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Abstract 
The prediction approach to finite population inference 

has received a considerable attention in recent years.  Under 
this approach, the finite population is assumed to be a 
realization from a superpopulation described by a known 
probability model, usually a linear model.  The prediction 
approach is often criticized for its lack of robustness against 
model misspecification.  In this paper, we revisit this 
important issue and  introduce a new robust prediction 
approach where the superpopulation model is chosen 
adaptively from the well-known Box-Cox class of 
probability distributions.  The richness of the Box-Cox 
class ensures robustness in our model-based prediction 
approach.  We demonstrate the robustness of our proposed 
predictors using a Monte Carlo simulation study and a real 
life example. 

KEY WORDS:  The Box-Cox transformation; 
Empirical best prediction; Superpopulation. 

 
1. Introduction 

The use of a superpopulation model to describe a finite 
population can be traced back at least to Cochran (1939).  
Brewer (1963) and Royall (1970) considered a prediction 
approach to estimate the finite population total, partly 
motivated by a superpopulation model.    For a 
comprehensive review of the subject, see the books by 
Bolfarine and Zacks (1992), Korn and Graubard (1999) and 
Valliant et al. (2000), and the review paper by Graubard 
and Korn (2002).  We refer to the book by Ghosh and 
Meeden (1997) for a related Bayes and empirical Bayes 
approach.  Rao (2005) examined the interplay between 
sample survey theory and practice over the past 60 years or 
so.   

Under the superpopulation prediction approach, the 
finite population is assumed to be a realization from a 
superpopulation described by a probability model.  The 
superpopulation model is then used to predict the non-
sampled units from the knowledge gained through the 
sample.  The main criticism about this approach is that the 
prediction could be unreliable in case of a model 
misspecification (Hansen et al. 1983).  Therefore, model 
robustness is important, a topic studied by researchers from 
different perspectives. Hartley and Rao (1968) proposed a 
“scale-load” nonparametric approach. Valliant (1985, 1986) 
extended Royall’s (1970) superpopulation approach to 
cover certain non-linear models. Ghosh and Lahiri (1987, 
1988) derived linear empirical Bayes estimators of finite 
population means, replacing the normality assumption of 
Ghosh and Meeden (1986) by using certain moment 

assumptions.  Ghosh et al. (1989) put forward a 
nonparametric Bayesian approach using the Dirichelet 
process prior. Meeden (1999) proposed a noninformative 
Bayesian approach for two-stage cluster sampling.  See 
Särndal et al. (1992) and Kott (2005) for a model-assisted 
approach. 

In the mainstream statistics, transformations are often 
used to achieve normality, linearity, and homoscedasticity 
(Carroll and Ruppert, 1988), but the literature on 
transformations in finite population inference is not very 
rich.  There is, however, a growing interest in developing 
methods that use an appropriate transformation with survey 
data.  In some applications, especially in business and 
agricultural surveys, a linear model may not be appropriate 
for the study variable, but may be appropriate for a strictly 
monotonic transformation of the study variable.  For the 
data set given in Royall and Cumberland (1981), Chen and 
Chen (1996) observed that the finite population distribution 
was severely skewed and that the log-transformation helped 
achieving symmetry.  In addition, the log-transformation 
was useful in strengthening the linear relationship between 
the study and auxiliary variables.  Korn and Graubard (1998) 
compared different confidence intervals, including intervals 
based on a logit-transformation, for proportions with small 
expected number of positive counts.  Karlberg (2000) 
proposed an estimator based on a lognormal-logistic 
superpopulation model to predict the finite population total 
of a highly skewed survey variable.  Their simulation 
results indicated that the lognormal-logistic model estimator 
offers a sensible alternative to other estimators, especially 
when the sample size is small.  Chambers and Dorfman 
(2003) discussed the estimation of a finite population mean 
under certain general but known transformation on the 
continuous data. 

