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Abstract 
 
A method for estimating quantiles and their confidence 
intervals based on the paper by Francisco-Fuller (1991) 
has been implemented in SUDAAN® software. There 
have been problems encountered in practical 
application of the Francisco-Fuller method: It requires 
evaluation of bounds at many points, the resulting 
limits are, at times, not monotonic or internally 
consistent, and the accuracy is not very good. The 
objective of this paper is to develop an improved 
method that overcomes these problems. An adjustment 
to the empirical distribution is proposed to achieve 
internal consistency and reduce bias. 
 
Keywords: Quantile estimation, Confidence intervals, 
Complex survey data. 
 
1. Introduction 
 
A method for estimating quantiles and their variances 
based on the paper by Francisco-Fuller [1991] has 
been implemented in SUDAAN® [2004] software.  
There have been problems encountered in practical 
application of the Francisco-Fuller method. The 
specific problems reported are: 
a. Too often, estimates of the quantile or its variance 

or confidence limits are missing. 
b. Estimated variance is smaller than expected. 
c. Francisco-Fuller (1991) method requires evaluation 

of bounds for ˆ ( )F x at many points. 
 
The objective of this paper is to present a simpler 
method that avoids the above problems and performs 
as well as the Francisco-Fuller method. A point 

estimate ˆ
pX of p is defined implicitly, by the 

equation: ˆ ˆ( ) .pF X p=  Consequently, it is not possible 

to explicitly derive confidence levels for ˆ
pX . The 

common approach is to: 
 
1. Compute an estimate of the distribution function 

F̂  to obtain a point estimate of the quantile. 
2. Obtain confidence intervals for the function F̂ . 

Since F̂   at a given point 0x is the proportion of 

the binomial variable 0X x<  . This step is 

equivalent to deriving confidence interval for 
binomial parameter from a complex survey data. 

3. Convert confidence intervals for F̂  into the 
confidence interval for the estimated quantile 

for ˆ
pX . 

An approach using the above three steps was first used 
by Woodruff (1952) for obtaining confidence interval 
for medians. Francisco-Fuller (1991) presented a 
similar three-step approach for confidence interval for 
quantiles but used a different method for Step 3.  If any 
of the three steps of a method is changed, different set 
of confidence intervals is obtained. In this paper, we 
combine “best” method for each step to produce a new 
method for estimating confidence intervals for a 
quantile. 
 
First we propose a new estimator for the weighted data 
that is equivalent to a well-known estimator for a 
simple random sample. Second we suggest either 
Logistic or incomplete Beta function for confidence 

intervals for the function F̂ . Korn and Graubard 
(1998) present methods for confidence intervals for the 
proportions. Lastly, for the step 3, we apply 
Woodruff’s approach for converting confidence 

intervals for F̂  into the confidence interval for the 

estimated quantile for ˆ
pX .  

 
2. Estimate of the Distribution Function 
 
Let there be n  observation with values 

1 2, , , nx x xL with weights 1 2, , , nW W WL respectively.  
Define corresponding normalized weights as 

 i iw W W=  where 
1

1
.

n

j
j

W W
n =

= ∑ We represent the 

ordered x  values and corresponding normalized 
weights as [1] [2] [ ], , , nx x xL and [1] [2] [ ], , , ,nw w wL  

respectively. Most commonly used estimate of the 

distribution function ˆ ( )F x is defined as 

[ ] [ ]
1

1ˆ ( ) .
i

i i k
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F x S w
n =

= = ∑  

  
Woodruff (1952) and Francisco-Fuller (1991) both 
used the above estimator. The above estimator implies 
that the distribution has no observable values greater 
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than the maximum ix  , which is not true. Secondly, if 
the data were sorted in a descending order the resulting 
estimate will be inconsistent with the estimate obtained 
by using data sorted in ascending order.  
 
In case of a simple random sample, all the weights are 
equal and the equivalent empirical distribution reduces 

to [ ]
ˆ ( )i

i
F x

n
= . The most common adjustment to avoid 

the two anomalies is to use the estimator: 

[ ]
ˆ ( ) .

1i

i
F x

n
=

+  
To derive an equivalent function for the weighted data, 

we assume that F̂ is of the form: 

[ ] [ ]
ˆ ( ) .i i iF x a bw cS= + + To solve for the unknown 

constants, we impose two conditions: when the 
weights are equal, the resulting function will be 
identical to the one for simple random sample; and that 
the resulting function is invariant under ascending and 
descending order. On solving for a, b, and c, we obtain 

[ ]
[ ]

1 1ˆ ( ) .
( 1) 2 2

i
i i

w
F x S

n

⎛ ⎞
= + −⎜ ⎟+ ⎝ ⎠  

We propose the above function since it has the 
desirable properties. This is a new estimator for the 
weighted data that is equivalent to the estimator 

/( 1),i n + in case of a simple random sample. 
 
