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Abstract

Two-phase panel surveys are conducted to study
trends over time. The outcome of these studies is
often a dataset containing characteristic values and
weights for a set of observations. Replication weights
are often included in the dataset to allow variance
estimation for nonlinear functions. We propose a
general linear model as a basis for estimating means
and totals at each survey time point. A consistent
replication variance estimator is provided as well as
a central limit theorem for use in constructing con-
fidence intervals for functions of means or totals.

KEY WORDS: longitudinal, panel survey, two-
phase sampling

Introduction

Longitudinal surveys where some, or all, of the units
are revisited are used to provide estimates of change.
Correlations from repeated observations on the same
unit may be used to form estimators that are supe-
rior to cross-sectional estimators. We consider esti-
mation of time point means from longitudinal sur-
veys composed of a fixed number panels, where units
in a panel are observed with the same observation
pattern. Such surveys can be represented as two-
phase samples.

In two-phase sampling, a large first-phase sample,
A1, is selected using a design p1(•) with inclusion
probabilities Pr(i ∈ A1) = π1i. Traditionally, an in-
expensive or easy to observe auxiliary variable vec-
tor, x, is observed in A1. A second-phase sample A2

is selected from A1 with a design p2|1(•) with con-
ditional inclusion probabilities Pr(i ∈ A2|i ∈ A1) =
π2i|1i. Often, the variables of interest y are observed
in A2. The information from x is used in p2|1(•), in
an estimator for the mean or total of y, or in both.
A common estimator is the two-phase regression es-
timator (Särndal et al 1992).

Longitudinal samples with a fixed number of pan-
els can be viewed as two-phase samples with many
second-phase samples. The first-phase sample is

composed of all units that will be observed at some
time. The second-phase samples, A2p for p =
1, 2, . . . , P , are disjoint panels of units. All units in
A2p are observed at times determined by a longitu-
dinal observation scheme. The second-phase sample
design may be thought of as a procedure to parti-
tion the first-phase sample into disjoint panels. The
selection of A1 can be done implicitly by selecting
panels directly from the population.

Let

y2pt =

 ∑
i∈A2p

π−1
1i π−1

2i|1i

−1 ∑
i∈A2p

π−1
1i π−1

2i|1iyit (1)

be the second-phase mean from panel p of charac-
teristic y observed at time t. When more than one
panel is observed at time t, we have more than one
estimator of the population mean at time t. Panel
means from the same panel observed at different
times are correlated since they contain the same
sampled units. We propose an estimator for popu-
lation time means that incorporates the correlation
structure of panel means and give a central limit the-
orem for the estimator. We close with suggestions on
how to utilize the estimator in creating an analysis
dataset.

Estimated Generalized Least Squares
Estimator

We write the cell-mean model for panel means as

y2 = Xµ + e, (2)

where y2 is the vector of second-phase panel means
y2pt, X has elements

xpt,j =
{

1 if t = j
0 otherwise

(3)

that link y2pt to the corresponding population mean
µt, µ is the vector of population means , and e is
a vector of errors due to sampling and measure-
ment. Assume E(e) = 0 and V ar(e|FN ) = V ,
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Table 1: Toy Example

Panel Time
1 2 3

1 X X X
2 X
3 X

where {FN} is a sequence of finite populations. As-
sume uncorrelated panels, Corr(ept, equ|FN ) = 0 for
p 6= q, and assume Corr(ept, ep,t+j |FN ) = ρ(j) ∀t.
Assume V is a function of a fixed number of param-
eters and of stratum sample sizes. Assume

ypt − µt|FN = Op(n−1/2). (4)

Consider the toy example of an observation scheme
of three periods depicted in Table 1. The compo-
nents of model (2) for the representation of Table 1
are

y2 =


y2,11

y2,12

y2,13

y2,22

y2,33

 , X =


1 0 0
0 1 0
0 0 1
0 1 0
0 0 1

 , (5)

µ =

 µ1

µ2

µ3

 , (6)

and assuming equal panel sizes and equal stratum
compositions,

V ∝


1 ρ(1) ρ(2) 0 0

ρ(1) 1 ρ(1) 0 0
ρ(2) ρ(1) 1 0 0
0 0 0 1 0
0 0 0 0 1

 , (7)

where ρ(h) is the correlation of panel means at lag
h.

