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Abstract

Empirical best linear unbiased prediction (EBLUP) method
uses a linear mixed model in combining information from dif-
ferent sources of information. This method is particularly use-
ful in small area problems. The variability of an EBLUP is
measured by the mean squared prediction error (MSPE), and
interval estimates are generally constructed using estimates of
the MSPE. Such methods have shortcomings like undercover-
age, excessive length and lack of interpretability. We propose
a resampling driven approach, and obtain coverage accuracy
of O(d3n−3/2), where d is the number of parameters and n
the number of observations. Simulation results demonstrate
the superiority of our method over the existing ones.

Keywords: Predictive distribution, prediction interval, gen-
eral linear mixed model, bootstrap, coverage accuracy.

1 Introduction

Large scale sample surveys are usually designed to produce re-
liable estimates of various characteristics of interest for large
geographic areas. However, for effective planning of health,
social and other services, and for apportioning government
funds, there is a growing demand to produce similar estimates
for smaller geographic areas and for other sub-populations.
To meet this demand, it is necessary to supplement the survey
data with other relevant information that are often obtained
from different administrative and census records. In many
small area applications, mixed linear models are now routinely
used in combining information from various sources and ex-
plaining different sources of errors. These models incorporate
area specific random effects which explain the “between small
area variations”, not otherwise explained by the fixed effects
part of the model.

For a good review on small area research, the readers are re-
ferred to the review papers by Rao (1986, 1999, 2001, 2004),
Ghosh and Rao (1994), Pfeffermann (2002), Marker (1999),
and the book by Rao (2003), among others. Point prediction
using the empirical best linear unbiased (EBLUP) and the as-
sociated mean square prediction error (MSPE) estimation have
been discussed extensively in the small area literature. But
little advancement has been made in interval prediction prob-
lems. Needless to say that interval prediction is a useful data
analysis tool, since this integrates the concepts of both point
prediction and hypothesis testing in an effective manner. Pre-
diction intervals are useful in small area studies in many ways.
For example, prediction intervals may help establish if differ-
ent counties have similar resources and needs, or if different
ethnic or other sub-population groups are equally exposed to
a particular disease.

In the small area context, prediction intervals are often pro-
duced using the standard EBLUP ± zα/2

√
mspe rule, where

mspe is an estimate of the true MSPE of the EBLUP and
zα/2 is the upper 100(1 − α/2) point of the standard normal
distribution. These prediction intervals are asymptotically cor-
rect, in the sense that the coverage probability converges to
1− α for large sample size n. However, they are not efficient
in the sense they have either under-coverage or over-coverage
problem for small n, depending on the particular choice of
the MSPE estimator. In statistical terms, the coverage error
of such interval is of the order O(n−1), which is not accu-
rate enough for most applications of small area studies, many
of which involve small n. If the naive mspe, i.e. the one
that does not account for the uncertainties involving the model
parameter estimation, is used, the resulting prediction inter-
val suffers from under-coverage problem. On the other hand,
if the Prasad-Rao (1990) second-order unbiased MSPE esti-
mator is used, the interval suffers from the over-coverage and
over-lengthening problem.

For a general mixed linear model, Jeske and Harville (1988)
proposed a prediction interval for a mixed effect. But, their
method does not address the complexity introduced by the es-
timation of the variance components. In particular, they did
not study the effect of estimated unknown variance compo-
nents on the accuracy of the coverage error of their proposed
interval.

Jiang and Zhang (2002) used a distribution-free method for
constructing prediction intervals for a future observation under
a non-Gaussian linear mixed model, based on the theory de-
veloped by Jiang (1998). This technique does not employ any
area specific information and can be useful in constructing in-
tervals when there is no survey data on the response variable.
Jiang and Zhang (2002) proposed another method which can
be applied to the situation when the sample size is large within
each area. This is a technique of first obtaining the EBLUP for
the random effects and the residuals. Then, under conditions
sufficient to imply that the number of times each random ef-
fect is repeated (ie, number of observations in each small area)
tends to infinity, the empirical distribution of random effects
as well as the residuals converge appropriately. This technique
fails when we do not have large samples for each small area, a
situation that is common in many small area applications.

Other than the papers cited above, research on small area
prediction intervals is limited except for some special cases
of the Fay-Herriot model (see Fay and Herriot 1979), a well-
celebrated mixed regression model. Varieties of Bayesian and
empirical Bayes methods are used in the Fay-Herriot model
for such intervals. Because of the extensive use of the Fay-
Herriot model and its particular cases in the small area inter-
val estimation, in Section 2 we review different approaches to
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interval estimation for this model.
In order to study the MSPE of EBLUP predictors of linear

combinations of fixed and random effects, Das, Jiang and Rao
(2004) considered the following general linear mixed model

Y = Xβ + Zv + en, (1)

where Y ∈ Rn is a vector of observed responses, Xn×p and
Zn×q are known matrices and v and en are independent ran-
dom variables with dispersion matrices D(ψ) and Rn(ψ) re-
spectively. Here β ∈ Rp and ψ ∈ Rk are fixed parameters.
The mixed ANOVA model, longitudinal models including the
Fay-Herriot model and the nested error regression model are
special cases of the above framework.