3. Confidence Intervals for the Distribution 
Function 
 
The distribution function at a given point x  is the 
proportion of the observations that have values less 

than x . For the weighted data, the statistic ˆ ( )F x is a 
ratio of linear functions of observed variables and its 
approximate variance based on a survey design can be 
easily computed.  Assuming that the computed 

estimate of the variance is ˆ ˆ[ ( )],V F x the approximate 

%α confidence interval for ˆ ( ),F x based on normal 

approximation is given by ˆ ˆ ˆ( ) [ ( )]F x V F xαψ± where 

αψ is the %α confidence bound for the standard 
normal distribution. This is the large sample 
approximation that works well in most cases but fails 
incase of proportions close to zero or one. 
 
The problem with the normal approximation is that the 
upper bound may be greater than 1 or the lower bound 
may be less than 0. An improvement that avoids this 
problem is to use logistic transformation 
ˆ ˆ ˆln[ /(1 )]L F F= − . Large sample approximate variance 

of L̂  is 2ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) /[ /(1 )]V L V F F F= − . An upper bound 

for L̂  is ˆ ˆ ˆ ˆ( )UL L V Lαψ= +  then the upper bound for 

F̂  is ˆ ˆ ˆexp( ) /[1 exp( )]U U UF L L= + .  Similarly, a lower 

bound on F̂ could be also be obtained.  
 
Korn and Graubard (1998) have suggested a better 
approximation for complex data that is analogous to 
the exact method in case of a simple random sample. 
Let us assume that in a simple random sample of size 
n , there are k  values which are less than a given 

value 0x . Then 0
ˆ ( ) /F x k n=  and the %α  upper 

bound is obtained by solving for Up  in the equation: 

( )(1 ) .
n

i n i
U U

i k

n
p p

i
α−

=

⎛ ⎞
− =⎜ ⎟

⎝ ⎠
∑  The left hand side of the 

above equation is equal to the incomplete Beta 
function and can be written as ( , 1) .

UpI k n k α− + =  

 
For applying the incomplete Beta approximation for 

the upper bound of F̂ , the effective sample size under 
the design is: 

 0 0

0

ˆ ˆ( )(1 ( ))
ˆ ˆ( ( ))

d

d

F x F x
n

V F x

−= .  

The upper bound for 0
ˆ ( )F x is Up , where Up is the 

solution of the equation ( , 1)
Up d d dI k n k α− + =  

where 0
ˆ ( )d dk n F x= . 

 
4. Confidence Intervals for Quantile 
 
There are two approaches to convert the confidence 
interval for the estimated distribution function into the 
confidence levels for the quantiles. Francisco-Fuller 
method requires estimation of the three functions 
ˆ ,F ˆ,L  and ˆ .U  Further more the evaluation functions L̂  

and Û needs computation of ˆ ˆ[ ( )]V F x  at many points. 
The point estimate of the quantile is given by the 

equation 0 0
ˆ ( ) .F x p=  The upper confidence level   for 

the quantile 0x  is given by 0
ˆ ( )LF x p=  and the lower 

confidence level   for the quantile 0x  is given by 

0
ˆ ( ) .UF x p=  We suggest an approach that requires the 

evaluation of the functions only at one point 0x  where 

0 0
ˆ ( ) .F x U=  This method was used by Woodruff 

(1952) for confidence intervals of medians. The 
approach requires computing confidence interval for 

0
ˆ ( ).F x Assuming these values are 0L and 0 ,U the 
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confidence interval for 0 ,x namely ( , )L Ux x is implicitly 

defined by the equations: 0
ˆ ( )LF x L=  and 0

ˆ ( ) .UF x U=   
 
 In the next section, we evaluate the proposed approach 
that uses:  

1. The new estimator of F̂ derived in Section 2. 

2. The confidence interval for F̂  using the 
incomplete Beta function or Logistic 
approximation. 

3. The conversion of the confidence interval for 

F̂  into the confidence interval for the 
quantile using the method similar to the one 
applied by Woodruff (1952). 