Researchers find the transformation technique useful in 
analyzing survey data.  However, the key step is the 
identification of an appropriate transformation that fits the 
survey data well.  In many applications, the form of 
transformation is determined subjectively.  However, a 
priori knowledge or theory may not suggest the 
transformation to be used.  In such situations, it would be 
convenient to determine the transformation adaptively using 
the data.   

The pioneering work of Box and Cox (1964) has led to 
the development of “data-decide-transformation” methods 
for constructing models with independently and identically 
distributed errors.  Their paper and other papers on the 
subject, including Tukey (1957), John and Draper (1980), 
and Bickel and Doksum (1981), have inspired a large 
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volume of applied research.  Spitzer (1976) examined the 
relationship between the demand for money and the 
liquidity trap with a generalized Box-Cox model.  In the 
context of research related to malaria, Newman (1977) 
concluded that the Box-Cox functional specification was 
superior to earlier specifications. Miner (1982) and Davison 
et al. (1989) considered modeling of soybean yield 
functions and the U.S. soybean export respectively.  They 
concluded that the Box-Cox transformation provides 
approximately normally distributed error terms.  A 
bibliography of the published research related to the Box-
Cox transformation can be found in a review paper by Sakia 
(1992). 

In this paper, we use the Box-Cox transformation on 
the study variable to generate robust model-based 
predictors of a finite population total.  Our approach 
deviates from the usual model-based approach that uses 
linear regression models with the normality assumption or a 
known transformation, such as the log-transformation or the 
square root transformation, on the study variable.  The 
robustness is achieved because the appropriate 
transformation on the study variable is automatically 
determined by the data.  The proposed research suggests a 
new way to achieve robustness in addressing various 
inferential issues in the prediction approach to the finite 
population theory. 

We organize the paper in several sections.  In Section 2, 
we propose our robust model-based approach to the finite 
population sampling.  In Section 3, we evaluate our 
predictors using a real data analysis.  Concluding remarks 
are provided in Section 4.  

 
2. Robust model-based predictor  

Let {1, , }U N= L
 be a finite population of N distinct 

units, each of which has a value of a study variable y 
associated with it.  The population vector of y’s, i.e.  
y ),...,( 1 ′= Nyy  , is treated as a realization of a random 

vector ),...,(
1

′=
N

YYY .  Let S be the set of all samples of size 

n, a sample s being a subset of U.  Our goal is to predict the 
finite population total: ∑

∈

=
Ui

iyT .  Let xi ),...,,1( 1 ′= iki xx  be 

a column vector of k known auxiliary variables associated 
with the ith unit of the finite population and ),...,(

1
′=

N
xxX . 

For any sample s of size n, we can redefine y and X so that 
the first n rows of y and X correspond to those in the 
sample.  We write  

,⎟⎟
⎠

⎞
⎜⎜
⎝

⎛=
r

s

y

y
y   

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛=
r

s

X

X
X , 

where
sy  is a 1n× column vector of observed response 

variable; ry  is a ( ) 1N n− × column vector of unobserved 

response variable; 
sX  is a )1( +× kn  matrix of known 

auxiliary variables in the sample; 
rX  is a )1()( +×− knN  

matrix of known auxiliary variables outside the sample. 
In the prediction approach, the following standard 

linear model is often assumed for the superpopulation: 
: = +1M Y Xβ ε ,  

where ),(~ 2I0ε σ , a N-variate probability distribution 

with the mean vector 0 and variance covariance matrix 2 ;σ I  
I is the usual NN ×  identity matrix;  β  is the 

1)1( ×+k column vector of regression coefficients.  Both 
2σ  and β  are unknown superpopulation parameters.  A 

concise summary about the prediction theory in finite 
population sampling using linear models can be found in 
Bolfarine and Zacks (1992), Lohr (1999), Valliant et al. 
(2000), Chambers and Skinner (2003), among others. 