In this paper we address the problem of obtaining prediction
intervals of a mixed effect for the above general linear mixed
model. Our approach is to employ parametric bootstrap. This
results in a higher order coverage accuracy of the interval com-
pared to the existing methods, most of which are applicable
only to special cases like the Fay-Herriot model. It has been
long recognized that health, economic activity and other mea-
sures of human well-being depend on a number of exogenous
and endogenous factors, many of which must be measured at
the individual level and incorporated in the model. In statis-
tical terms, this translates to high dimensionality of β and ψ.
In order to address the dimension asymptotics aspect of small
area prediction, we allow parameter dimension d = p + k to
grow with sample size n, and obtain coverage accuracy of the
order O(d3n−3/2).

Traditional small area interval estimates achieve O(n−1)
for the Fay-Herriot model or its particular cases, for fixed val-
ues of p and k. As stated earlier, the O(n−1) rate is typically
not adequate for related follow up applications. Hence, cali-
brations and corrections of these intervals have been proposed,
some of which are discussed in Section 2. For clarity of our
proposed methodology and technical conditions, and also for
easy use in future applications, in Subsection 2.3 we discuss
our proposed prediction interval in detail for the Fay-Herriot
model.

In Section 3, we present our prediction interval algorithrm
for the more general Das, Jiang, Rao model (1). In Section 4,
our method is compared to two other existing methods using a
Monte Carlo simulation study. The naive method, i.e. the one
which uses the naive MSPE estimator, provides the shortest
intervals among all the methods considered, but suffers from a
severe under-coverage problem. The Prasad-Rao method pro-
vides an over-coverage at the expense of wider intervals. Our
method is just about right in terms of coverage and is better
than the Prasad-Rao method in terms of the length.

2 The Fay-Herriot model

In many practical applications, it is difficult to retrieve in-
formation at the respondent level for various reasons (includ-
ing maintaining confidentiality) and researchers are provided
only with design-based estimates and their associated esti-
mated standard errors for the small-areas. In such cases, mod-
els are developed on the estimates themselves. In order to

produce per-capita income for small places (population less
than 1,000), Fay and Herriot (1979) considered the following
aggregate level model and used an empirical Bayes method
which combines survey data from the U.S. Current Popula-
tion Survey with various administrative and census data. Their
model is now widely used in the small-area literature.
The Fay-Herriot Model:

1. Conditional on θ = (θ1, . . . , θn)T , Y = (Y1, . . . , Yn)T

follows a n-variate normal distribution with mean θ and
dispersion matrix D with diagonal entries Dii = σ2

i and
off-diagonal entries 0. The sequence {σi} is a known
sequence.

Here (and in the sequel) all vectors are taken to be column
vectors, for any vector (matrix) a (A), the notation aT

(AT ) denotes its transpose.

2. The variable θ follows a n-variate normal distribution
with mean given by Xβ for a known n × p matrix X
and unknown but fixed vector β ∈ Rp. The dispersion
matrix is given by τ2In, where the matrix In is the n di-
mensional identity matrix and τ is an unknown constant.

We are interested in obtaining a prediction interval for θi =
xT

i β + vi. There are several options for constructing such in-
tervals: one may use only the Level 1 model for the observed
data, or only the Level 2 model for the borrowed strength com-
ponent, or a combination of both.

The interval for θi based only on the Level 1 model is given
by ID

i (α) : Yi ± zα/2σi, where zα/2 is the upper α/2 percent
point of N(0, 1). Obviously, for this interval, the coverage
probability is 1 − α. However, it is not efficient, since its
average length is too large to make any reasonable conclusion.
This is due to the high variability of the point predictor Yi.

An interval based only on Level 2 ignores the crucial area
specific data that is modeled in Level 1, and hence falls short
on two counts: it fails to be relevant to the specific small area
under consideration, and it fails to achieve sufficient coverage
accuracy. We show this latter property in a small example in
Subsection 2.2.

Thus interval estimation techniques that combine both lev-
els of the Fay-Herriot model are required. A popular approach
is to employ empirical Bayes methodology, for example, by
using empirical Bayes confidence intervals for prediction pur-
poses. In the next subsection we review some of the important
developments in empirical Bayes interval construction for the
Fay-Herriot model or its particular cases.