The generalized least squares estimator (GLSE) for
µ,

µ̆ =
(
X ′V −1X

)−1
XV −1y2 (8)

can be computed when V is known. Skinner and
Holmes (2003) describe uses of generalized least
squares in longitudinal survey analysis.

In many applications, the parameters in V will need
to be estimated. Let V̂ be an estimator of V with
error that is Op(n−1/2). The estimated generalized
least squares estimator (EGLSE) for µ is

µ̂ =
(
X ′V̂ −1X

)−1

XV̂ −1y2 (9)

Many methods exist for estimating the covariance
matrix of y2. In our applications, we fit a model
to the empirical correlations. We use nonlinear least
squares to compute the estimated correlation param-
eters. Fuller (1987) provides theory for using non-
linear least squares to estimate variance parameters
used in an EGLSE. By our assumptions,

µ̂− µ̆|FN = Op(n−1) (10)

and
µ̂− µ|FN = Op(n−1/2). (11)

The GLSE is superior to direct time mean estimators
of the form

yP ?
t

=

 ∑
i∈P ?

t

π−1
1i π−1

2i|1i

−1 ∑
i∈P ?

t

π−1
1i π−1

2i|1iyit, (12)

where P ?
t is the collection of panels observed at time

t. For the GLSE, V ar(µ̆) =
(
X ′V −1X

)−1. The
EGLSE variance can be estimated by replacing V
with the consistent estimator V̂ . Given a consis-
tent first-phase replication variance for time means,
a consistent replication variance estimator for the
EGLSE has been proposed (Legg, Fuller, and Nusser
2005).

Central Limit Theorem

To facilitate the construction of confidence intervals
for time means using the EGLSE, we provide con-
ditions on the population and sample designs that
give asymptotic normality of the EGLSE. Central
limit theorems for first-phase means have been given
for Poisson sampling, simple random sampling, and
stratified random sampling under mild assumptions.
Conditional on (A1,FN ) the same theorems may
be applied to second-phase means for conditional
asymptotic normality. The following lemma adapted
from Schenker and Welsh (1988) provides conditions
for combining first and second-phase results.

Lemma. Let {FN} be a sequence of finite popula-
tions and let θN be a function in Rk of the elements
in FN such that

N1/2(θN − θ) L−→ Nk(0,V11). (13)

Let a design, an estimator θ̂N , and a sequence of
conditional variance matrices V22,N be such that

N1/2(θ̂N − θN )|FN
L−→ Nk(0,V22) a.s. (14)

ASA Section on Survey Research Methods

3313



and
lim

N→∞
V22,N = V22 a.s., (15)

where V11 + V22,N is positive definite for all N .
Then

N1/2(V11 + V22,N )−1/2(θ̂N − θ) L−→ Nk(0, Ik),
(16)

where Ik is the k × k identity matrix.

We apply the lemma for fixed-rate second phase
sampling.

Theorem. Let {(yi,xi)} be a sequence of in-
dependent and identically distributed random vec-
tors, where yi is a vector of response variables of
length T with fifth moments and xi is a vector of
second-phase stratum indicators of length T × G.
Let {FNk

, A1k}∞k=1 be a sequence of populations
and first-phase samples, where A1k is a sample of
size n1k from FNk

. Assume FNk
⊂ FNk+1 and

A1k ⊂ A1,k+1, where FNk
contains the first Nk ele-

ments of {(yi,xi)}. Assume that each finite popu-
lation FNk

is divided into G strata. Let Ngk be the
size of stratum g in FNk

. Let µ̂k be the EGLSE de-
fined in (9) for the kth sample. Assume {FNk

, A1k}
is such that the first-phase mean vector satisfies,

V (y1k|FNk
)−1/2(y1k−µNk

)|FNk

L−→ N(0, IT ) a.s.,
(17)

where y1k is the vector of first-phase weighted means
with elements y1kt for t = 1, 2, . . . , T , µNk

is the
vector of finite population means, and

n1kV (y1k|FNk
)Σ−1

1 −→ IT a.s. (18)

for some positive definite matrix Σ1. Assume the
first-phase design is such that

limk→∞N−1
k

∑
i∈A1k

π−1
1i (1,x′i,y

′
i, vech(yiy

′
i)
′)′

(1,x′i,y
′
i, vech(yiy

′
i)
′) = B a.s.,

,

(19)
where B is a matrix of constants. The notation
vech(C), where C = {cij} is a T×T matrix, denotes
the vector (c11, . . . , c1T , c22, . . . , c2T , . . . , cTT )′. As-
sume a sequence of first-phase inclusion probabilities
π11, π12, . . . , satisfying

