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Abstract

In sample surveys of finite populations, subpopulations
for which the sample size is too small for estimation of
adequate precision are referred to as small domains. In
this paper, we explore the possibility of enhancing the
precision of domain estimators by combining compara-
ble information collected in multiple surveys of the same
population. To this end, we propose a regression method
of estimation that is essentially an extended calibration
procedure whereby comparable domain estimates from
the various surveys are calibrated to each other. We
show through some analytic results that this method may
greatly improve the precision of domain estimators for the
variables that are common to these surveys, as these esti-
mators make effective use of increased sample size for the
common survey items. The proposed design-based direct
estimators involve only domain-specific data on the vari-
ables of interest. The proposed approach is also highly
effective in handling the closely related problem of esti-
mation for rare population characteristics.

Keywords: Auxiliary information; Small area; Rare
characteristics; Composite estimator; Generalized regres-
sion estimator; Calibration.

1 Introduction

National statistical agencies and other survey organiza-
tions regularly produce estimates for a number of subpop-
ulations, called domains, as part of the statistical output
of large scale surveys. Domain estimates are less precise
than estimates for the whole population, primarily be-
cause of the smaller size of the associated sample and to
a lesser degree because of the extra variability induced
by the randomness of this sample size when the domains
are not strata. For a particular survey, this shortcoming
may limit the scope of domain estimation to rather large
domains. On the other hand, demand for small-domain
estimates has been growing in recent years among users
of survey data. Since interest in small-domain estima-
tion has traditionally centred on estimates for small geo-
graphic areas, the subject is generically referred to in the
literature as small-area estimation.

Increasing demand for reliable small-area estimates
has led over the past few years to the production of a
sizeable literature on small-area estimation methods; a
comprehensive account of such methods is given in Rao
(2003). Invariably, these methods employ models to “bor-

row strength” for the variables of interest through the use
of related survey data or administrative data that are ex-
ternal to the small areas of interest or are from other
time periods. The derived domain estimators are then
indirect estimators, in the sense that they incorporate
data on the variables of interest that are external to the
targeted small areas.

In this paper, we exploit the possibility of borrowing
strength from other surveys of the same population that
have collected comparable information on some or all
variables of interest in the same domains. The potential
for efficient small area estimation by combining compa-
rable (“harmonized”) information from multiple surveys
has been recognized in recent literature (Marker 2001,
Rao 2003, p.23) but there seems to be a paucity of re-
lated research up to now.

Combining information from multiple surveys for more
precise estimation of survey characteristics at the pop-
ulation level has been the subject of recent research by
Zieschang (1990), Renssen and Nieuwenbroek (1997) and
Merkouris (2004), who used variants of generalized re-
gression, and by Wu (2004) who took an empirical like-
lihood approach. In this paper, the regression procedure
of Merkouris (2004) is adapted to small-domain estima-
tion. The proposed regression method is essentially an
extended calibration procedure whereby comparable do-
main estimates from the various surveys are calibrated to
each other. Unlike the existing approaches to small-area
estimation, borrowing strength with this method is not
model-dependent, and the resulting domain estimators
are direct as they involve only domain-specific data on
the target variables. In particular, this design-based ap-
proach greatly enhances the reliability of domain estima-
tors for the variables that are common to these surveys, as
these estimators are based on increased effective sample
size for the common survey items. The proposed estima-
tion method is equally suitable for small geographic and
non-geographic domains. It is also especially useful when
dealing with the closely related problem of estimating
rare population characteristics.

The organization of the paper is as follows. The no-
tation and terminology are set out in Section 2. In Sec-
tion 3, three variants of an extended GREG procedure
are used to combine information from two surveys. The
relative efficiency of these procedures is assessed analyt-
ically under certain conditions. In section 4, following a
summary of the main findings, theoretical and practical
aspects of the proposed estimation method are discussed.
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2 Basic notation and terminology

Consider a finite population U = {1, . . . , k, . . .N}, from
which a probability sample s of size n is drawn according
to a sampling design with known first - and second - or-
der inclusion probabilities πk and πkl (k, l ∈ U). Consider
the sampling weight vector w with k-th entry defined as
wk = (1/πk)I(k ∈ s), where I denotes the indicator vari-
able, and let Y ∈ RN×d denote the population matrix of a
d-dimensional survey variable of interest y. The Horvitz -
Thompson (HT) estimator of the total ty = Y′1, where 1
is the unit N -vector, is given by Ŷ = Y′w (=

∑
U wkyk).

