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Abstract 
 
We consider specifying the design-based error covariance 
structure in small-area modeling with survey data. While it is 
customary to treat the estimated covariance as known, it is 
often unstable. To alleviate this problem, one can either model 
the distribution of design-based covariance matrix or smooth 
the estimated covariance by specifying only its mean function. 
We prefer smoothing over modeling because of the strong 
assumptions required to model the distribution of the error 
covariance structure for small area estimates (SAEs). To 
smooth nondiagonal error covariance matrices, we make use 
of the g-deff (generalized design effect), defined earlier by 
Rao and Scott (1981) in the context of categorical data 
analysis. Simulation results for SAEs based on a linear mixed 
model show that the proposed smoothing provides improved 
coverage of confidence intervals. 
 
Key Words: Estimating functions, Generalized design effects, 
Ignorable and nonignorable designs; Unstable estimated error 
covariance matrix 
 
 
1. Introduction 
 
In any modeling problem, one needs to specify the mean 
function and the error covariance structure under a semi-
parametric approach based on the first two moments. In the 
case of modeling direct domain total estimates 
{ , : 1,...,y dt d D= } of small areas (see e.g., Fay and Herriot, 

1979) from surveys, special problems arise in specifying the 
error covariance structure tV . However, since an 

approximately unbiased estimate t̂V  of tV may be available, it 
is customary (see Rao, 2003, pp. 76) for such models to treat 

t̂V as known.  For large samples, such an assumption is, of 

course, commonly made.  However, for small samples dn  , 
this is clearly not desirable because like the direct point 

estimates ,y dt , the direct variance estimates ( )t̂ dV are also 

subject to instability, and so treating ( )t̂ dV  as known may cause 

serious underestimation of variance of SAEs. As an 

alternative, one may want to model  t̂V  in addition to 

,y dt which renders the small area estimation (SAE) problem 

even more complicated as the variance of t̂V involves 
unknown third and fourth order sample inclusion probabilities.  
Under certain simplifying assumptions about the sample 
design, and the superpopulation model, the problem can, 
however, be simplified; see e.g., the use of a Wishart 

distribution for t̂V by Otto and Bell (1995).  Nevertheless, in 
practice, it would be desirable to make rather weak 

assumptions about t̂V  that seem plausible, because 
practitioners, in general, prefer to take the path of least 
assumptions in modeling. 
 

In trying to model ( )t̂ dV under weak  assumptions, it may be 

useful to first observe that the problem of modeling the mean 

of t̂V is much simpler than specifying the full distribution of 
the error covariance structure, i.e., modeling the variance of 

t̂V .  In this paper we suggest that smoothing t̂V  might provide 
a reasonable practical compromise between the two extremes 

of modeling or no modeling  of t̂V .   
 

To smooth the t̂V  matrix, we propose to use the generalized 
design effect (g-deff) considered earlier by Rao and Scott 
(1981) in the context of categorical analysis of survey data.  
G-deffs are defined as the eigen-values ( iλ ’s) of the matrix 

product  * 1
tV −

tV where *
tV is the error covariance under a 

suitable working assumption such as that of the simple random 
sampling design or that the design is ignorable for the 
superpopulation model under consideration.   
 
In the case of the unit-level superpopulation model, the 

problem of smoothing t̂V becomes considerably more involved 
than for the aggregate-level (Fay-Herriot) case because of 
additional summary statistics that enter in the picture from the 
theory of EFs.  Note that Singh, Folsom, and Vaish (2002, 
2003) proposed an estimating function-based Gaussian 
likelihood (EFGL) methodology in a hierarchical Bayes 
framework  to generalize the usual SAE modeling of Fay and 
Herriot (1979) at the aggregate level to unit level modeling. 
By using more detailed information, the unit-level model 
typically yields efficiency gains relative to the aggregate 
model. However, they didn’t specify the summary statistics 
explicitly. In this paper, the vector ψ of optimal summary 
statistics is specified explicitly which makes it 
computationally easier to use g-deff for smoothing the error 

covariance structure V̂ψ  under unit-level modeling. 