KL < n−1
1k Nkπ1i < KM (20)

for positive KL and KM . Let the second-phase sam-
ples be A2pk for p = 1, 2, . . . , P where the A2pk are
mutually exclusive, and let the sample size be n2pgk

for stratum g in panel p. Let the second-phase sam-
pling rates, n2pgkn−1

1gk, be fixed and constant for each

p, g pair, where n1gk is the sample size in stratum g
of A1k. Then

Σ−1/2
ck (µ̂k − µNk

|FNk
) L−→ N(0, IT ) (21)

where

Σck = Λ(X[V (y1k|FNk
)]X ′ + Σ2|1,k)Λ′, (22)

X is the model matrix from the cell-mean model,
and Λ is the probability limit of

Λ̂ =
(
X ′V̂ −1X

)−1

X ′V̂ −1. (23)

Denote the second-phase panel p mean estimator of
µNkt by y2pkt. The components of Σ2|1,k are

Cov(y2qkt1 − y1kt2 , y2ukt2 − y1kt2 |FN )

= E

[
G∑

g=1
n2

1gk(n−1
2pgk − n−1

1gk)S1kg,t1,t2 |FNk

]
(24)

for q = u and

Cov(y2qkt1 − y1kt2 , y2ukt2 − y1kt2 |FN )

= E

[
G∑

g=1
−n2

1gkN−1
gk S1kgt1,t2 |FNk

]
(25)

for q 6= u, where

S1kgt1,t2 = (n1gk − 1)−1

×
∑

i∈A1gk
(w1kiyit1 − ỹ1kπ,gt1)(w1kiyit2 − ỹ1kπ,gt2),

(26)

w1ki =

 ∑
j∈A1k

π−1
1j

−1

π−1
1i , (27)

ỹ1kπ,gt = n−1
1gk

∑
i∈A1gk

w1kiyit, (28)

and A1gk is the set of indices in stratum g in A1k.

Note that in the theorem, means from different pan-
els are correlated. In the cell-mean model, we as-
sume panel means are uncorrelated. For second-
phase stratified sampling, the correlation between
panel means arises due to the finite population cor-
rection factors. The cross-panel correlations will
be small when the first-phase sampling fractions in
second-phase strata are small. The theorem is a di-
rect application of the lemma. Conditional almost
sure convergence is obtained by (19). The sequence
of populations and first-phase samples considered is
not a standard sequence due to the nesting of the
samples. However, sequences of poisson samples,
simple random samples, and stratified random sam-
ples can be given such a representation.
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Using the EGLSE

The EGLSE may be used to provide estimates of
totals or means. However, for many large-scale
surveys, the data are used in estimation problems
that are not specified to the survey statisticians. A
typical output of an initial estimation process is a
dataset with a set of weights. Practitioners decide
what estimators are of interest. Often the param-
eters being investigated can be written as smooth
functions of totals.

The EGLSE returns a vector of weights, Λ̂, for the
vector of panel means. Different weights are applied
to the panel mean vector depending on the target
time point. The EGLSE weights are also particular
to the variable being analyzed. Therefore, supplying
the EGLSE weights for all possible variables would
be computationally burdensome. We propose three
methods for applying the EGLSE when the output
of the survey is a dataset.

From a dataset creation standpoint, the simplest
way to include the EGLSE in output would be to
supply a set of Λ̂ matrices. Practitioners can com-
pute panel means for their variables of interest, then
apply appropriate EGLSE coefficient matrices for
their variables. The coefficient matrices differ only
by the components in V̂ . Therefore, the EGLSE co-
efficient matrix for a variable with a variance matrix
similar to the variable of interest may be used to
construct an approximation to the EGLSE. The re-
sponsibility for choosing the coefficient matrices falls
on the practitioner, making estimation more cum-
bersome than the use of direct weighted sums.

The consistency of the replication variance estima-
tor does not require that the variance estimator V̂
be consistent for V . The requirement is that V̂ con-
verges to a positive definite matrix. Therefore, the
replication variance estimator may be used when the
EGLSE coefficient matrix from another variable is
used. Similarly, the central limit theorem only as-
sumes the EGLSE coefficient matrix is consistent for
a matrix. The EGLSE constructed with the Λ̂ ma-
trix from another variable does not necessarily have
the asymptotic efficiency of the GLSE. The efficiency
loss will depend on the degree to which the variance
matrices for the variable of interest and the EGLSE
variable agree.