Tukey (1957) considered the following family of 
power transformations: 

( )          0 

log( )   0

y
y

y

λ
λ λ

λ
⎧ ≠

= ⎨ =⎩

, 

where 0.y >   In order to take care of the discontinuity 

at 0λ = , Box and Cox (1964) proposed the following 
family of transformations: 

⎩
⎨
⎧

=
≠−

=
0)log(

0/)1()(

λ
λλλ

λ

y

y
y ,   (2.1) 

where 0.y >   The parameter λ  determines the nature 
of transformation.  For example, λ  = 1, 0, 0.5, -1 
correspond to no transformation, log-transformation, square 
root transformation, and reciprocal transformation, 
respectively.  The transformation parameter λ is estimated 
by the data.  The Box-Cox analysis may lead to a log-
transformation, but may equally lead to some other 
transformation in the above family – it depends on the 
actual data observed. 

We consider the following superpopulation model for 
the transformed study variable: 

( )
2  λ = +M : Y Xβ ε , where 2~ ( , ).σε 0 I  

 
2.1 Estimation of )',,( σλβθ =  

For computational advantages, Box and Cox (1964) 
suggested the following scaled transformation: 

⎩
⎨
⎧

=⋅
≠−

=
−

0   )log(~
0~/)1( 1

)(*

λ
λλ λλ

λ

yy

yy
y ,  (2.2) 

where ( ) nn

i iyy
/1

1
~ ∏ =

= , the geometric mean of the sample 

observations.  Consider the following scaled model: 
*( ) * *

3  ,λ = +M : Y Xβ ε  

where * *2 is approximately (0, )N σε I .  The scaling avoids 
large numbers and simplifies the log-likelihood function, 
and thus the model 

3M  has computational advantages over 

the model 
2M  in estimating the respective parameters.  

ASA Section on Survey Research Methods

3347



 

Note that this scaling is different from the one used by 
Zarembka (1968, note 8) who suggested dividing ( )y λ  by 

.yλ
%   Schlesselman (1971) showed that the maximum 

likelihood estimator of * * *( , , )λ σ ′=θ β  is scale invariant so 
that rescaling the original observations y’s leads to the same 
log-likelihood function under model 

3M  so long as the 

regression model contains an intercept term. 
Box and Cox (1964) discussed the estimation of 

* * *( , , )λ σ ′=θ β .  The method requires the maximization of 
the approximate log-likelihood function, given by 

* *2 *( ) * 2
*2

1 1
( ) log log(2 ) ( )

2 2 i i
s s

l L y λπσ
σ

′= = − − −∑ ∑θ x β . 

The above log-likelihood function is approximate 
because the distribution of the error term in model 

3M  is 

not exactly normal.  The maximum likelihood estimate of 
λ  can be obtained by a grid search method.  That is, for a 
large set of values of λ , model 

3M  can be fit. This is a 

simple task since model 
3M  is a linear model for a given λ .  

The computations and plotting of the log-likelihood values 
for the fitted model against the set of values for λ  locate 
the maximum likelihood estimate, ˆ,λ  of the transformation 

parameter λ .  The maximum likelihood estimators of 
*2*  and σβ  are then given by:  

)ˆ*(1* )(ˆ λ
ssss Y'XX'Xβ

−=  and  

ˆ ˆ*2 *( ) * *( ) *1 'ˆ ˆˆ ( ) ( ).s s s sn
λ λσ = − −' 'Y X β Y X β    

Using )'ˆ,ˆ,ˆ(ˆ *** σλβθ = , the maximum likelihood 

estimator of θ  under model 
2M  is obtained as: 

)'ˆ~,ˆ,ˆ~()'ˆ,ˆ,ˆ(ˆ *1ˆ*1ˆ σλσλ λλ −−== yy ββθ .  It is interesting to 

note that the maximum likelihood estimates of λ  with 
respect to 

2M  and 
3M  are equivalent (see Li and Lahiri 

2006). The above algorithm, originally proposed by Box 
and Cox (1964), supplements the four different algorithms 
of obtaining the maximum likelihood estimator of θ  under 
model 

2M considered in Spitzer (1982a, b).  Bickel and 

Doksum (1981) provided precise conditions under which 
the maximum likelihood estimator of θ  is consistent.  
Gurka (2004, 2006) estimated the model and transformation 
parameters for the linear mixed model using the residual 
maximum likelihood (REML) approach in order to obtain 
more accurate estimate for theta. 