 
In Section 2, we consider first the general problem of 
modeling with survey data, and then the choice of appropriate 
finite population parameters and the corresponding sample 
summary statistics in the context of SAE modeling.  We 
consider both aggregate and unit level modeling and identify 

the problem of instability of V̂ψ in each case for the 

corresponding vector ψ . In the next section 3, we review 
application of the usual deff in generalized variance function 

modeling, and its use for smoothing t̂V when it is diagonal. 
We next describe the proposed method of g-deff for 
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smoothing nondiagonal t̂V or V̂ψ . In Section 4, we present a 

simulation study for the linear mixed superpopulation model 
and show how EFGL-smoothed compares with EFGL-
unsmoothed.  In the simulation study, the case of aggregate 
level modeling was, however, not considered although it 
follows readily from the general case by replacing the unit-
level covariate value dkx with the domain level average value 

,x dA for each unit k in domain d . Finally, Section 5 contains 

the summary and some concluding remarks. 
 
 
2. Modeling with Survey Data 
  
The difficulty in modeling survey data is well known in view 
of the two basic results of Godambe (1955, 1966): first, the 
nonexistence of a uniformly minimum variance unbiased 
estimate in a suitable linear class which causes difficulty in 
using a semiparametric approach, and second, likelihood being 
flat for the unseen (i.e., nonselected population units) given 
the seen and thus making it difficult to use the likelihood 
approach either in a frequentist or a Bayesian framework.  The 
main reason underlying these problems that distinguish survey 
modeling from mainstream statistics is that there are too many 
finite population parameters to cope with if one identifies each 
unit’s characteristic as a parameter of interest. The reality is 
that in practice we are not interested in characteristics at the 
unit level, but instead we need to define suitable finite 
population quantities corresponding to a group of units.  For 
the difficult but realistic problem of nonignorable designs for a 
given superpopulation model, this can be done using census 
EFs (i.e., assuming the sample is the census, see, e.g., Binder, 
1983) which depend, of course, on the model parameters to be 
estimated. For the unit-level model the estimating functions 
can be specified as follows: 
 

( ) , , ,

,

( )

                                                                                       (2.1)

( )

d dk dk d dk y d x d c d dk

dk dk dk d dk xy xx x d dd k d

y x w t t t

x y x w t t t

η

β

φ β η β η

φ β η β η′

′ ′= − − = − −

′ ′= − − = − +

∑

∑ ∑ ∑

   

   
The optimal summary statistics ψ for estimating ( , )dβ η are 

obtained as , , ,{ , , , , }y d x d c d xy xxt t t t t ′ with somewhat self-

explanatory new notations for certain estimated population 
totals. In this case, the unit-level model for this set of 
summary statistics can be expressed with the set of incidental 
parameters ,{ , , }d x d xxp µ µ ′ as : 

  

 

, , ,

, ,

, , ,

, ,( )

y d d y d y d

c d d c d

x d d x d x d

xy xx d x d d xy dd

xx xx xx

t Np e

t Np e

t Np e

t N p e

t N e

µ

µ
µ β µ η
µ

′

′ ′ ′

≈ +

≈ +
≈ +

≈ + +

= +
∑

 (2.2) 

  
where ,y dµ is the limit of , /y d dt N as dN → ∞ , ,x dµ is similarly 

defined, and dp  is the limit of / .dN N  While the model (2.2) 
is now nonlinear because of the incidental parameters it turns 
out to be linear for computing conditional posteriors, and so 

no new computational complexity is involved except that there 
are more steps in the MCMC cycles because of extra 
parameters. It may be noted that for unit-level modeling, the 
covariates dkx ’s are typically taken as categorical (such as 
demographic group indicators) because the domain totals 

,x dT or averages ,x dA required for each variable may only be 

available in practice as domain counts or proportions for each 
covariate category.   
 