The EGLSE may be used as the control total in a
regression estimator. For specified variables, the re-
gression estimators will match the EGLSEs. For the
remaining variables, the direct weighted estimators

may be improved by the adjustment for EGLSEs.
Because the sum of the weights must be an estimate
of the total number of units, the regression weights
can only be applied to a set of elements with data
for all time points.

Let A be the portion of the sample from a longi-
tudinal two-phase survey that is always observed.
Let µ̂q be the EGLSE for characteristic q. The first
step is to construct the EGLSE for Q different vari-
ables of interest. Let wi,old be the analysis weight for
segment i, ratio adjusted so that

∑
i∈A wi,old = N̂ ,

where N̂ an either the known population size or an
estimator of the population size. We shall consider
wi,old that are proportional to π?−1

i = π−1
1i π−1

2i|1i, the
two-phase probability for including segment i in A.
A set of regression weights wi,new are those that min-
imize ∑

i∈A

α−1
i (wi,new − wi,old)2 (29)

subject to ∑
i∈A

wi,newyqi = N µ̂q (30)

for q = 1, 2, . . . , Q, where yqi is the observation vec-
tor of unit i for characteristic q and the αi’s are
constants chosen by the practitioner (Deville and
Särndal 1992). The multiplier N in (30) may be
replaced by N̂ . The regression weights are

wi,new = wi,old + αiy
′
i

[∑
i∈A αiyiy

′
i

]−1

×
(
N µ̂−

∑
i∈A wi,oldyi

)
.

(31)

When we apply the weights in (31) to a variable zi,
the estimator for the total of zi is∑

i∈A wi,newzi

=
∑

i∈A wi,oldzi +
(
N µ̂−

∑
i∈A wi,oldyi

)′
β̂zy,

(32)
where

β̂zy =

[∑
i∈A

αiyiy
′
i

]−1 ∑
i∈A

αiyizi. (33)

The mean square error improvement for the the re-
gression estimator for zi depends on the strength and
shape of the relationship between z and y. The im-
provement will be large for a highly correlated linear
relationship between z and y.

To establish the limiting properties of the regression
estimator, write the regression estimator of the mean
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as

zreg,A =

[∑
i∈A

wi,new

]−1 ∑
i∈A

wi,newzi. (34)

Assume
µ̂− µ = Op(n

−1/2
1 ), (35)

zA − zN = Op(n
−1/2
1 ), (36)

yA − µ = Op(n
−1/2
1 ), (37)

β̂zy − βzy = Op(n
−1/2
1 ), (38)

and
µ̂− µ̆ = Op(n−1

1 ), (39)

where

βzy =

[
N∑

i∈1

αiw
−1
i,oldyiy

′
i

]−1 N∑
i∈1

αiw
−1
i,oldyizi, (40)

µ̂ is the EGLSE of the vector of time means µ, zN is
the population mean of z, and n1 is the first-phase
sample size. The error in zreg,A is

zreg,A − zN = zA − zN + (µ̂− µ)′β̂zy−
(yA − µ)′β̂zy

= zA − zN + [(µ̆− µ) + (µ̂− µ̆)]′

×β̂zy − (yA − µ)′β̂zy

= eA + (µ̆− µ)′βzy + Op(n−1
1 )

=: dreg + Op(n−1
1 ),

(41)
where

dreg = eA + (µ̆− µ)′βzy (42)

and

eA =

[∑
i∈A

wi,old

]−1 ∑
i∈A

wi,old(zi−zN−(yi−µ)′βzy).

(43)
The variance of the approximating variable is

V (dreg) = V (eA) + β′zyV (µ̆)βzy + 2β′zyC(eA, µ̆).
(44)

From the uncorrelated panel assumption, C(eA, µ̆)
depends only on A. By our assumptions, the vari-
ance of dreg is Op(n−1

1 ).