For the population matrix X ∈ RN×p of a p-dimensional
auxiliary variable x, assume that the total tx = X′1 is
known. Let also Λ ∈ RN×N be the diagonal “weight-
ing” matrix that has wk/qk as kk-th entry, where qk is a
positive constant, and use s to designate the subvectors
and submatrices corresponding to the sample. A vector
of “calibrated” weights, cs ∈ Rn, can be constructed to
satisfy the constraints X′

scs = tx while minimizing the
generalized least squares distance (cs−ws)′Λ−1

s (cs−ws).
Assuming that Xs is of full rank p, this calibration pro-
cedure generates the vector

cs = ws + ΛsXs(X′
sΛsXs)−1(tx −X′

sws). (1)

The calibration estimator of the total ty is obtained as

Y′
scs = Y′

sws + Y′
sΛsXs(X′

sΛsXs)−1(tX −X′
sws),

(2)
which can take the form of a generalized regression
(GREG) estimator

ŶR = Ŷ + β̂(tx − X̂) = β̂tx + (Ys −Xsβ̂
′
)′ws, (3)

where X̂ = X′
sws is the HT estimator of tx, and

β̂ = Y′
sΛsXs(X′

sΛsXs)−1 is the matrix of sample re-
gression coefficients. The term (Ys − Xsβ̂

′
)′ws in (3)

is the sum of weighted sample regression residuals. By
construction the GREG estimator (3) has the calibration
property that X̂R = tx, that is, the GREG estimator of
the total for x is equal to the known associated popula-
tion total (“control” total). A formulation of the GREG
estimator as a calibration estimator is given in Deville
and Särndal (1992), and an extensive discussion of it is
given in Särndal, Swensson, and Wretman (1992).

We define a domain Ud to be any subset of U and
denote by Ud̄ the complement of Ud. We let Yd denote
the matrix Y when for the kth row yk = 0 if k /∈ Ud;
accordingly, Yd̄ denotes the matrix orthogonal to Yd.
We can write then Y as Y = Yd + Yd̄. Similarly for the
matrix X. Assuming that membership in Ud for every
sample unit is observed, we denote by Ysd and Xsd the
associated sample domain quantities. The HT estimator
of the domain total tyd

= Yd1 is Ŷd = Y′
sdws.

3 Domain estimation using information from
two surveys

We assume that there exist samples s1 and s2 of sizes n1

and n2, respectively, from two independent surveys of the
same target population, a vector z of q survey variables
common to s1 and s2, and auxiliary vectors x1 and x2

associated with s1 and s2, respectively. Then, adapting
the general procedure in Merkouris (2004) to estimation
of totals in the domain Ud, we may combine information
on z from the two samples using special regression setups
for the combined sample as follows.

3.1 Regressing at the U level and combining in-
formation at the Ud level

A simultaneous regression for the two samples using
the setup Xs = diag(Xsi

), Λs = diag(Λsi
), ws =

(w′
s1

,w′
s2

)′, t = (t′x1
, t′x2

)′, generates a vector of cali-
brated weights, cxs, given by

cxs =
(
ws1

ws2

)
+

(
Λs1Xs1(X

′
s1

Λs1Xs1)
−1[tx1 −X′

s1
ws1 ]

Λs2Xs2(X
′
s2

Λs2Xs2)
−1[tx2 −X′

s2
ws2 ]

)
.

(4)
For any domain Ud, the two components of cxs give
rise to two independent GREG domain estimators ẐR

id =
Ẑid + Z′

sid
Λsi

Xsi
(X′

si
Λsi

Xsi
)−1[txi − X̂i], i = 1, 2, of

the domain total tzd
. Combining information on z at

the domain level is accomplished by incorporating into
the regression procedure the additional calibration con-
straint that the two estimators of tzd

are calibrated to
each other, that is, they are aligned. This involves the
extended regression matrix and the corresponding vector
of control totals

X s =
(

Xs1 0
0 Xs2

Zs1d

−Zs2d

)
, t =




tx1

tx2

0


 . (5)

Now assume that (Xsi
Zsid

) is of full rank pi + q
and write X s in partition form as X s = (Xs Zsd

),
where Xs and Zsd

are of dimension (n1 + n2) × (p1 +
p2) and (n1 + n2) × q, respectively. Next let Ls =
Λs(I − PXs), with PXs = Xs(X′

sΛsXs)−1X′
sΛs, and

note that Xs = diag(Xsi
) implies Ls = diag(Lsi

),
where Lsi

= Λsi
(I − PXsi

), in obvious notation for
Λsi

and PXsi
. Then, following Merkouris (2004), for

weight vector ws = (w′
s1

,w′
s2

)′ and weighting matrix
Λs = diag(Λsi), the regression procedure based on the
partitioned matrix X s generates the vector of calibrated
weights

cs = cxs + LsZsd
(Z ′

sd
LsZsd

)−1(0 − Z ′
sd

cxs)

=
(
cxs1

cxs2

)
+

(
Ls1Zs1d

−Ls2Zs2d

) [
Z′

s1d
Ls1Zs1d

+ Z′
s2d

Ls2Zs2d

]−1

×
[
(Z′

s2d
cxs2 − Z′

s1d
cxs1)

]
.