 
2.2 Estimating the asymptotic variance-covariance 
matrix of θ̂  

Note that for known λ , 
3M  is simply the standard 

linear regression model and so one can suggest standard 
variance estimators for *

β̂  and *2σ̂ .  However, these 
variance estimators underestimate the true uncertainties of 

*
β̂  and *2σ̂  since such variance estimators treat λ̂  as the 
true value. See Bickel and Doksum (1981) and Hinkley and 
Runger (1984) for related discussions.  In the context of 
estimation of ( , )λ ′β , Spitzer (1982a) incorporated the 

additional uncertainty due to estimation of λ  by 
considering the inverse of the observed Fisher’s 
information matrix.  However, his model is different from 
the Box-Cox scaled model.  Unlike Spitzer (1982a), we 

incorporate the additional uncertainties involving *2σ̂ .  Let 

( ) *

* 2 * * 2

ˆ
ˆ( ) ( ) / ( )i l= − ∂ ∂

θ

θ θ θ be the observed Fisher 

information matrix, ( ) *

2 * * 2
ˆ

( ) / ( )l∂ ∂
θ

θ θ being the 

( 3) ( 3)k k+ × + matrix of second partial derivatives of 
*( )l θ with respect to *

θ .  Then a standard consistent 
estimator of the asymptotic variance-covariance matrix of 

*
θ̂  is given by: * * 1ˆ ˆ( ) ( ) .var i −=θ θ  Explicit formulae for the 
derivatives are given in Li and Lahiri (2006).  

Our goal is to obtain an estimate of the asymptotic 
variance-covariance matrix of )'ˆ,ˆ,ˆ(ˆ σλβθ = .  Using the 

relationship *
ββ ˆ~ˆ 1ˆ−= λy , *1ˆ

ˆ~ˆ σσ λ−= y  and the fact that θ̂ is the 

maximum likelihood estimate of  ( , , ) 'λ σ=θ β  under 

model 2M , we have:  *ˆ ˆ( ) ( ) 'var var=θ J θ J , where  

*

*

*

ˆ ˆ ˆ
ˆ ˆ ˆ

ˆ ˆ ˆ
ˆ ˆ ˆ

ˆ ˆ ˆ
ˆ ˆ ˆ

σλ

λ λ λ
σλ

σ σ σ
σλ

⎡ ⎤∂ ∂ ∂
⎢ ⎥∂∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂= ⎢ ⎥∂∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂
⎢ ⎥∂∂ ∂⎣ ⎦

*

*

*

β β β
β

J
β

β

. 

Following Spitzer (1982a), one could have applied the 
Taylor series to obtain ˆ( )var θ  from *ˆ( )var θ .  However, we 
note that such an argument is hard to justify since J  is a 
random matrix.  Instead, we applied a direct method to 
obtain ˆ( )var θ  (derivation is available upon request). 

 
2.3 Prediction of the finite population total 

We predict the finite population total 
by ∑∑

∈∈

+=
ri

i
si

i yyT ˆˆ , where ˆiy  denotes an arbitrary 

predicted value of the unobserved iy .  The difference 

T̂ T− is known as the prediction error of the predictor ˆ.T   
Let ( )ˆ ˆ( ) ,B T T E T T− = − ( )2ˆ ˆ( ) ( )Var T T E T E T− = −  and 

( )2ˆ ˆ( )MSPE T T E T T− = −  denote the bias, variance and 

mean squared prediction error (MSPE) of the prediction 
error respectively, where all the expectations are taken with 
respect to the model 

2M .  Note that 
2ˆ ˆ ˆ( ) ( ) ( ).MSPE T T Var T T B T T− = − + −   For an unbiased 
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predictor, i.e., for a predictor with ˆ( ) 0,B T T− = we have 
ˆ ˆ( ) ( )MSPE T T Var T T− = − .   