 
3. Proposed Method of Smoothing V̂ψ Using g-deff 

 
First we review the use of Deff for generalized variance 
function (GVF) modeling. 
 
 
3.1 Deff for GVF modeling 
 
Suppose Vψ is a D D× diagonal matrix, and let dγ be the 

design effect for the domain-d SAE, i.e., ( ) ( )d d dV Vψ ψγ ∗= .  In 

view of the fact that the design effects dγ are often 
approximately constant over a suitable set of statistics, a 
simple type of GVF modeling assumes that the mean of 

( )
ˆ

dVψ is proportional to ( )dVψ
∗ where the covariate ( )dVψ

∗ is 

taken to be approximately known.  As mentioned earlier, 

( )dVψ
∗ is estimated under the assumption of simple random 

sampling or that the design is ignorable for the model and that 

the estimate ( )
ˆ

dVψ
∗ is assumed to be stable. So for the GVF 

model with 1,...,d D= , 

 ( ) ( ) ,
ˆ

d d v dV V eψ ψγ ∗= +   (3.1) 

where the error covariance structure is not specified, the mean 
parameter γ can be estimated by the average of ˆ

dγ over 

domains where ( ) ( )
ˆ ˆˆ

d d dV Vψ ψγ ∗= . The smoothed estimate of 

( )dVψ is then obtained as ( ) ( )
ˆˆ

d dV Vψ ψγ ∗=% . If it does not seem 

reasonable to assume that the deff is constant over all areas, 
then one can compute separate estimates of γ for subgroups of 
areas for which the constant deff assumption seems plausible.  
Note that ( )dVψ

∗ may depend on the mean parameters 

{ , }dβ η of the small area model as in the case of binary data, 
and then the smoothed variance estimate can also be allowed 
to depend on unknown mean parameters.  When dealing with 
discrete data, this is clearly a desirable feature. 
 
 

3.2 GVF-type Modeling for Non-diagonal V̂ψ  

 
The above GVF modeling to smooth V̂ψ is not applicable 

when V̂ψ is nondiagonal because the concept of deff is not 

defined for off-diagonal terms of covariances.  In this case, 
using the concept of g-deff (see e.g., Rao and Scott, 1981) 
defined as eigen-values ( , 1,...,k k Kλ = ) of * 1Vψ

− Vψ , K being 
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the dimension of vector ψ , we can write a GVF-type model 
as 

 ˆ( ) ( ) ( )j jk jk vj k
vec V vec q q vec eψ λ ′= +∑ ∑  (3.2) 

where ‘vec’ notation is used to signify that columns of the 
matrix are stacked one above the other, the second sum is over 
the thj subgroup of summary statistics, and the first sum is 
over all subgroups. The above model is motivated by the 
matrix result for a pair of real symmetric matrices with at least 
one of them being positive definite (cf: C.R. Rao, 1973, pp.41) 
which states that there exists a nonsingular matrix Q such that 

(here the pair of matrices are  Vψ and Vψ
∗ ), 

    

 

K

k k kk

K

k kk

V Q Q q q

V QQ q q

ψ

ψ

λ
∗

′ ′= Λ =

′ ′= =

∑

∑
   (3.3) 

where ( )kdiag λΛ = , and kq is the thk column of Q . It 

follows from (3.3) that if V̂ψ
∗ as well as jK

k kk
q q′∑ for each 

selected subgroup of areas are stable, then the instability of 

V̂ψ can be overcome by smoothing the estimated eigen-values 

k̂λ  over subgroups. Note that the eigen-values are nonnegative 
for a nonnegative definite real symmetric matrix. Thus as with 
deff, if the estimated g-deffs are averaged over suitable 
subgroups ( 1,...,j J= ) as defined by the GVF-type model 