2.1 Empirical Bayes intervals in the Fay-Herriot model

The posterior distribution of θ given Y is the n-variate normal
distribution with the ith mean vector (1 − Bi)Yi + BixT

i β,
where xi is the ith row of X. Here Bi = σ2

i /(σ
2
i + τ2).

The posterior variance is the diagonal matrix whose ith diag-
onal entry is σ2

i τ
2/(σ2

i + τ2). Replacing β and τ2 by their
consistent estimators, we get the following empirical Bayes
estimator of θi :

θ̂EB
i = (1− B̂i)yi + B̂ixT

i β̂,
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where B̂i and β̂ are estimators of Bi and β respectively.
Cox (1975) initiated the idea of developing an empirical

Bayes confidence interval. In the current context, his sugges-
tion generates the following prediction interval:

IC
i (α) : θ̂EB

i ± zα/2σi(1− B̂i)1/2.

Under certain regularity conditions, it is easy to check that
P(θi ∈ IC

i (α)) = 1 − α + O(n−1), where P denotes a prob-
ability measure induced by the joint distribution of Level 1
and Level 2. Thus, this prediction interval attains the desired
coverage probability asymptotically, but the coverage error is
of the order O(n−1), which is not accurate enough for many
small area applications. Intuitively, this lack of accuracy could
be due to the fact that the interval does not take into account
the additional errors incurred by the estimation of the hyper-
parameters β and τ2.

For a special case of the Fay-Herriot model with common
mean and equal sampling variances σi = σ, Morris (1983a)
used a different measure of uncertainty for the empirical Bayes
estimator, that incorporates the additional uncertainty due to
the estimation of the hyperparameters. In a different work,
Morris (1983b) considered a variation of his (1983a) empirical
Bayes confidence interval where he used a hierarchical Bayes
type point estimator in place of the previously used empirical
Bayes estimator, and conjectured with some evidence that the
coverage probability for his interval is at least 1− α. He also
noted that the coverage probability tends to 1−α as n goes to
∞ or σ goes to zero.

Basu, Ghosh and Mukerjee (2003) showed that the empir-
ical Bayes interval proposed by Morris (1983a) does not im-
prove upon Cox (1975), in the sense that the coverage error
remains O(n−1). However, using a Taylor series expansion
of the coverage probability, they obtained an expression for
the order O(n−1) term, which may then be used to calibrate
Morris’ interval to reduce the coverage error to o(n−1). They
also studied a prediction interval proposed by Carlin and Louis
(1996, p.98), and showed that the Carlin-Louis interval has a
coverage bias of the order o(n−1). As a by product of this an-
alytical result, they obtained an explicit expression for a new
prediction interval with o(n−1) coverage bias and comparable
expected length as the Carlin-Louis or the calibrated Morris
intervals.

Using a multi-level model, Nandram (1999) obtained an
empirical Bayes confidence interval for a small area mean and
showed that asymptotically it converges to the nominal cover-
age probability. However, accuracy results and other asymp-
totic properties are not known for his interval.

Datta, Ghosh, Smith and Lahiri (2002) used an approach
similar to Basu, Ghosh and Mukerjee (2003) in order to cali-
brate the Cox-type prediction interval for a more general Fay-
Herriot model with covariates but with equal sampling vari-
ances. The coverage error for their interval is of the order
O(n−3/2). Hill (1990) suggested a general framework for
constructing an empirical Bayes confidence interval condi-
tional on some suitable ancillary statistic. In a simple normal-
normal setting this matches with an exact hierarchical Bayes
confidence interval. Datta et al. (2002) followed up Hill’s idea

in proposing an empirical Bayes confidence interval which is
correct up to O(n−1), a property not noted by Hill (1990).

2.2 The use of bootstrap in empirical Bayes intervals

It can be seen that empirical Bayes intervals require correc-
tions in order to achieve high coverage accuracy. These cor-
rections may be based on asymptotic expansions as in Basu,
Ghosh and Mukerjee (2003), hierarchical Bayesian approach
as in Hill (1990) or Morris (1983b), and the bootstrap.

Different bootstrap methods have been used to improve the
naive empirical Bayes confidence intervals. The methods dif-
fer in the generation of the bootstrap samples and the type
of correction made. For a special case of the Fay-Herriot
model where Y1, . . . , Yn are independent and identically dis-
tributed, Laird and Louis (1987) proposed three different ways
of generating bootstrap samples. They differ in the degree of
the parametric assumptions involved. One problem with the
nonparametric and semi-parametric methods in the small area
context is that the bootstrap approximation of the distribution
of the EBLUP is generally not even consistent. The Laird-
Louis Type III bootstrap is the usual parametric bootstrap.

