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1.  Introduction 
 

The benefits of using model-based estimators, such 
as the best linear unbiased predictor (BLUP), for 
survey inference over model-assisted estimators, such 
as the generalized regression estimator (GREG), as 
well as the converse have been noted in the literature.  
The BLUP, used with prediction theory and well 
documented in classical statistics, has the desirable 
property of minimum model variance among the set 
of unbiased predictors.  This model-based estimator 
was most notably proposed by Royall and Herson 
(1973) for use in survey statistics.  As discussed by 
Godambe (1955), traditional survey estimators 
generally do not attain the BLU condition and 
therefore produce inefficient estimates.  Additionally, 
theory states the likelihood generated by the sampling 
design is uninformative for survey inference since it 
is a constant for every sample and does not describe 
the underlying likelihood function of the population 
(Godambe 1966, Basu 1969). 
 
General regression estimation, one of the model-
assisted techniques from probability sampling theory, 
uses a set of auxiliary variables to produce efficient 
survey estimates (e.g., Chapter 6 in Särndal, et al 
1992).  Repeated sampling (or design) variance in the 
estimate, calculated as its average squared difference 
from the true population value, is affected by the 
strength of the relationship between the variable of 
interest and the auxiliary variables.  These estimators 
incorporate analysis weights and components of the 
sampling design for inference instead of relying on 
the correct specification of the underlying 
superpopulation model as with the BLUP (e.g. 
Hansen, et al 1983).  Additionally, the calibration 
property of the GREG ensures that certain survey 
estimates tabulate to their known population values. 
 
Most of the research to date comparing model-based 
and model-assisted estimators has been conducted 
under the assumption of either 100% response or 
ignorable nonresponse after controlling for a 
specified list of known auxiliary variables (e.g., 

Gerow and McCulloch 2000, Brewer 1999, and 
Hansen, et al 1983).  A recent exception is Laaksonen 
and Chambers (2006) who compare design-based and 
model-based estimation for two-phase designs where 
interviews are obtained from all first-phase 
nonrespondents in the second phase. Surveys of the 
general population rarely if ever achieve complete 
response and in many instances suffer from low 
response rates (de Leeuw and de Heer 2002).   
 
The purpose of this article is to provide a preliminary 
empirical comparison of the bias and confidence 
interval coverage rates of four estimators in 
predicting a population total under various levels of 
ignorable and non-ignorable nonresponse.  The 
estimators include one model-based estimator (a 
BLUP) and three model-assisted estimators – a 
GREG using only design weights irrespective of the 
level of nonresponse; a modified GREG using 
nonresponse-adjusted design weights (MGREG); and 
a regression estimator using only weights associated 
with the probability of response (RARE).  We 
implement this research through a simulation study 
on three model-generated populations.   
 
In section 2, we discuss the research produced to date 
on various aspects of our study.  We provide details 
of the simulation and the analyses in section 2 
followed by the analytical results in section 3.  
Limitations of the current study along with the 
proposed next steps in this investigation are included 
in the final section. 
 

2.  Background 
 

2.1  Model-based vs. Model-Assisted Estimation 
 

The prediction theory approach uses tools from 
classical statistics such as the model-based BLUP.  
Denote the population of units by U and the set of 
sample units by S.  The form of the BLUP for an 
estimated population total under 100% response is 
 

1 1 1

ˆˆ

ˆ [ ] ,
BLUP S U S BLUP

BLUP S S S S S S

T T −
− − −

= +

′ ′=

X β

β X V X X V Y
     (1) 

 
where ST  is the  total calculated  from the  sample S; 
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SX  is a matrix of sample values for the auixiliary x-
variables; and U S−X  is a vector of values from 
population units excluded from the sample; 

ˆ
BLUPβ is the vector of generalized least squares 

(GLS) model coefficients estimated from the sample; 
Vs is the specified error covariance matrix; and Ys is 
the vector of values for the analysis variable.  For 
studies with some nonresponse, B̂LUPT  is defined 
only for the responding subset of the sample (SR).  
We distinguish estimators under complete and less 
than complete response by using a subscript S and R, 
respectively.  For example, U R−X  is the vector of 
population totals for the auxiliary variables excluding 
the responding sample members. 
 
The characteristics of model-based estimators are 
derived with respect to a specified model.  For 
example, the prediction bias for B̂LUPT  is evaluated 
based on the working model (M*),  

* * *ˆ ˆ( ) ( ) ( ).BLUP BLUPM M ME T T E T E T− = −     (2) 
Therefore, this type of inference is heavily dependent 
on M* closely matching the true superpopulation 
model M.  If the BLUP is derived using M*, then (2) 
is zero and B̂LUPT  is prediction-unbiased under M*.  