It is easy to verify that the vector cs satisfies all the cal-
ibration constraints, namely, X′

si
csi

= txi and Z ′
sd

cs =
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Z′
s1d

cs1 − Z′
s2d

cs2 = 0. For any noncommon single vari-
able yi associated with sample si, we can obtain compos-
ite GREG domain estimators Ŷ CR

id = Y′
sid

csi
of tyid

that
have the form

Ŷ CR
1d = Ŷ R

1d + B̂y1d
(I − B̂d)[ẐR

2d − ẐR
1d],

Ŷ CR
2d = Ŷ R

2d − B̂y2d
B̂d[ẐR

2d − ẐR
1d], (6)

where B̂yid
= Y′

sid
Lsi

Zsid
[Z′

sid
Lsi

Zsid
]−1, B̂d =

Z′
s2d

Ls2Zs2d
[Z′

s1d
Ls1Zs1d

+ Z′
s2d

Ls2Zs2d
]−1 and Ŷ R

id =
Ŷid + Y′

sid
Λsi

Xsi
(X′

si
Λsi

Xsi
)−1[txi − X̂i]. For the q-

dimensional common variable z we have the two identical
estimators of tzd

ẐCR
1d = ẐR

1d + (I − B̂d)[ẐR
2d − ẐR

1d],

ẐCR
2d = ẐR

2d − B̂d[ẐR
2d − ẐR

1d], (7)

which can be written in the form of the composite esti-
mator

ẐCR
1d = ẐCR

2d = B̂dẐR
1d + (I − B̂d)ẐR

2d. (8)

The approximate design variance of Ŷ CR
1d , denoted by

AV (Ŷ CR
1d ), is given by

AV (Ŷ CR
1d ) = AV (Ŷ R

1d)

+By1d
(I −Bd)[AV (ẐR

1d) + AV (ẐR
2d)]

×(I −Bd)′B′
y1d

− 2By1d
(I −Bd)

×[AC(Ŷ R
1d, ẐR

1d)]
′, (9)

where AC denotes approximate covariance and where
By1d

= Y′
dL1Zd[Z′

dL1Zd]−1and Bd = Z′
dL2Zd[Z′

dL1Zd+
Z′

dL2Zd]−1, with Li = I−PXi , are the population coun-
terparts of B̂yid

and B̂d, respectively. The index i in Li

indicates possibly different auxiliary variables associated
with the two samples. Analogous is the expression of
AV (Ŷ CR

2d ). Furthermore, AV (ẐCR
id ) is given by

AV (ẐCR
id ) = BdAV (ẐR

1d)B
′
d

+(I −Bd)AV (ẐR
2d)(I −Bd)′. (10)

It is clear from the above that estimates for common
and noncommon variables are obtained using the data of
only one of the surveys. Further, it is important to note
that each sample’s calibrated weights incorporate auxil-
iary information from the other sample. This suggests
that this special regression procedure that combines data
from the two samples should produce composite estima-
tors (6) and (8) that are more efficient than the regression
estimators based on one sample, more so for the common
vector variable z because of the direct correlation of its
values from the two samples. This, however, is not nec-
essarily the case. For instance, when the auxiliary vari-
ables used in the two surveys are the same, the sample
quantities Z′

s1d
Ls1Zs1d

and Z′
s2d

Ls2Zs2d
are estimates of

the same population quantity and, therefore, the coeffi-
cients Bd and I − Bd are both equal to (1/2)I, so that

(10) becomes AV (ẐCR
1d ) = AV (ẐCR

2d ) = (1/4)[AV (ẐR
1d)+

AV (ẐR
2d)]. It follows then that AV (ẐCR

1d ) ≤ AV (ẐR
1d)

only if AV (ẐR
2d) ≤ AV (ẐR

1d). In the case of simple
random sampling without replacement (SRSWOR) for
both surveys with sampling fractions fi = ni/N and
with the ratio of the finite population corrections 1 − f1

and 1 − f2 approximately equal to 1, it can be shown
that AV (ẐCR

1d ) ≤ AV (ẐR
1d) only if n2 ≥ n1/3, and

AV (Ŷ CR
1d ) ≤ AV (Ŷ R

1d) only if n2 ≥ n1. When n1 = n2,
AV (Ŷ CR

1d ) = AV (Ŷ R
1d), while AV (ẐCR

1d ) = (1/2)AV (ẐR
1d).

As this particular situation attests, the multivariate
sample coefficient B̂d generated implicitly by the regres-
sion procedure does not account for any difference in sam-
ple size between the two samples, though it incorporates
the relative effect of regression fit in ẐR

1d and ẐR
2d. The

same is true, but not as apparent, when the auxiliary
vectors used in the two surveys are not identical.