(3.2), the smoothed estimate of Vψ is obtained as 

    
 ˆ ( )j jk jkj k

V q qψ λ ′=∑ ∑%    (3.4) 

 
 
3.3 Aggregate-level vs. Unit-level Modeling 
 
Finding eigen-values and eigen-vectors for g-deff based 
smoothing could be computationally difficult if the dimension 

K is large. For the aggregate-level model, V̂ψ is typically 

block-diagonal, and so the proposed method of g-deff is not 
too complicated computationally.  However, for unit-level 
modeling, it remains nondiagonal because of summary 
statistics (obtained from EFs for fixed parameters) that 
aggregate over all areas.  In these situations, one can take 

advantage of certain patterns that typically arise in V̂ψ .  

Observe that the small areas or domains can often be grouped 

in practice into strata or superstrata, and then V̂ψ can be 

partitioned as 

 ˆ A B
V

B Cψ
⎛ ⎞

= ⎜ ⎟′⎝ ⎠
    (3.5) 

where A is a high dimensional block diagonal matrix 
corresponding to domain or strata-level summary statistics, 
and C is a low dimensional matrix corresponding to summary 

statistics aggregated over all domains.  Now decompose V̂ψ as 

  

 

1 1
1

1

 where

                                                                    (3.6)

.

A B A O
H H

B C O C B A B

I O
H

B A I

− −
−

−

⎛ ⎞ ⎛ ⎞ ′=⎜ ⎟ ⎜ ⎟′ ′−⎝ ⎠ ⎝ ⎠

⎛ ⎞
= ⎜ ⎟′−⎝ ⎠

     

The above matrix 1C B A B−′− is expected to be stable and the 

effect of instability of  the matrix H on V̂ψ is expected to be 

subsumed in that of the matrix A  because covariance of the 
transformed vector Hψ turns out to be block-

diag 1{ , }A C B A B−′− .  So it is probably sufficient to just 

smooth A to obtain A%  (using the g-deff idea) which being 
block-diagonal is not computationally demanding, and then 

obtain Vψ
% from the decomposition in (3.8) wherein the 

matrices H and 1C B A B−′−  are not modified or smoothed. 
 
 
4. Simulation Study 
 
We design our study along the lines of Singh, Folsom, and 
Vaish (2003) which is based on Pfeffermann et al. (1998). 
Consider a universe of 1, ,d D= L strata (small areas) where 

100D =  and let dN  denote the number of population 

members in stratum- d . In this simulation experiment, we set 
*

0 (1 exp( ))d dN N u= +  where 0N  is a constant and *
du  is 

obtained by truncating ~ (0, 0.2)du N  at 0.2± . For 
simplicity, we consider a single covariate super-population 
linear mixed model 0 1dk dk d dky xβ β η ε= + + +  

where 0 0.5β = , 1 1β = , ~ (0, 0.2)d Nη , ~ (0, 1)dk Nε , and 

1, , dk N= L . The covariate is dk d dkx υ δ= +  where 

~ (0, 0.1)d Nυ  and ~ (0, 1)dk Nδ .  We generate 

500M = population level data sets with common dkx  and dN  

where dN ’s are generated using 0N =3000. We selected a 
sample from each of these populations so that the design was 
nonignorable. To select a sample with nonignorable design, 
we stratify the stratum- d  population into two substrata d +Ω  

with 0dkε > and d −Ω  with 0dkε ≤ . Let dN + , dN −  denote the 

sizes of these substrata and dn + , dn − denote the sizes of the 
simple random samples selected without replacement from 
these strata, respectively. Note that the substratum sizes vary 

across the 500 populations. We have 
100

1 dd
N N

=
=∑ and 

100

1 dd
n n

=
=∑ where d d dn n n− += + . For 500 populations, we 

generate the corresponding 500 samples. In our simulation 
experiment, ( , ) (5,15)d dn n+ − = , so that we have common 
sample sizes from each area.  
 