However, if some other model, say M , is correct (or 
at least a better description of y than M*), then B̂LUPT  
is biased. 
 
Royall and Herson (1973) offered balanced sampling 
as one mechanism for protecting against certain types 
of misspecification of the superpopulation model.  
Balanced samples are selected so that a pre-specified 
number of sample moments for at least one relevant 
auxiliary variable equate to their corresponding 
population moments, thereby effectively reducing the 
model-based bias (2) to zero (see Chapters 3 and 4 in 
Valliant, et al 2000).  These samples are achieved 
either exactly or approximately by purposive 
sampling (though criticized), controlled selection, 
and randomization.  When a single x is available, M* 
may be a low order polynomial.  If a higher order 
polynomial however is more nearly correct, weighted 
balanced samples can protect an estimator against 
bias.  Weighted balanced samples are selected such 
that the sample moments weighted by the inverse of 
the square root of the specified variance 

1 1/ 2( )j
k ksn v x− −∑  are equivalent to the population 

values, 1/ 2 1( )j
iiU Ux v− −∑ ∑ . 

 

The BLUP by definition has the minimum model 
variance among the set of unbiased estimators, a 
desirable property for producing efficient estimates 
(e.g., Casella and Berger 2002).  Therefore, in theory 
the BLUP will always be more efficient than a 
design-based estimator.  Also, Royall and Herson 
(1973) argued that the focus of estimation should be 
on the characteristics of a particular sample instead of 
the method for selecting the sample, as with design-
based estimation.   
 
Conversely, probability sampling (or design-based) 
theory avoids explicit reliance on correctly specified 
models and instead uses the randomization principle 
which states that the random sampling distribution is 
the only means by which valid inferences are made.  
The design weights (i.e., the inverse of the unit 
inclusion probabilities) as well as the properties of 
the estimator over repeated samples are key to 
inference about quantities in the underlying 
population of interest.  Neither concept is considered 
with the BLUP.  A model-assisted technique such as 
generalized regression estimation (GREG) is one of 
many estimation methods used by design-based 
practitioners.  The GREG relies on a set of auxiliary 
variables to produce efficient survey estimates (e.g., 
Chapter 6 in Särndal, et al 1992).  The GREG for a 
population total, under 100% response, is defined as  

 

-1 -1 1 -1 -1

ˆ ˆ ˆ ˆ( )

ˆ [ ]

GREG y GREG

GREG s s s s s s s s

T T π
−

′= + −

′ ′=

x xπB T T

B X V Π X X V Π Y
    (3) 

 
where T̂απ  is the Horvitz-Thompson (HT) estimator 
for the total of the α variable (α = y, x); Tx is the 
vector of known population totals for the auxiliary x-
variables; and sΠ  is the diagonal matrix of inclusion 
probabilities.  The remaining components in (3) are 
similar to the variables defined in (1) above.  In the 
presence of nonresponse, the subscripts in ˆ GREGB  
change from S to R. 
 
As alluded to above, the estimation bias for ĜREGT  is 
taken with respect to the sampling distribution (δ) 
instead of a model: ˆ( )GREGE T Tδ − .  The “model” in 
model-assisted estimation is used only to define the 
structure of ˆ

GREGB ,  the vector of GLS model 
coefficients.  Historically, the approximate design-
unbiasedness of the GREG was declared to render it 
robust against model misspecification (Särndal, et al 
1992).  However, more recent research indicates a 
need for model diagnostics to improve the accuracy 
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of the model because of an actual sensitivity to model 
misspecification (Hedlin, et al 2001). 
 
The efficiency of ĜREGT  is dependent on the 
strength of the linear relationship between y and the 
auxiliary x-variables (Särndal, et al 1992).  This form 
of the GREG is also known as a calibration estimator 
because k ks g =∑ xTx  with the g-weights defined 
below. 

( ) 1ˆ 1GREG k k k k ks sT c y g yπ −= + =∑ ∑     (4) 

where 1 1ˆ[ ] ( )k k k k k k ksc v vπ − −′ ′= − ∑x xT T x x xπ  and 
1

k k ky y π −= . 
 