Once the bootstrap sample (nonparametric, semi-
parametric or parametric) is generated, the next challenge is
to find a method that will correct the naive empirical Bayes
confidence intervals IC

i (α) in an effort to achieve better
coverage. The method proposed by Laird and Louis (1987) is
to consider an imitation of the hierarchical Bayes approach.
Conditional on the values of β and ψ, let g(θi|Y, β, ψ) be
the posterior density of θi given the data Y. If a prior π(·) is
available for β and ψ, then in the hierarchical Bayesian model
one might consider the distribution∫

g(θi|Y, β, ψ)π(β, ψ|Y), (2)

where both the terms in the above integral are appropriate pos-
terior distributions. Laird and Louis (1987) proposed to use

B−1
B∑

j=1

g(θi|Y, β∗j , ψ∗j ), (3)

where B is the bootstrap sample size and β∗j and ψ∗j are the
estimates of β and ψ from the jth bootstrap sample. The dis-
crete mixture distribution (3) is a Monte Carlo approximation
of ∫

g(θi|Y, s, t)dL∗(s, t), (4)

where L∗(·, ·) is the bootstrap approximation of the sampling
distribution of the parameter estimators β̂ and ψ̂. Formula (4)
is motivated by (2), but it is also similar to the bootstrap pre-
diction of Harris (1989).

Carlin and Gelfand (1990, 1991) point out another issue
with the hierarchical Bayesian approach of (2) and methods
like those of Laird and Louis (1987). These approaches nec-
essarily lead to a lengthening of the interval that is obtained by
the naive empirical Bayes predictor g(θi|Y, β̂, ψ̂). However,
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a correction to the naive interval is needed, which is not the
same as lengthening. Carlin and Gelfand (1990) discuss an
example where increasing the length further exacerbates the
coverage bias. These authors suggest to use parametric boot-
strap to calibrate the naive empirical Bayes interval.

Calibration of intervals has been one of the major uses of
bootstrap for some time, and can lead to considerable im-
provement of coverage accuracy. Coupled with use of bias
correction, use of pivotal or nearly pivotal statistics, and Edge-
worth corrections, improvements from calibration can some-
times be dramatic. See Abramovitch and Singh (1985), Beran
(1990a, 1990b) and the book by Efron and Tibshirani (1993)
and references therein for further details on these issues. On
the other hand, calibration is both time and computational ef-
fort intensive, often requiring iterative searches; it typically
increases variability; the results often lack straightforward in-
terpretability; and successive calibrating steps typically have
diminishing returns in terms of improvement of coverage.

Hall (2006) suggests an application of the nonparametric
bootstrap confidence interval based on the generated θ?

i ’s only.
In the small area context, this may be applicable when the dif-
ferences between the small areas are minor, or carried only in
the fixed effects. In surveys, robustness is always an impor-
tant issue, and the practitioners are always interested in effi-
cient nonparametric methods. However, due to scarce data at
the small area level, nonparametric estimators tend to under-
perform, often severely. This is because the nonparamet-
ric models typically permit the generation of bootstrap his-
tograms based on a synthetic model or the regression model,
but do not permit approximation of the conditional distribution
of θi given the data Y. As a result, the nonparametric boot-
strap prediction interval for θi is likely to underweight the area
specific data. Accurate weighting the area specific data is im-
portant for achieving good coverage properties, as the example
below shows. Hall (2006) also pointed out the importance of
parametric bootstrap in small area estimation and other related
problems.

EXAMPLE. Consider the following special case of the Fay-
Herriot model where σi ≡ 1, and xT

i β ≡ µ. Thus, at
Level 1, Yi’s given the θi’s are independently distributed as
N(θi, 1) random variables; and at Level 2 the θi’s are inde-
pendent, identically distributed asN(µ, τ2) random variables.
The estimators of µ and τ2 are given respectively by µ̂ = Ȳ ,
τ̂2 = max(0, s2 − 1), where s2 =

∑
(yi − ȳ)2/(n− 1). As-

sume τ̂2 > 0, a condition that is satisfied in many problems.
The bootstrap procedure would require us to generate θ∗i

iid∼
N [µ̂, τ̂2] and Y ∗

i |θ∗i
ind∼ N [θ∗i , 1]. Then we have µ̂∗ = Ȳ ∗,

τ̂2
∗

= max(0, s∗2 − 1) where s∗2 =
∑

(y∗i − ȳ∗)2/(n− 1).
An obvious Level 2 based bootstrap prediction interval for

θi that is not area specific, is given by(
µ̂− t1

√
τ̂2, µ̂+ t2

√
τ̂2

)
, (5)

where (t1, t2) are cutoff points satisfying

P(µ̂∗ − t1

√
τ̂2
∗
≤ θ∗ ≤ µ̂∗ + t2

√
τ̂2
∗
) = 1− α.