The best predictor (BP) of T, i.e., the predictor which 
minimizes the MSPE is obtained when ˆ ˆ ( ),BP

i iy y= θ  

where
1

ˆ ( ) ( ) [ (  ) 1] ( )BP
i iy E y z z dzλλ σ φ

∞

−∞

= = + +∫
'
iθ x β , and 

)(zφ  is the density of the standard normal deviate.  We can 
evaluate the above integral by numerical integration or by 
the following Monte Carlo approximation: 

∑
=

++≈
M

j
ij

BP
i M

y
1

1

)1)((
1

)(ˆ λελ βxθ
'
i

,  (2.3) 

where M denotes the number of independent simulation 
runs and ),0(~ 2σε Nij

.   

In practice, θ  is unknown.  Replacing θ  by θ̂  
in ˆ ( )BP

iy θ , we obtain an empirical best predictor (EBP) of T.  

In EBP, we use ˆˆ ˆ ( )EBP
i iy y= θ , where 

1 1
ˆ ˆ

1

1ˆ ˆˆ ˆ ˆ ˆˆ ˆ( ) [ (  ) 1] ( ) ( ( ) 1)
M

EBP
i ij

j

y z z dz
M

λ λλ σ φ λ ε
∞

=−∞

= + + ≈ + +∑∫
' '
i iθ x β x β

                  (2.4) 
and 2ˆ ˆ~  (0, )ij iid Nε σ . 

When 2σ  is small, we can approximate ˆ ( )BP
iy θ  by the 

Taylor Series expansion and obtain the approximate best 
predictor (ABP) of T when ˆ ˆ ( )ABP

i iy y= θ with 
1/ˆ ˆ( ) ( ( ) 1) ( ).ABP BP

i iy yλλ= + ≈'
iθ x β θ   (2.5) 

Replacing θ  by θ̂ in ˆ ( )ABP
iy θ , we obtain the following 

approximated empirical best predictor (AEBP) of T when 
ˆˆ ˆ ( )AEBP

i iy y= θ , where 

 λλ ˆ/1)1)ˆ(ˆ()ˆ(ˆ += βxθ
'
i

AEBP
iy    (2.6) 

The ABP or AEBP  is easier to implement than BP or 
EBP in terms of the CPU time. 

 
2.4 Estimation of the prediction variance of the 
population total predictor 

First note that for each ri ∈ , any arbitrary predictor  

i
ŷ  is a function of ,  iy i s∈ and hence independent of all 

,  iy i r∈  under model 
2M .  Thus, using the fact that 

ˆ ˆi i
i r i r

T T y y
∈ ∈

− = −∑ ∑ , we have 

ˆ ˆ( ) ( ) ( ).i i
i r i r

Var T T Var y Var y
∈ ∈

− = +∑ ∑   (2.7) 

If )(ˆor  )(ˆˆ θθ
ABP
i

BP
ii yyy = , the second term of right side 

of (2.7) is zero since ˆiy  is non-stochastic.  Thus, for both 

BP and ABP we have the identical prediction variance 
given by  

∑
∈

=−
ri

iyVarTTVar )()ˆ(

∑ ∫
∈

∞

∞−
⎥
⎦

⎤
⎢
⎣

⎡
−++=

ri
iyEdzzz )()(]1) ([ 2

2

φσλ λβx'
i

. 

The BP and ABP differ in terms of their prediction 
biases and the MSPE.  Evidently, for the BP the prediction 
bias is zero and thus the MSPE is the same as the prediction 
variance.  On the other hand, ABP suffers from prediction 
bias, but as noted in Section 2.3, for small 2σ , the bias is 
negligible.   