To account for the differential in effective sample size
between two samples having arbitrary sampling designs,
we can adapt to the present context a modification of the
GREG procedure suggested in Merkouris (2004) for com-
bining information at the population level. It involves the
replacement of the quadratic forms Z′

sid
Lsi

Zsid
by the re-

spective mean forms (1/ñi)Z′
sid

LsiZsid
, where ñi = ni/di

are the effective sample sizes — di denoting design ef-
fects. To this end, all is needed is the scaling ad-
justment of the entries of the weighting matrix Λsi by
1/ñi. The composite regression estimators (6) and (8)
are affected by this adjustment only through the regres-
sion coefficient B̂d, which can now be written as B̂d =
φZ′

s2d
Ls2Zs2d

[(1 − φ)Z′
s1d

Ls1Zs1d
+ φZ′

s2d
Ls2Zs2d

]−1,
where φ = ñ1/(ñ1 + ñ2). In fact, an equivalent adjust-
ment can be made through scaling Λs1 by (1−φ) and Λs2

by φ. A least-squares characterization of B̂d and related
efficiency considerations are as in Merkouris (2004).

It is interesting to see if the adjusted composite estima-
tors (6) and (8) are more efficient than their single-sample
components. An exact analytical result is furnished by
the following proposition; the proof is given in the Ap-
pendix.

Proposition 1 (a) Suppose that 1 = Xihi, for constant
pi-vectors hi. Assume simple random sampling without
replacement with sampling fractions fi = ni/N such that
(1 − f1)/(1 − f2) ≈ 1. Then the following inequalities
hold.

AV (ẐCR
id ) < AV (ẐR

id), AV (Ŷ CR
id ) < AV (Ŷ R

id ). (11)

Furthermore, when x1 and x2 represent the same vari-
ables,

AV (ẐR
id)[AV (ẐCR

id )]−1 = [(n1 + n2)/ni]I,
AV (Ŷ R

id )[AV (Ŷ CR
id )]−1 < (n1 + n2)/ni. (12)

(b) The results in (a) hold also under Bernoulli sampling
with probabilities of inclusion πi = fi(= ni/N) satisfying
(1 − f1)/(1 − f2) ≈ 1.
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The inequality AV (ẐCR
id ) < AV (ẐR

id) holds in the par-
tial ordering of nonnegative definite matrices, and there-
fore it also holds for any linear combination of the com-
ponents of each of the estimators involved. The condition
1 = Xh of a projection estimator in the above theorem is
customarily satisfied in surveys that use GREG estima-
tion. The exact result in (12), when the same auxiliary
vector is used in both surveys, shows that the efficiency
of ẐCR

id relative to ẐR
id (component-wise) can be substan-

tial, e.g., 100% if n1 = n2. For Ŷ CR
id , which borrows

strength indirectly through the correlation of yi with z,
the gain is smaller. With the population quantity Bd,
too, incorporating the adjustments (1−φ) and φ, and un-
der the conditions of Proposition 1, it can be shown that
Byid

(I−Bd) = AC(Ŷ R
id , ẐR

1d)[AV (ẐR
1d)+AV (ẐR

2d)]−1 and
Bd = AV (ẐR

2d)[AV (ẐR
1d)+AV (ẐR

2d)]
−1, so that these are

the optimal (variance minimizing) coefficients in (9) and (
10). Under more general settings, the efficiency gain will
be somewhat smaller, as the coefficients Byid

(I−Bd) and
Bd will only be approximations of the optimal ones. Also,
it is clear from (9) that the efficiency of Ŷ CR

id depends on
the strength of correlation between yi and z.

If we choose to combine information on a subset of
the common variables, then for the rest we derive two
domain estimators, as in (6), and it would be then ben-
eficial to combine them in some way. A sensible com-
bination involves weighting the individual composite es-
timators proportionally to the effective size of the asso-
ciated sample. Such combination would give the com-
posite estimator Ŷ CR

d = φŶ CR
1d + (1 − φ)Ŷ CR

2d , where
φ = ñ1/(ñ1 + ñ2). Under the conditions of Proposi-
tion 1, the approximate variance of Ŷ CR

d can be de-
rived without difficulty as AV (Ŷ CR

d ) = φ2AV (Ŷ R
1d) +

(1 − φ)2AV (Ŷ R
2d) − a[AV (ẐR

1d) + (AV (ẐR
2d)]−1a′, where

a = φAC(Ŷ R
1d, ẐR

1d)−(1−φ)AC(Ŷ R
2d, ẐR

2d). Clearly, unless
x1 and x2 represent the same variables (implying a = 0),
the variance of Ŷ CR

d is strictly smaller than the variance
of the composite φŶ R

1d +(1−φ)Ŷ R
2d of the initial indepen-

dent GREG estimators — but not by much, in view of
a. The computation of the composite Ŷ CR

d can be incor-
porated into the GREG composite estimation procedure
without difficulty, whereas an optimal linear combination
of the dependent estimators Ŷ CR

1d and Ŷ CR
2d would not be

practical, and probably not considerably more efficient.