It can be shown that interval (5) has coverage of 1 − α +
O(n−1/2) which makes it consistent, but hardly accurate
enough. The lack of accuracy is due to the use of the Level
2 distribution only, so that the Level 1 data Yi plays no special
role in the interval construction.

2.3 A parametric bootstrap prediction interval

Instead of using the bootstrap for calibration or as a surro-
gate for prior, our approach is to obtain a prediction interval
directly from the bootstrap histogram. We do not attempt a
nonparametric or semiparametric bootstrap, owing to their ob-
vious consistency problems in all but the extremely simplified
special cases.

For the general Fay-Herriot model, we begin by defining the
following quantities:

β̂ = (XXT )−1XT Y, (6)

τ̂2 = (rT r−
∑

(1− hii)σ2
i )/(n− p), (7)

τ̂2
′

= max(τ̂2, ε), (8)

B̂i = σ2
i /(σ

2
i + τ̂2

′
). (9)

Here ε > 0 is a fixed small number, hii is the ith diagonal el-
ement of the projection matrix on the column space of X, and
r = Y −Xβ̂ is the vector of residuals. Under the condition
τ2 > 2ε, the truncated estimator τ̂2

′
is different from the un-

biased estimator τ̂2 on a set of negligible probability. We use
it to avoid some messy algebra, but it is entirely dispensable
otherwise. Other estimators, for example, the weighted least
squares estimator for β can also be chosen.

The parametric bootstrap procedure is as follows:

1. Conditional on θ̃∗ = (θ∗1 , . . . , θ
∗
n)T , Y∗ =

(Y ∗
1 , . . . , Y

∗
n )T follows a n-variate normal distribution

with mean θ̃∗ and dispersion matrix σ2In.

2. θ̃∗ follows a n-variate normal distribution with mean Xβ̂
and variance τ̂2

′
In.

The parametric bootstrap prediction interval for θi is given
by:

Ii(α) : θ̂EB
i ± tiσi(1− B̂i)1/2.

Recall that the formula for θ̂EB
i is given in Subsection 2.1.

The quantities β̂∗, τ̂2
∗
, τ̂2

∗′
and B̂∗

i are computed using (6)-
(9) with the resample Y∗ in place of Y. The value of ti is
such that

P∗
[
θ∗i ∈ {θ̂EB∗

i ± tiσi(1− B̂∗
i )1/2}

]
= 1− α, (10)

where θ̂EB∗
i = (1 − B̂∗

i )Y ∗
i + B̂∗

i x
T
i β̂

∗. The probability P∗
is computed conditional on the data.

We assume the following conditions:

(A1) the matrix X is full column rank, and the projection
matrix on the columns of X (the so called “hat” matrix)
given by Px = X(XXT )−1XT has diagonal entries hii

satisfying

sup
i
hii = O(p/n). (11)
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(A2) The sequence {σi} lies in a compact subset of (0,∞).

(A3) For a known ε > 0, τ2 > 2ε.

Assumptions (A1) and (A2) are routine, while (A3) is a mi-
nor restriction that essentially simplifies the algebra.

Our result for the parametric bootstrap prediction interval is
as follows:

Theorem 2.1 Under assumptions (A1)-(A3) for the Fay Her-
riot model, the following holds:

P
[
θi ∈ {θEB

i ± tiσi(1− B̂i)1/2}
]

= 1− α+O(p3n−3/2).

A proof of Theorem 2.1 can be found in Chatterjee and
Lahiri (2002).

3 Parametric bootstrap prediction interval for a general
linear mixed model

We consider the model:

Y = Xβ + Zv + en (12)

where X is a known (n × p) matrix, Z is a known (n × q)
matrix, Y ∈ Rn is the vector of observed data, β ∈ Rp

is a fixed but unknown parameter vector, and v ∈ Rq and
en ∈ Rn are random variables following the normal distri-
butions Nq(0, D) and Nn(0, Rn) respectively. Assume v and
the sequence {en} are independent. The first term Xβ rep-
resents the fixed effects, and the second term Zv the random
effects. Thus Xβ+Zv constitute the signal component of the
observed data, while en is the noise. The properties of the sig-
nal are of interest, which depend on the unknown parameters
β, D and Rn.

Assume that the (q × q) matrix D and the (n × n) matrix
Rn are known up to a (k × 1) vector of unknown parameters,
thus D = D(ψ) and Rn = Rn(ψ) for a fixed but unknown
ψ = (ψ1, · · · , ψk)T ∈ Rk. Note that the dispersion matrix of
the observed data Y is given by

Σn = Σn(ψ) = Rn(ψ) + ZD(ψ)ZT .