If )ˆ(ˆor  )ˆ(ˆˆ θθ
AEBP
i

EBP
ii yyy = , the  prediction variance of 

T̂  is given by 

ˆˆ ˆ( ) ( ) ( )i i
i r i r

Var T T Var y Var y
∈ ∈

⎡ ⎤− = + ⎢ ⎥
⎣ ⎦

∑ ∑ θ
,  (2.8) 

where 
∑∑∑
∈ ∈∈

=
ri rj

ji
ri

i yyCovyVar ))ˆ(ˆ),ˆ(ˆ())ˆ(ˆ( θθθ
.  Note the 

second term of (2.8), ))ˆ(ˆ(∑
∈ri

iyVar θ
, captures the variability 

due to the estimation of θ̂ , which can be ignored for large 
sample.  Using the Taylor Series expansion argument, we 
can propose the following variance estimator:  

'
ˆ ˆ ˆ ˆˆ ˆ ˆ( ( )) ( ) ( ) ( )ˆ ˆi i j

i r i r j r

var y y var y
∈ ∈ ∈

⎛ ⎞∂ ∂⎛ ⎞≈ ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
∑ ∑ ∑θ θ θ θ

θ θ
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For )ˆ(ˆ )ˆ(ˆ θθ
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yy = , we have 
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∂
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For )ˆ(ˆ )ˆ(ˆ θθ
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i
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∫
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σ
λ

∫
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∂
∂

iθ
 , 

where 
  1)ˆˆ(ˆˆ ++= zw

i
σλ βx'

i
. 

 
2.5 The Box-Cox Transformation on Both the Study and 
Auxiliary Variables  

Box and Cox (1964) considered a general model that 
allows transformation on both the study and auxiliary 
variables.  Khan and Ross (1977), Spitzer (1976), 
Zarembka (1968), Boylan et al. (1980), Mills (1978), 
among others, considered a particular case of the general 
Box-Cox model when a common transformation parameter 
is assumed for the study and all auxiliary variables.  
However, this approach restricts the class of models.  
Gemmill (1980) argued that more robust analysis is 

ASA Section on Survey Research Methods

3349



 

possible by using the general Box-Cox model.  Boylan et al. 
(1982) applied a fully generalized Box-Cox transformation 
to import functions, and found a substantial effect on the 
parameter estimates.  Ozuna et al. (1993) developed a 
truncated generalized Box-Cox model and compared their 
model with truncated double-log and semi-log model using 
the data from three Texas coastal recreation sites.  Their 
empirical results showed that neither the truncated double-
log nor the truncated semi-log model is appropriate for their 
application.   

In Sections 2.1-2.4, for the sake of notational simplicity 
we develop  methods under the model with transformation 
only on the study variable y.  But since the transformation 
on the auxiliary variables does not affect the distribution of 
the study variable, the extension of Sections 2.1-2.4 to the 
general Box-Cox model with transformations on both the 
study and auxiliary variables is straightforward.  The 
theoretical framework under the general Box-Cox model 
differs from the one based on the transformation only on the 
study variable in that the derivatives of the log-likelihood 
function with respect to the transformation parameters on 
different auxiliary variables are also needed.  See Li and 
Lahiri (2006) for details on the derivative computations.  In 
Section 3, we implement the general Box-Cox model via a 
real data analysis. 

 
3. Real data analysis 

In this section, we treat the actual survey data from the 
AAGIS as an artificial finite population of N=431 farms.  
For each farm, we have information on the number of beef 
cattles (study variable, y) and the farm area (auxiliary 
variable, x).  In Figure 1, we plot the histograms of y and 

1̂( )y λ , where 
1̂λ  is the maximum likelihood estimate of 1λ , 

the transformation parameter on the study variable in the 
Box-Cox model.  It is clear that the distribution of y is 
highly skewed and that the Box-Cox transformation is 
useful in achieving nearly normal distribution.  In Figure 2, 
we display the scatter plots of y vs. x and 1̂( )y λ  vs. 2

ˆ( )x λ , 

where 
2̂λ  is the maximum likelihood estimate of 

2λ  .  The 

Box-Cox transformation is exhibiting a better linear fit.  
The adjusted R2 for the Box-Cox transformed data is .74 
compared to .45 for the original data. 