 
5.  Simulation Results 
 
The simulation was carried out using a stratified 
clustered sample with unequal probabilities from a 
finite population. For creating the large population, we 
selected the data from the 2004 Behavioral Risk Factor 
Surveillance System (BRFSS). We selected two 
variables State and Body Mass Index (BMI) from the 
data set. The deletion of observation with missing 
values yielded 289444 records from 52 States. We 
used States as strata and arbitrarily created Primary 
Sampling Units (PSUs or clusters) within each State. 
We also generated a new dummy variable with high 
intra class correlation of 0.1. The deciles for both the 
variables for the population were the “True values” for 
our simulation.  
 
We generated 10,000 samples, with unequal 
probabilities of selection for PSU’s and equal 
probability of selection for each record within a PSU. 
For each of the sample, all the nine deciles were 
computed. For each of the deciles, we obtained one 
sided confidence interval at 10, 20, 30, 40, 50, 60, 70, 
80, and 90 percent confidence levels. We then counted 
the number of samples for which the corresponding 
“true” or population decile fell below the confidence 
limit for that quantile. We would expect 1000 samples 
for 10% confidence limit, 2000 samples for 20% 
confidence limit, and so on. The results of the 
simulation study are presented in Table I for the first 
decile and in Table II for the median. The results for 
other deciles are similar, and not presented here to 
conserve space. They are available from the authors on 
request.  
 
We also obtained 95% two tail confidence limits by 
Francisco-Fuller method using SUDAAN® software. 
We also computed 2.5% lower and 97.5% upper limits 
by the proposed method with Beta approximation. For 
each of the deciles, we counted the number samples in 

which the “true” decile was below the lower tail, as 
well as those samples in which the “true” decile was 
above the upper tail. These sample counts 
corresponding to the confidence limits for Body Mass 
Index are shown in Table III, and those for the Dummy 
Variable are in shown in Table IV. 
 
 

Table I. Number of Samples below the Confidence   
Level of the 1st Decile 

Body Mass Index Dummy Variable Alpha 
Logit Beta Logit Beta 

10% 830 947 837 952 
20% 1769 1928 1864 2017 
30% 2778 2936 2901 3082 
40% 3810 3935 3925 4074 
50% 4768 4970 4951 5105 
60% 5798 5935 5963 6123 
70% 6760 6892 6950 7091 
80% 7683 7813 7870 8009 
90% 8710 8815 8805 8897 

 
Table II. Number of Samples Below the  Confidence 
Level of the Median 

Body Mass Index Dummy Variable 
Alpha 

Logit Beta Logit Beta 
10% 973 973 1113 1114 
20% 1914 1915 2131 2131 
30% 2859 2859 3163 3163 
40% 3817 3817 4148 4148 
50% 4780 4780 5163 5163 
60% 5794 5794 6212 6211 
70% 6753 6752 7211 7211 
80% 7795 7795 8213 8212 
90% 8827 8826 9101 9101 

 
 
6. Conclusion 
 
Based on the limited simulation study the proposed 
method performs well under a wide variety of 
circumstances. For a variable such a BMI, where the 
data are highly clumped at several points, the 
Francisco-Fuller method’s performance is erratic. The 
Francisco-Fuller method requires estimation of 
complete functions for upper and lower confidence 
levels, and that results in evaluation of variance at 

many points for F̂  and also more interpolation for 
other points. Consequently, the Francisco-Fuller 
method’s performance is erratic for BMI. Both 
methods perform well for the dummy variable with a 
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smoother distribution function generated through 
pseudo-random numbers. 
 
Table III.  Beta vs. Francisco-Fuller (FF) Method 
(95% Confidence levels for BMI): Number of 
Samples with True Value in Tails 
Decile Beta (Proposed) FF (SUDAAN) 

 Lower Upper Lower Upper 
0.1 211 235 218 198 
0.2 244 210 509 117 
0.3 243 240 607 155 
0.4 260 297 268 445 
0.5 282 339 2278 72 
0.6 326 282 214 788 
0.7 259 294 151 307 
0.8 203 284 236 236 
0.9 234 283 384 129 

 
 Table IV. Beta vs. Francisco-Fuller (FF) Method 
(95% Confidence Levels for Dummy Variable) 
Number of Samples with True Value in Tails 

Beta (Proposed) FF (SUDAAN) 
Decile 

Lower Upper Lower Upper 
0.1 398 364 249 135 
0.2 401 384 364 128 
0.3 407 316 293 170 
0.4 374 271 276 239 
0.5 349 235 204 324 
0.6 306 289 226 270 
0.7 341 272 216 295 
0.8 446 301 206 274 
0.9 445 290 186 255 

 
The proposed method is much simpler to implement, 
because it requires estimation of confidence limits for 
F̂ at a single point. Lastly, it uses the new estimator 
for the distribution function F which has the desirable 
properties for the weighted data. 
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