We henceforth drop the n from en, Rn and Σn to simplify
notations. We take d = p+ k, the dimension of the parameter
space. Let θ = (β, ψ) denote the unknown parameters. We
allow q to be arbitrary, and possibly vary with n.

Das, Jiang and Rao (2004) show that several linear mixed
models, including Analysis of Variance (ANOVA) models
and longitudinal models of both balanced and unbalanced na-
ture are special cases of the the model (12). Unbalanced
ANOVA models arise, for example, when Rn = σ2

0In; and
D = diag(σ2

1Ir1 , . . . , σ
2
k−1Irk−1) where Ir is the r × r iden-

tity matrix. Here ψ is the vector of variance components
ψ = (σ2

0 , . . . , σ
2
k−1). Unbalanced longitudinal models arise

when Σ has a block diagonal structure.

Let T = cT (Xβ + Zv), where c is a fixed and known
(n × 1) vector. The conditional distribution of T given Y
is N(µT , σ

2
T ), where

µT = cT Xβ + cT ZDZT Σ−1(Y −Xβ)
= cTRΣ−1Xβ + cT ZDZT Σ−1Y, and (13)

σ2
T = cT Z

(
D −DZT Σ−1ZD

)
ZT c. (14)

Generally, β and ψ (and hence D and Rn) are estimated
from the data Y by using the marginal distribution of Y, given
by Nn(Xβ,Σ). The resulting estimates µ̂T and σ̂T of the
mean and variance of T are expressions similar to (13) and
(14), with β̂ and ψ̂ in place of β and ψ.

For algebraic simplicity, in the rest of this paper we assume
that X is full column rank and use the estimator

β̂ =
(
XXT

)−1
XT Y

= β +
(
XXT

)−1
XT (Zv + e) .

This is the ordinary least squares estimator of β. Using the
weighted least squares estimator with appropriate conditions
on the weights is another possibility that makes little differ-
ence in the asymptotic analysis. Estimator ψ̂ is typically ob-
tained by maximum likelihood or restricted maximum likeli-
hood techniques.

Based on the fact that σ−1
T (T − µT ) is a standard Normal

pivot, a naive approach to interval estimation for T is to take
(µ̂T ± zσ̂T ) for the appropriate Normal quantile z. Unfortu-
nately, σ̂−1

T (T − µ̂T ) is not a pivot, and the naive approach
produces too short intervals, that typically under-cover. Let
the distribution of σ̂−1

T (T − µ̂T ) be Ln. Recognizing that Ln

is not the standard Normal distribution, we propose to estimate
it using parametric bootstrap.

The parametric bootstrap algorithrm is based on the esti-
mates β̂ and ψ̂ of β and ψ respectively. Define

Y∗ = Xβ̂ + Zv∗ + e∗

where v∗ ∼ Nq(0, D(ψ̂)) and e∗ ∼ Nn(0, R(ψ̂)) are inde-
pendent of each other. From Y∗, obtain β̂∗ and ψ̂∗ using the
same techniques used to obtain β̂ and ψ̂ earlier. Next, ob-
tain µ̂∗T and σ̂∗T using β̂∗ and ψ̂∗ using (13) and (14). Define
T ∗ = cT (Xβ̂ + Zv∗). The distribution of

σ̂−1∗
T (T ∗ − µ̂∗T ),

conditional on the data Y, is the parametric bootstrap approx-
imation L∗n of Ln. We then obtain the interval estimate for T
as (µ̂T − q1σ̂T , µ̂T + q2σ̂T ), where q1 and q2 are appropriate
quantiles of the bootstrap approximation L∗n of Ln.

Our main result in this section is that L∗n approximates Ln

up to O(d3n−3/2) terms. In order to state the assumptions
for our result, let us introduce some terminology and notation
now. For any function f(ψ) : Ra → R, f ′(ψ) denotes its first
derivative written as a a × 1 column vector; f ′′(ψ) denotes
the a × a second derivative matrix. For a symmetric matrix
A, λmax and λmin respectively denote its maximum and min-
imum eigenvalue.

The following are the assumptions for our result in this sec-
tion:
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1. The following relations hold:

||XT c|| = O(1), (15)
||XT Σ−1ZDZT c|| = O(1), (16)

cT ZDZT c = O(1), (17)
cT ZDZT Σ−1ZDZT c = O(1). (18)

In addition,

σ2
T = cT Z

(
D −DZT Σ−1ZD

)
ZT c > M > 0,

for some constant M > 0.

2. Assume that

sup
1≤i≤n

p∑
j=1

[
n∑

a=1

XjaΣ1/2
ai

]2

= O(p/n), (19)

λminn
−1XT X > M > 0, (20)

for some constant M > 0.