The results of this section can be generalized to any
number of domains. For example, for the complementary
domains Ud and Ud̄ the matrices Zsid

in the setup (5)
will be augmented to (Zsid

,Zsid̄
). Nothing changes for-

mally in the expressions above if the index d is to simply
indicate that for various domains the information on z
from the two samples is combined at the domain level,
and that ( 6) and (8) give estimates for tyid

and tzd
for

each of these domains.

3.2 Regressing and combining information at
the Ud level

We now introduce the variant of the regression set up (5)

X sd
=

(
Xs1d

0
0 Xs2d

Zs1d

−Zs2d

)
, t =




tx1d

tx2d

0


 , (13)

whereby regression on x1 and x2 is carried out at the do-
main level. This yields the composite domain estimators

Y̌ CR
1d = Y̌ R

1d + B̌y1d
(I − B̌d)[ŽR

2d − ŽR
1d],

Y̌ CR
2d = Y̌ R

2d − B̌y2d
B̌d[ŽR

2d − ŽR
1d], (14)

and
ŽCR

1d = ŽCR
2d = B̌dŽR

1d + (I − B̌d)ŽR
2d, (15)

where Y̌ R
1d = Ŷid +Y′

sid
Λsid

Xsid
(X′

sid
Λsid

Xsid
)−1[txid

−
X̂id] and ŽR

id = Ẑid +
Z′

sid
Λsid

Xsid
(X′

sid
Λsid

Xsid
)−1[txid

− X̂id] are
GREG domain estimators using auxiliary data only
from Ud, and B̌y1d

= Y′
sid

Lsid
Zsid

[Z′
sid

Lsid
Zsid

]−1,
B̌d = Z′

s2d
Ls2d

Zs2d
[Z′

s1d
Ls1d

Zs1d
+ Z′

s2d
Ls2d

Zs2d
]−1

with Lsid
= (1/ñi)Λsi

(I −PXsid
).

The approximate design variance of Y̌ CR
1d is given by

AV (Y̌ CR
1d ) = AV (Y̌ R

1d)
+By1d

(I −Bd)[AV (ŽR
1d) + AV (ŽR

2d)]
×(I −Bd)′B′

y1d
− 2By1d

(I −Bd)

×[AC(Y̌ R
1d, ŽR

1d)]
′, (16)

where By1d
and Bd are the population counterparts of

B̌y1d
and B̌d, respectively. AV (ŽCR

1d ) and AV (ŽCR
2d ) are

given by

AV (ŽCR
id ) = BdAV (ŽR

1d)B
′
d

+(I−Bd)AV (ŽR
2d)(I −Bd)′. (17)

Results identical to those of Proposition 1 hold for the
estimators (14) and (15); the proof is similar to that of
Proposition 1. The estimators (14) and (15) are expected
to be highly efficient because the regression on x1 and x2

is at the domain level. The above results can be gener-
alized to any number of domains. Note that population-
level estimators can be obtained from the domain esti-
mators additively.

3.3 Incorporating Nd in the regression and com-
bining information at the Ud level

The domain totals txid
used in (13) may not be readily

available or may be of questionable quality, especially for
very small domains. Moreover, the domain sample sizes
may be very small or the number of auxiliary variables
may be too large for the available domain sample sizes;
this can cause significant bias and inflation of the variance
of the derived composite estimators. It may then be more
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sensible to use as auxiliary information at the domain
level only the domain size, using the setup

X s =
(

χs1
0

0 χs2

Zs1d

−Zs2d

)
, t =




tχ1

tχ2

0


 , (18)

where χsi
= (Xsi

1sid
) and tχi

= (t′xi
, Nd)′. This yields

the composite domain estimators

Y̆ CR
1d = Y̆ R

1d + B̆y1d
(I − B̆d)[Z̆R

2d − Z̆R
1d],

Y̆ CR
2d = Y̆ R

2d − B̆y2d
B̆d[Z̆R

2d − Z̆R
1d], (19)

and
Z̆CR

1d = Z̆CR
2d = B̆dZ̆R

1d + (I − B̆d)Z̆R
2d, (20)

where Y̆ R
id , Z̆R

id are GREG domain estimators
based on χsi

= (Xsi
1sid

) and tχi
= (t′xi

, Nd)′,
and B̆yid

= Y′
sid

Lsi
Zsid

[Z′
sid

Lsi
Zsid

]−1, B̆d =
Z′

s2d
Ls2Zs2d

[Z′
s1d

Ls1Zs1d
+ Z′

s2d
Ls2Zs2d

]−1 with
Lsi

= (1/ñi)Λsi
(I − Pχsi

). We ensure, of course, that
(χsi

Zsid
) is of full rank pi + 1 + q.