We now extend the replication variance estimator to
the regression estimator. Suppose we have a consis-
tent replication variance estimator for V (µ̂) as de-
fined in Legg, Fuller, and Nusser (2005). Since µ̂
and β̂zy are functions of the sample containing the
yq and z values, the same replicate sample may be
used to construct a replicate for

t̂z,reg =
∑
i∈A

wi,newzi. (45)

Let A(k) be the kth replicate sample. A replicate for
t̂z,reg is

t̂(k)
z,reg = t̂(k)

z + (N µ̂(k) − t̂(k)
y )′β̂(k)

zy , (46)

where

t̂(k)
z = N

 ∑
i∈A(k)

wi,old

−1 ∑
i∈A(k)

wi,oldzi, (47)

β̂(k)
zy =

 ∑
i∈A(k)

αiyiy
′
i

−1 ∑
i∈A(k)

αiziyi, (48)

and

µ̂(k) = (X ′V̂ −1
N X)−1X ′V̂ −1

N y
(k)
2π,N , (49)

where

y
(k)
2π,pt,N =

 ∑
i∈A

(k)
2p

π−1
2i|1iπ

−1
1i


−1 ∑

i∈A
(k)
2p

π−1
2i|1iπ

−1
1i yi,

(50)
where A

(k)
2p is the set of indices in A2p

⋂
A(k) and the

components of t̂
(k)
y are calculated as in (47).

The regression estimator requires a set of data with
a completely observed time series. One option is
to use imputation to create a complete dataset. If
the regression estimator is computed for the imputed
dataset, the regression weights will depend on both
the real and imputed values. An alternative is to
select imputed values so that the EGLSE is attained
for weighted sums of selected variables.

Let At be the portion of the sample observed at time
t. Let

zAt =

[∑
i∈At

wi,old

]−1 ∑
i∈At

wi,oldzit, (51)

yq,At
=

[∑
i∈At

wi,old

]−1 ∑
i∈At

wi,oldyqit, (52)

and
β̂zy,At

=
[
V̂ (y)

]−1

Ĉ(y, zAt
) (53)

where V̂ (y) and Ĉ(y, zAt
) are pooled consistent es-

timators of V (y) and C(y, zAt
), respectively, and y

is the vector of yq,At
for q = 1, . . . , Q. Let

zreg,At
= zAt

+ (µ̂− y)′β̂zy,At
(54)

be the regression estimator for the mean at time t.
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Assume an imputation procedure that imputes a
value for each unobserved zit and yqit and denote
the full first-phase sample after imputation by AI .
Further, assume that an imputed value is a function
of observations from the same panel. Let wi,full be
the weight associated with the first-phase sample.
Let

zI,t =

[ ∑
i∈AI

wi,full

]−1 ∑
i∈AI

wi,fullzI,it, (55)

where zI,it is the observed zit for panels observed at
time t and is the imputed zit for unobserved panels.
It is assumed that the imputed zit are such that
zI,t = zreg,At

. Assume that

yqtp,I − µqt = Op(n
−1/2
1 ) (56)

and
zp,I −N−1tz = Op(n

−1/2
1 ), (57)

where yqtp,I and zp,I are means from imputed panel
p data at time t. Then, the order of the error in zI,t

is the same as for zreg,At
.

Selecting imputed values to satisfy a set of restric-
tions generated by the regressions can be difficult.
Since the imputed values will form a time series,
the series for each unit should be internally consis-
tent. One procedure is to first impute values and
then use the EGLSE as a diagnostic for imputation.
If weighted total estimators after imputation differ
from the EGLSEs for selected variables by more than
a specified tolerance, the imputation procedure re-
quires adjustment. Otherwise, the dataset after im-
putation is accepted.

Discussion

Estimated generalized least squares solutions are
commonly used in linear modeling applications. For
longitudinal samples, combining information across
observation time periods using an EGLSE requires
assumptions for the sequence of populations, first-
phase sample designs, and second-phase sample de-
signs. In our work, we assume standard properties
hold for the first-phase sample and prove results for
fixed rate stratified random sampling for the second-
phase.

The theory developed in this paper and in Legg,
Fuller and Nusser (2005) rebuild the standard tools
for analyzing large survey data in the framework of
longitudinal two-phase sampling. The EGLSE auto-
mates constructing composite estimators using the
information from different panels and years.

Note on Lemma 1

After completion of this work, J. N. K. Rao sent
a copy of a manuscript on limiting normality for
two-phase sampling designs (Chen and Rao 2006).
In Theorem 2 of Chen and Rao the almost sure
conditional convergence assumption of our lemma is
replaced by a strong conditional weak convergence
statement.
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