3. The eigenvalues of the matrices D and R lie in (L−1, L)
for some L > 1. The eigenvalues of D(ψ̂) and R(ψ̂) lie
in (L−1/2, 2L). The eigenvalues of Σ lie in a compact
set on the positive half of the real line.

In the representations

D = D1(ψ)DT
1 (ψ), D̂ = D1(ψ)ΛD(ψ̂)DT

1 (ψ), (21)

R = R1(ψ)RT
1 (ψ), R̂ = R1(ψ)ΛR(ψ̂)RT

1 (ψ), (22)

where ΛR and ΛD are diagonal matrices, the following
conditions are satisfied:

All the entries of the q × q matrix ΛD =
diag(ΛD1, . . . ,ΛDq) and the n × n matrix ΛR =
diag(ΛR1, . . . ,ΛRn) have three bounded continuous
derivatives.

We denote by Λ′D the k × q matrix whose (j, i)th entries
are given by

((Λ′D))j,i (ψ) =
∂

∂ψj
ΛDi(ψ),

j = 1, . . . , k; i = 1, . . . , q.

The (j, i)th entry of the k2 × q matrix Λ′′D is

((Λ′′D))j,i (ψ) =
∂2

∂ψj1∂ψj2

ΛDi(ψ),

j1 + (j2 − 1)k = j, j1, j2 = 1, . . . , k,
j = 1, . . . , k2, i = 1, . . . , q.

The (j, i)th entry of the k3 × q matrix Λ(3)
D is((

Λ(3)
D

))
j,i

(ψ) =
∂3

∂ψj1∂ψj2∂ψj3

ΛDi(ψ),

j1 + (j2 − 1)k + (j3 − 1)k2 = j,

j1, j2, j3 = 1, . . . , k, j = 1, . . . , k2, i = 1, . . . , q.

We define the k × n matrix Λ′R, the k2 × n matrix Λ′′R
and the k3×nmatrix Λ(3)

R along identical lines as above.

The following conditions are assumed:

λmaxΛ′TD (ψ)Λ′D(ψ) = O(1), (23)
λmaxΛ′TR (ψ)Λ′R(ψ) = O(1), (24)
λmaxΛ′′TD (ψ)Λ′′D(ψ) = O(1), (25)
λmaxΛ′′TR (ψ)Λ′′R(ψ) = O(1), (26)

λmaxΛ(3)T
D (ψ∗)Λ(3)

D (ψ∗) < M = O(1), (27)

λmaxΛ(3)T
R (ψ∗)Λ(3)

R (ψ∗) < M = O(1), (28)

for some constant M > 0 for all ψ∗ in a neighborhood of
the true value ψ.

4. Let S = (k/n)1/2 (ψ̂−ψ). Assume that all the moments
of ||S|| are O(1). Moreover, the following relations are
also satisfied:

ESj = O(
√
k/n), (29)

ESaSb = O(
√
k/n), (30)

ESj(Zv + e)i = O(
√
k/n), (31)

ESaSb(Zv + e)i = O(
√
k/n), (32)

We now state our main theorem for this section.

Theorem 3.1 Fix α ∈ (0, 1), and let q1 and q2 be real num-
bers such that

L∗n(q2)− L∗n(−q1) = 1− α. (33)

Under the Assumptions(1)-(4), if d2/n→ 0, we have

P [µ̂T − q1σ̂T ≤ T ≤ µ̂T + q2σ̂T ]
= 1− α+O(d3n−3/2). (34)

We now discuss the assumptions leading to Theorem 3.1,
and some additional features of our result.

REMARK 1. Note that the dimension q of the random effect
v is arbitrary which may or may not depend on n. Owing to
this generalization, our analysis is for T = cT (Xβ + Zv),
rather than the more traditional T̃ = cT1 β + cT2 v. Since X is
full column rank, the fixed effects in T and T̃ are equivalent.

REMARK 2. In the development of all the assumptions
above, we have preferred simplicity over generality. The re-
quirement d2n−1 → 0 is standard in dimension asymptotics.
Assumption 1 is in order to ensure T as a non-trivial quantity,
that is, it ensures that both the fixed component and the vari-
ance of the random component of µT are O(1), and the vari-
ance σ2

T is bounded away from zero and infinity. By suitably
scaling the norm of the vector c this assumption is satisfied.

Assumption 2 is a standard assumption on the behavior X.
It ensures that the norm of each fixed effects covariate is of
suitable order, and the fixed effects design is not singular. This
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assumption can be modified to suit cases where X is not full
column rank, but such generalizations are routine.

Assumption 3 is on standard differentiability and eigenvalue
conditions. Here again, we have tried to adopt simple condi-
tions rather than the most general ones. Note that the existence
of the representations (21) and (22) are not part of the assump-
tions, and these representations will be established in the proof
of Theorem 3.1.