The results in this paper for the EFGL-unsmoothed method are 
not directly comparable to those in the Singh, Folsom, and 
Vaish (2003) paper because here we are using the version of 
EFGL based on the summary statistics ψ which consists of 

2, ,{ , , , }y d x d xy x
t t t t ;  ,c dt is excluded because it is constant and 
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equal to dN for the stratified SRS design.  Note that the 
simpler case of  aggregate-level modeling was not considered 
in this limited simulation study. To avoid computational 
complexity, we used the smoothing based on the 
decomposition (3.6) where A  is a block diagonal matrix of 
100 blocks, each of dimension 2x2 corresponding to each 
small area, and 1C B A B−′−  is only a 2x2 matrix. In order to 
use EFGL under a HB framework, customary priors for β and 

2
ησ were chosen. Estimation of the parameter 2

εσ was not 

considered as it was not needed. 
     
The results from the simulation study are presented in Tables 
1, 2, and 3. In terms of the model parameter posterior means 
and standard deviations, both methods (EFGL-u for 
unsmoothed, and EFGL-s for smoothed) perform very 
similarly as seen from Table 1. However, in terms of coverage 
probabilities the unsmoothed method EFGL-u does not 
perform as well as EFGL-s as seen from Table 2. Table 3 
shows that the median coefficient of variation of the estimated 
mean squared errors over 100 small areas was ~48% for 
EFGL-u vs. ~38% for EFGL-s.  This improved stability in the 
estimated SAE mean squared errors for the EFGL-s solution 
accounts for its superior coverage probabilities.  
 
 
5. Summary and Concluding Remarks 
 
In this paper we considered the problem of smoothing the 
error covariance matrix in small area modeling of survey data.  
This problem has been around for quite some time. The 
proposed method of smoothing the error covariance based on 
deff and g-deff provides a simpler alternative to other methods 
including modeling the distribution of the error covariance. 
The g-deff smoothing seemed to perform well in a limited 
simulation study.  An important consideration in using the 
proposed method is that similar to GVF modeling, the 
underlying assumptions are quite mild; this is likely to be 
attractive to practitioners. An interesting finding of the 
simulation study was that although smoothing seemed to help 
cure instability of variance of SAEs, it may not be sufficient 
for areas with very small sample sizes. In future, it would be 
interesting to see if suitable collapsing of areas would help to 
provide a sufficiently stable smoothed estimate of error 
covariance as well as help in justifying the normal 
approximation for summary statistics.  We also note that the 
basic idea of covariance smoothing proposed in this paper is 
applicable to other SAE problems as well involving spatial 
and temporal modeling. 
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Table 1.  Average Posterior Mean and Standard Deviation 
(SD) for Model Parameters  
 

Average Posterior 
Mean Average Posterior  SD Parameter 

(true value) 
EFGL-u EFGL-s EFGL-u EFGL-s 

0 (0.5)β  0.4944 0.4949 0.0475 0.0475 

1(1.0)β  0.9996 0.9990 0.1228 0.1229 

2 (0.2)ησ  0.1971 0.1966 0.0317 0.0317 
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Table 2.  95% Normal Coverage Probability and Ratio of 
Prediction (PI) Widths  
 

Coverage 
Probability 

Ratio of Average PI 
Widths 

Percentiles 
and Mean 

Over Small 
Areas EFGL-u EFGL-s EFGL-s/EFGL-u 

75% 0.9240 0.9460 1.02 

Mean 0.9186 0.9396 1.01 

25% 0.9120 0.9340 1.00 

 
 
Table 3. Median of Mean Squared Errors (MSEs) Over 
100 Small Areas 
  

Median Over 
100 Small 

Areas 
EFGL-u EFGL-s 

Simulated 
True MSE 

0.023 0.023 

Estimated 
MSE Expected 

Values 
0.023 0.023 

Coefficient of 
Variation of 
Estimated 

MSEs 

48.37% 37.75% 
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