The approximate design variance of Y̆ CR
1d is given by

AV (Y̆ CR
1d ) = AV (Y̆ R

1d)

+By1d
(I −Bd)[AV (Z̆R

1d) + AV (Z̆R
2d)]

×(I−Bd)′B′
y1d

− 2By1d
(I −Bd)

×[AC(Y̆ R
1d, Z̆R

1d)]
′, (21)

where By1d
and Bd are the population counterparts of

B̆y1d
and B̆d, respectively. AV (Z̆CR

1d ) and AV (Z̆CR
2d ) are

given by

AV (Z̆CR
id ) = BdAV (Z̆R

1d)B
′
d

+(I −Bd)AV (Z̆R
2d)(I −Bd)′. (22)

Results identical to those of Proposition 1 hold for the
estimators (19) and (20); the proof is similar to that of
Proposition 1. Here again, a generalization to more than
one domain is straightforward.

The three composite estimators (8), (15) (20) are com-
pared with respect to their approximate variance under
the conditions of the following theorem; the proof is given
in the Appendix.

Theorem 1 (a) Suppose that 1 = Xihi, for constant
pi-vectors hi. Assume simple random sampling without
replacement with sampling fractions fi = ni/N such that
(1 − f1)/(1 − f2) ≈ 1. Then the following inequalities
hold.

AV (ŽCR
id ) ≤ AV (Z̆CR

id ) ≤ AV (ẐCR
id ). (23)

(b) Under Bernoulli sampling with πi = fi as in (a), the
inequality AV (ŽCR

id ) ≤ AV (Z̆CR
id ) holds under the condi-

tion 1 = Xihi; the other parts of (23) hold without this
condition.

The inequality (23) shows that under the conditions of
Theorem 1 more domain-specific information about the
auxiliary variables x1 and x2 leads to more efficient com-
posite estimators of the domain total tzd

. Similar results
are expected to hold under general designs.

4 Summary and discussion

Analytical results for simple random sampling and
Bernoulli sampling show that extending the generalized
regression procedure so as to combine comparable infor-
mation from two surveys at the domain level improves
the precision of domain estimates, substantially for com-
mon survey variables but less so for noncommon vari-
ables. The precision gain increases with the use of more
domain-specific auxiliary information.

For an empirical study of the proposed estimation
method in a complex survey context, a two-sample situa-
tion was created by splitting the sample of the Canadian
Labour Force Survey (LFS) by rotation group into two
subsamples, s1 and s2, of three rotations each. The six
rotations that comprise the LFS are independent samples
(of approximately the same size) of members of private
households drawn with a stratified multistage design from
an area frame. For the purposes of the study, the two
main categories of the Labour Force status, i.e., “em-
ployed” and “unemployed”, were chosen as “common”
variables to the two subsamples. Regression was carried
out employing the same calibration scheme for s1 and s2

involving seven age groups by sex, and incorporating the
two common variables simultaneously. Four small geo-
graphic areas in each of the two provinces were used as
study domains. The one-sample domain estimators ẐR

d

and Z̆R
d and their composite counterparts ẐCR

d and Z̆CR
d

(for scalar characteristics) were compared with respect
to their estimated (by the Jackknife method) variances.
This study provided a quantification of the resulting effi-
ciency gains for estimated totals of common and noncom-
mon binary variables. In particular, in a comparison of a
regression procedure that uses only auxiliary information
at the domain level with a regression procedure that only
combines data from two surveys, the study has shown
that the former is more efficient for the most prevalent of
two common characteristics but the latter is more efficient
for the less prevalent one and for associated rates. The
total effect of using auxiliary information and combin-
ing information on common variables through regression
is an impressively efficient domain estimation, more so
for the common variables. These empirical results were
not based on repeated samples, and may therefore be re-
garded as strongly suggestive but not conclusive. Details
of this study can be found in Merkouris (2006).

It has been assumed that domains that are of interest
to one of the surveys are identifiable in the data file of
the other survey. When this is not the case, combining
information on common variables is still possible but at
the next higher subpopulation level identifiable in both
files, which may be the entire population. For general
designs, the efficiency of the resulting composite domain
estimators relative to the one-sample domain GREG es-
timators will depend on that level. A situation where
it may be preferable to combine information on some of
the common variables at intermediate levels identifiable
in both samples (e.g., strata containing the domains of
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interest) involves very small domains in which those vari-
ables represent rare characteristics. It is to be noted that
combining information at levels other than the domains
of interest does not lead to composite domain estimators
that have the form of a weighted average.

It was shown in Section 3 that the proposed GREG pro-
cedure may conveniently handle more than one common
variable and more than one domain at once; the various
domains need not be mutually exclusive and exhaustive.
This procedure generates a single set of calibrated weights
for each survey that can be used to produce a composite
estimate for any variable of interest, common or noncom-
mon, and at any level, thereby preserving each survey’s
internal consistency of estimates. With such a unified
approach to estimation of any parameter of interest, it
is sensible to combine information also at the population
level — by augmenting the regression matrix (5) or (13)
or (18) with the submatrix (Zs1 ,−Zs2)′. This will be
redundant if the domains included in the procedure are
exhaustive.