Also note that the eigenvalues of D(ψ̂) and R(ψ̂) are es-
timates of the variance components in typical applications.
Note that we do not allow these to be zero, since these must al-
ways lie in (L−1/2, 2L). However, Lmay be arbitrarily large,
consequently this assumption does not limit the applicability
of our results.

In Assumption 4 we take all moments of S to exist in or-
der to achieve simplicity. Our result involves computation of
several terms involving S, and having all the moments of S
available simplifies the algebra. In most applications, both ψ
and ψ̂ lie in a compact set, hence this is not a strong condition.
The other moment conditions on S given by (29)-(30) are rou-
tine. These hold when ψ̂ is obtained using either maximum
likelihood or restricted maximum likelihood formulation, see
Jiang (1998) for related developments.

The conditions (31)-(32) are interesting, since they effec-
tively set a limit to the amount of dependency structure we
can have in Σ. In order to visualize this, suppose ψ̂(−i) is the
estimator of ψ obtained by using only those observations that
are independent of Yi; and let S(−i) = (k/n)1/2(ψ̂(−i) − ψ).
Then, a sufficient condition for ESj(Zv+e)i = O((k/n)1/2)
is that S − S(−i) = OP ((k/n)1/2).

This is routinely achieved, and in particular, if Yi is inde-
pendent of all but a finite number of observations, we have
S − S(−i) = OP ((k/n)1/2). This is the typical situation is
almost all applications of small area studies. Thus, the effect
of Assumption 4 is to restrict the complexity of the matrices
D and R.

REMARK 3. Unlike the Fay-Herriot model, in the general
Das-Jiang-Rao mixed effects model, n does not represent the
number of small areas. In fact, it is the sum total of all obser-
vations made, counting each repeated measurement on each
individual unit in each small area as a distinct observation.
This allows Theorem 3.1 to be used with considerable flexi-
bility, for example, when number of individual units in small
areas are large, or when number of small areas are large, or
both. However, requirements of asymptotic negligibility, as in
(31)-(32), must still be met. Our assumptions are designed for
the more realistic applications where number of small areas
are large.

4 Simulation example based on income and poverty
statistics

We illustrate the performance of our proposed parametric
bootstrap approach with a simulated application based on a
data set on small-area income and poverty estimates for the
50 states and the District of Columbia of the United States of
America. We use a Fay-Herriot model, since in that model
we have viable competitors for our approach. We use three

Table 1: Coverage and average length of different intervals
(nominal coverage=0.95)

State Naive Prasad-Rao Bootstrap
1 0.43(4.12) 0.99(12.96) 0.96(11.25)
2 0.45(4.13) 0.99(12.38) 0.96(10.61)
3 0.43(4.10) 0.99(13.07) 0.96(11.20)
4 0.47(3.94) 0.99(11.87) 0.97(9.61)
5 0.47(2.55) 0.99(16.28) 0.95(5.72)
6 0.46(3.77) 0.99(12.72) 0.97(9.15)
7 0.42(4.06) 0.98(13.76) 0.95(11.51)
8 0.31(4.64) 0.96(20.41) 0.95(19.97)
9 0.46(4.21) 0.99(12.04) 0.96(1.76)

10 0.47(3.03) 0.99(14.54) 0.95(7.00)

major covariates and sampling variances Di from the data set;
and take estimates of the hyperparameters β and ψ obtained
by linear regression analysis on the data as the true values of
these hyperparameters; and artificially generate the response
variable Y from a Normal distribution. Along with an inter-
cept term, we use as covariates two measures related to tax
return data, and one measure related to food stamp data. The
performance of the proposed method is more interesting for
small values of n. Hence we took n = 10 states arbitrarily.

We compare our method with (a) the naive plug-in method,
and (b) the Prasad-Rao method. The naive method uses
asymptotic normality of T with variance approximated by the
estimate of E(θi − θB

i )2, where θB
i is the Bayes estimator of

θi. In Prasad-Rao method, an improved Taylor series based
approximation of the asymptotic variance is used.

Based on 10,000 iterations, for the three methods we com-
pute the coverage probabilities and average lengths for all the
10 selected states (small areas). The results are reported in
Table 1. The naive method has severe undercoverage prob-
lem, and it could be as low as 0.31 compared to the nominal
value of 0.95. The Prasad-Rao method is more conservative
than our proposed method. In terms of the average length, it is
much more inefficient than our bootstrap method (our method
can cut down the average length of the Prasad-Rao interval by
more than one-third). This example illustrates that using the
proposed bootstrap based interval achieves desired coverage
accuracy, without undue lengthening of the interval.
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