The benefit of taking Box-Cox transformation on both 
y and x is obvious.  Note that no transformation and the log-
transformation belong to the class of Box-Cox 
transformations when λ  = 1 and 0 respectively.  Figure 3 
plots the histograms of 

21
ˆ and ˆ λλ  using 1,000 bootstrap 

samples, each bootstrap sample (of size 431) being selected 
using a simple random sampling with replacement from the 
finite population.  The variability of 

21
ˆ and ˆ λλ  over different 

samples supports the adaptive transformation approach over 
the fixed subjectively chosen transformation approach.   

Next we study the predictive power of different models 
by the well-known cross-validation method in which we 

drop one unit at a time and using the remaining units we 
predict the unit deleted. For details on the cross-validation 
approach, we refer the interested readers to Efron and 
Tibshirani (1993).  We compare four predictors (NTP, LTP, 
AEBP and EBP) of the total number of beef cattles in N = 
431 farms based on the three different models: no 
transformation model M1, log-transformation model, and 
the Box-Cox transformation model M2.  We estimate the 
prediction variance ˆ( )Var T T− , construct 95% asymptotic 
CI for T, and calculate the length of confidence interval (I) 
for each of the 431 possible cross-validation samples from 
the finite population. 

In order to evaluate the four predictors, the following 
evaluation statistics for each predictor are calculated: 
• Average Absolute Relative Deviation  

∑
=

−=
431

1

ˆ

431

1
)(

i

i

T

TT
AARD , 

• Average Relative Deviation  

∑
=

−
=

431

1

ˆ

431

1
)(

i

i

T

TT
ARD , 

• Average length of 95% confidence interval  

∑
=

=
431

1431

1
)(

i
iIALCI , and  

• Proportion of times the true value included in the 95% 
confidence interval  

∑
=

∈=
431

1

}{
431

1
)(

i
iCITIP , 

where the subscript i denotes the ith sample selected from 
the beef population, I{} is an indicator function which is 
equal to one if the true value T is included in the CI, and 
zero otherwise.  

Table 1 reports the AARD, ARD, ALCI, and P for four 
predictors based on different models.  Two predictors based 
on the Box-Cox model achieve the smallest AARD (.0011), 
and ARD of EBP is zero.  EBP and AEBP give the shorter 
length of confidence interval, compared to the other two 
predictors.  The coverage rates for all four predictors are 
about 95%, very close to the nominal 95% confidence 
interval. 

 
4. Concluding Remarks 

Unlike the model-based approaches considered 
previously in the literature, in this paper we consider a new 
adaptive approach where the model is automatically 
determined by the survey data.  Thus our method advances 
the model-based prediction approach to finite population 
sampling.  We propose an AUTOGREG estimator that is 
doubly robust in the sense that it has the desirable design-
consistency property, irrespective of the model that is used 
to generate the estimator, in addition to the robustness 
property already achieved by the use of the Box-Cox model. 
Our AUTOGREG can be viewed as a robust version of the 
popular GREG estimator that uses a linear model. Our 
numerical results suggest that our approach utilizes 
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available auxiliary variables in an efficient manner and 
offers a potential attractive alternative to the relatively more 
expensive design-based methods that require more samples 
to achieve the same level of precision.  
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Figure 1: Histograms for the beef population before and 

after taking the Box-Cox transformation. 
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Figure 2: Scatter plots for the beef population before and 

after taking the Box-Cox transformation. 
 
 

Table 1: AARD, ARD, ALCI, and P for the predictors. 
 

 AARD ARD ALCI P 
NTP 0.0015 0.0000 563,656 95% 
LTP 0.0014 0.0005 468,563 95% 
EBP 0.0011 0.0000 352,421 95% 

AEBP 0.0011 0.0004 351,687 94% 
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