The number of common variables for which we seek
domain estimates may be so large so as to make the re-
gression procedure too cumbersome or lead to unstable
estimates. A large number of domains of interest may
have the same effects. In such situations, it may be more
appropriate to carry out separate GREG procedures with
a subset of domains and (or) a subset of the common
variables. With such an approach we forgo a unified es-
timation system, as is rather customary in domain es-
timation based on a single sample, but we obtain more
stable estimates and have more flexibility in the use of
the auxiliary variables x1 and x2. In particular, noting
that population-level controls are ineffective for domain
estimation, it is prudent to use only controls that are
available at the level of subpopulation (domain or higher)
at which the information from s1 and s2 is combined.

In the special situation when all variables are common
between the two surveys (as when one of the surveys is
supplementary of the other) and consistency of estimates
is required, we may choose to combine information on a
subset of key common variables. For the rest we derive
two domain estimators, as in (6), (14) or (19), which can
be combined as already described in Section 3.1 for the
estimators in (6).

As already noted, the use of domain-level control to-
tals in the GREG procedure may be limited to domain
sizes because domain totals for some or all the compo-
nents of an auxiliary vector x may be unavailable, or
because the domain sample size is too small. However,
even domain sizes may not be available for some small
domains, most likely not for non-geographic domains.
On the other hand, combining information on common
variables in such domains is always possible. This is a
great advantage of this approach to domain estimation,
all the more so considering that in some situations small
domains may not be adequately amenable to traditional
model-based techniques. Moreover, calibrating to the size
of small domains may result in loss of efficiency for small

proportions within these domains due to small sample
count, and, for the same reason, it may introduce some
bias to domain estimators. In contrast, combining infor-
mation on common variables at the domain level essen-
tially increases the effective domain sample size.

If no auxiliary variables are used, the regression matrix
(5) reduces to (Zs1d

,−Zs2d
)′ and the composite GREG

estimators (6) and (8) are given in terms of the HT esti-
mators from the two samples. For example, the explicit
form of Ŷ CR

1d will be Ŷ CR
1d = Ŷ1d+(1−φ)Y′

s1d
Λs1Zs1d

[(1−
φ)Z′

s1d
Λs1Zs1d

+ φZ′
s2d

Λs2Zs2d
]−1[Ẑ2d − Ẑ1d]. In this

form, the beneficial effect of the increased effective sample
size in enhancing the stability of the regression coefficient
is evident.

Extensions of the analytic results of Section 3 to gen-
eral sampling designs appear to be intractable, except for
direct extentions to stratified sampling with either sepa-
rate or combined regression for domains that cut across
strata, as done in Merkouris (2004) for population-level
combination.

Finally, although situations involving more than two
surveys with overlapping content from the same popula-
tion are rather unusual, a suitable generalization of the
proposed procedure (following Merkouris (2004)) is easy.

5 Appendix: Proofs

Proof of Proposition 1. The proof will be given for ẐR
1d

and Ŷ R
1d; the proof for ẐR

2d and Ŷ R
2d is similar. (a) First,

the vector of population residuals corresponding to ẐR
id is

Eid = (I − PXi
)Zd, where PXi

= Xi(X
′
iXi)

−1X′
i. Using

a matrix formulation of a standard result (see, e.g., Särndal
et al. 1992, p. 235), the approximate design variance of ẐR

id is
given by

AV (ẐR
id) = E′

idΛ
◦
i Eid = Z′

d(I − PXi
)Λ◦(I −PXi

)Zd,

where Λ◦
i is a nonnegative definite matrix whose kl-th en-

try is (dropping the index i for notational simplicity) (πkl −
πkπl)/πkπl, (πkk ≡ πk). For simple random sampling with
sampling fraction fi = ni/N , it can be easily shown that
Λ◦

i = λ◦
i (I − P1), where λ◦

i = N2(1 − fi)/[ni(N − 1)] and
P1 = 1(1′1)−11′. Then, it follows from 1 = Xihi that
PXi

P1 = P1 and thus AV (ẐR
id) = λ◦

i Z
′
d(I − PXi

)Zd =

λ◦
i Z

′
dLiZd. Since the columns of Zd are independent of

the columns of Xi, the matrices Z′
dLiZd are nonsingu-

lar (see Seber 1997, p.65). It follows then that Bd =
AV (ẐR

2d)[AV (ẐR
1d) + AV (ẐR

2d)]−1 under the condition (1 −
f1)/(1 − f2) ≈ 1. Now, expression (10) can be rewritten
as AV (ẐCR

1d ) = AV (ẐR
1d)[AV (ẐR

1d) + AV (ẐR
2d)]

−1AV (ẐR
2d) =

AV (ẐR
1d) − AV (ẐR

1d)[AV (ẐR
1d) + AV (ẐR

2d)]−1AV (ẐR
1d), which

shows that AV (ẐCR
1d ) < AV (ẐR

1d).

