ignored the 
direction of the differences. So for Model 1, the 
predicted variance is 35.4 percent off the actual 
variance on average.  For Model 2, the predicted 
variances are off by 34.6 percent. Again, Models 1 and 
2 perform much better than the other three models.  
 
To alleviate the effect of possible outliers on the mean 
relative differences, we further divided the relative 
differences between the predicted and actual variances 
into five categories by the magnitude of the relative 
differences.  Table 8 shows the cumulative percentages 
at four levels of relative difference.  For Model 1, 17.6 
percent of the differences between the predicted and 
the actual variances are within 5 percent of the actual 
variances; 35.2 percent of the differences between the 

predicted and the actual variances are within 10 
percent of the actual variances; 63.5 percent of the 
differences between the predicted and the actual 
variances are within 20 percent of the actual variances; 
and 79.4 percent of the differences between the 
predicted and the actual variances are within 30 
percent of the actual variances. The reported 
percentages under the other models should be 
interpreted in the same manner. For example, under 
Model 2, 81 percent of the differences between the 
predicted and the actual variances are within 30 
percent of the actual variances.  
 
Table 8 depicts a more favorable picture about the 
performance of the GVF models, especially for Models 
1 and 2.  It is reassuring that the vast majority of the 
GVF predicted variances are quite close to the directly 
estimated variances under Model 1.  However, this 
cannot be said of the other three models.  For Model 3, 
only about a third of the relative differences are within 
30 percent of the actual variances; and for Models 4 
and 5, slightly over half of the differences are within 
30 percent of the actual variances. 
 

5. Discussion 
 
GVF estimation has been a major component of 
variance estimation for the SDR.  The purpose of our 
study is to evaluate the existing GVF model and 
possibly identify a superior model for future GVF 
estimation.  In general, the GVF model used for the 
2003 SDR worked well in terms of approximating the 
direct variance estimates.  Across a large number of 
domains and SDR statistics, the overwhelming 
majority of the predicted variances are quite close to 
the variance estimates derived from the SUD method. 
In particular, the average difference between the 
predicted and the actual variances is positive, 
indicating overestimation which is generally 
considered less problematic than underestimation.  
 
Our evaluation has shown consistently that Model 2 
may perform better than the existing model although 
the potential improvement is likely to be small. A 
closer look at the two models may be necessary before 
a formal recommendation can be made about future 
GVF modeling for the SDR. The performance of the 
other three models is far from satisfactory and these 
models may be dropped from further consideration. 
 
We finally note a few limitations of the study.  First, 
we focused on comparing the average performance of 
these models while in fact the models may perform 
differently for different statistics and domains. For 
example, if most of the outliers are associated with 
certain domains or statistics, the GVF models may be 
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improved by taking that information into account. 
Second, there might be a better model for the SDR 
beyond the five models evaluated here. We plan to 
look into this possibility later.  
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Table 1. Regression Model and Weight at Each Step for 

GVF Model 1: XbaV +=2  
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Table 2. Regression Model and Weight at Each Step for 

GVF Model 2: 22 XcXbaV ++=  
 

Step Model Weight 

1 2
11

12

)ˆ(

X

c

X

b
a

X

XVar ++=

 

22

)( ⎥
⎦

⎤
⎢
⎣

⎡

XVar

X
 

2 2
22

22

)ˆ(

X

c

X

b
a

X

XVar ++=

 

2

2
11

1

1

⎥
⎦

⎤
⎢
⎣

⎡ ++
X

c

X

b
a

 

3 2
33

32

)ˆ(

X

c

X

b
a

X

XVar ++=

 

2

2
22

2

1

⎥
⎦

⎤
⎢
⎣

⎡ ++
X

c

X

b
a

 

4 2
44

42

)ˆ(

X

c

X

b
a

X

XVar ++=

 

2

2
33

3

1

⎥
⎦

⎤
⎢
⎣

⎡ ++
X

c

X

b
a

 

 
 
 

Table 3. Regression Model and Weight at Each Step for 

GVF Model 3: 12 )( −+= bXaV  
 

Step Model Weight 
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Table 4. Regression Model and Weight at Each Step for 

GVF Model 4: 122 )( −++= cXbXaV  
 

Step Model Weight 
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 Table 5. Regression Model and Weight at Each Step for GVF Model 5: )log()log( 2 XbaV −=  
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Table 6. Mean Relative Difference of Predicted 
Variances from Actual Variances (n=8,967) 
 

model Mean 
(%) 

Std Dev 
(%) 

1 17.2 102.3 

2 15.4 134.0 

3 5974.6 569948.3 

4 -0.2 1231.4 

5 36.6 137.4 

 
Table 7. Mean Absolute Relative Difference of 
Predicted Variances from Actual Variances (n=8,967) 
 

model Mean 
(%) 

Std Dev 
(%) 

1 35.4 97.6 

2 34.6 130.4 

3 6189.7 569946.0 

4 99.0 1227.4 

5 62.9 127.6 

Table 8. Cumulative Percentages at Different Levels of 
Relative Difference 

 
 

Deviation Model 1 Model 2 Model 3 Model 4 Model 5 
<= 5%  17.6 18.5 7.1 13.3 8.5 
<=10% 35.2 36.3 13.1 24.0 17.4 
<=20%  63.5 65.3 24.1 41.3 35.5 
<=30% 79.4 81.0 33.6 52.8 52.6 
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