Similarly, (9) can take the form AV (Ŷ CR
1d ) =

AV (Ŷ R
1d) − AC(Ŷ R

1d, ẐR
1d)[AV (ẐR

1d) + AV (ẐR
2d)]

−1

× (AC(Ŷ R
1d, ẐR

1d))
′, which shows that AV (Ŷ CR

1d ) < AV (Ŷ R
1d).

Now, X1 = X2 implies I − PX1
= I − PX2

and Bd = φI,

φ = n1/(n1 + n2). Therefore, AV (ẐCR
1d ) = [λ◦

1φ
2 + λ◦

2(1 −
φ)2]Z′

d(I − PX)Z′
d. Also, AV (ẐR

1d) = λ◦
1Z

′
d(I − PX)Z′

d, and
thus AV (ẐR

1d)[AV (ẐCR
1d )]−1 = [λ◦

1/[λ
◦
1φ2 + λ◦

2(1 − φ)2]]I =
[(n1 + n2)/n1]I under the condition (1 − f1)/(1 − f2) ≈ 1.
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Also, By1d(I − Bd) = (1 − φ)AC(Ŷ R
1d, ẐR

1d)[AV (ẐR
1d)]−1

and thus AV (Ŷ CR
1d ) = AV (Ŷ R

1d) + [φ2 − 1 + λ◦
2(1 −

φ)2/λ◦
1]AC(Ŷ R

1d, ẐR
1d)[AV (ẐR

1d)]−1(AC(Ŷ R
1d, ẐR

1d))′. By the
Cauchy-Schwarz inequality AV (Ŷ CR

1d ) > AV (Ŷ R
1d) + [φ2 − 1 +

λ◦
2(1 − φ)2/λ◦

1]AV (Ŷ R
1d) = [[λ◦

1φ2 + λ◦
2(1 − φ)2]/λ◦

1 ]AV (Ŷ R
1d).

It follows then that AV (Ŷ R
1d)[AV (Ŷ CR

1d )]−1 < (n1 + n2)/n1.
(b) The proof is as in (a).

Proof of Theorem 1. It suffices to give the proof for
ẐCR

1d , Z̆CR
1d and ŽCR

1d . (a) It was shown in the proof
of Proposition 1 that AV (ẐCR

1d ) = AV (ẐR
1d)[AV (ẐR

1d) +
AV (ẐR

2d)]−1AV (ẐR
2d). Analogous expressions can be

derived for AV (Z̆CR
1d ) and AV (ŽCR

1d ). Now, notic-
ing that AV (ẐR

1d)[AV (ẐR
1d) + AV (ẐR

2d)]
−1AV (ẐR

2d) =
[(AV (ẐR

2d))−1[AV (ẐR
1d) + AV (ẐR

2d)](AV (ẐR
1d))−1]−1 =

[(AV (ẐR
1d))−1 + (AV (ẐR

2d))−1]−1, we can write

AV (ẐCR
1d ) = [(AV (ẐR

1d))−1 + (AV (ẐR
2d))−1]−1.

Similarly, AV (Z̆CR
1d ) = [(AV (Z̆R

1d))
−1 + (AV (Z̆R

2d))−1]−1 and
AV (ŽCR

1d ) = [(AV (ŽR
1d))

−1 + (AV (ŽR
2d))−1]−1. For ẐCR

1d and
Z̆CR

1d we obtain

AV (ẐCR
1d ) − AV (Z̆CR

1d ) = [(AV (ẐR
1d))−1 + (AV (ẐR

2d))−1]−1

−[(AV (Z̆R
1d))−1 + (AV (Z̆R

2d))−1]−1.

Since the matrices AV (ẐCR
1d ) and AV (Z̆CR

1d ) are nonnegative
definite and nonsingular, they are positive definite. It can be
shown (see Merkouris 2006) that AV (Z̆R

id) ≤ AV (ẐR
id), which

by a suitable result on inverses of such matrices (Harville 1997,
p. 434) implies (AV (Z̆R

id))
−1 ≥ (AV (ẐR

id))
−1, so that

(AV (Z̆R
1d))−1 +(AV (Z̆R

2d))−1 ≥ (AV (ẐR
1d))

−1 +(AV (ẐR
2d))−1.

By applying again the abovementioned result we obtain

[(AV (ẐR
1d))

−1 + (AV (ẐR
2d))

−1]−1

≥ [(AV (Z̆R
1d))−1 + (AV (Z̆R

2d))
−1]−1

and, hence,
AV (ẐCR

1d ) ≥ AV (Z̆CR
1d ).

The proof of AV (Z̆CR
1d ) ≥ AV (ŽCR

1d ) is as above.
(b) The proof is as in (a).
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