2.2  Ignorable and Non-ignorable Nonresponse 
 

Nonresponse is classified as either ignorable or non-
ignorable.  Nonresponse is labeled ignorable when 
the response propensities are independent of the 
distribution of y.  This type of nonresponse is further 
classified into either missing completely at random 
(MCAR) or missing at random (MAR).  MCAR 
occurs when the respondents are still a representative 
(random) sample from the population of interest.  
MAR represents a MCAR situation but only after 
controlling for a set of auxiliary variables (i.e., the 
distribution given the x-variables (y|x) is independent 
of the response mechanism).  Conversely, non-
ignorable nonresponse (NINR) occurs when the y|x 
distribution is dependent on the response 
propensities.  Additional information on the 
nonresponse patterns is found in several sources (e.g., 
Little and Rubin 2002; Pfeffermann 1993). 
 
2.3  Weight Adjustments 
 

In the presence of nonresponse, most design-based 
practitioners choose to adjust the design weights in 
an attempt to reduce any existing nonresponse bias to 
a negligible level (e.g., Chapter 8 in Lessler and 
Kalsbeek 1992).  Many types of nonresponse 
adjustments are cited in the literature (e.g., Kalton 
and Kasprzyk 1986).  For our research, we focus on 
two specific methods – weighting classes and 
response propensities.  Weighting classes are formed 
by cross-classifying the sample units by a set of 
categorical variables that are correlated with the 
probability to respond as well as y.  These data must 
be known for both respondents and nonrespondents.  
The resulting weighting classes are usually required 
to contain a sufficient number of cases so that 
variability in the class-specific nonresponse 
adjustments is controlled.  The adjustment for a 
particular weighting class (c) is the sum of all design 

weights divided by the sum of the design weights for 
the respondents. 
 
Response propensities are calculated using the 
predicted values from a binary regression model with 
the dependent variable set to a 0/1 response indicator.  
As with the weighting class adjustment, the ideal 
model covariates are ones associated both with the 
probability of response and with a set of key analytic 
variables.  This method is not restricted to categorical 
variables because the propensity model can allow for 
continuous variables.  Including many variables into 
this model can reduce nonresponse bias.  However, 
an over-specified model decreases the precision of 
the nonresponse adjustment.  A cell-mean response 
propensity adjustment (ak) is made by classifying the 
raw propensities into groups and using the inverse of 
the mean propensity within these groups.  Little 
(1986) suggests the cell-mean propensity adjustment 
over the raw propensity adjustment to minimize the 
variance inflation associated with the highly variable 
weights. 
 
The ck adjustment (4) in the GREG also reduces 
nonresponse bias if the auxiliary variables are 
associated with response propensity and the y-
variable (e.g., Chapter 6 in Särndal and Lundström 
2005).  Additionally, this adjustment can also account 
for any coverage bias from the sampling frame again 
based on the relationship between y and x. 
 
Given the discussion about nonresponse adjustments, 
there are two additional estimators to consider.  First, 
we have a regression estimator similar in form to the 
GREG with the addition of a nonresponse adjustment 
instead of relying solely on the unadjusted design 
weight.  The estimated total for this modified GREG 
(MGREG) using only the responding sample cases 
( Rk S∈ ) has the following form: 

(5) 

-1 -1 1 -1 -1

ˆ ˆ ˆ ˆ( )

ˆ [ ]

MGREG yw

R R R R R R R R R R

T T
−

′= + −

′ ′=

x xB T T

B X V Π A X X V Π A Y

MGREG w

MGREG

 

 
where, ( )R kdiag a=A . The components of this 
estimator are similar to those described in (3) with 
the use of nonresponse-adjusted weights -1( )R RΠ A  

instead of design weights alone -1( )RΠ . For 

example, 1ˆ
R

yw k k kST a yπ −= ∑  
R

k kS w y= ∑ .  If 

1 ka  is a consistent estimator of the propensity of a 
unit to respond and each unit in the population has a 
non-zero  response  propensity,  then  M̂GREGT   is 

ASA Section on Survey Research Methods

2940



Figure 1.  Plot of 500 Records from Simulation 
Populations 1, 2, and 3. 
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approximately unbiased with respect to the sampling 
and response mechanisms.  Many researchers today 
consider this estimator to be the standard regression 
estimator of choice. 
 
The last estimator considered in our research is 
referred to as a response-adjusted regression 
estimator (RARE).  RAREs have been used with 
studies where the probabilities of selection are 
unknown such as Web panel surveys.  As with the 
MGREG (6), the RARE has the same basic structure 
as the GREG (3) for estimating totals except for the 
exclusion of the design weight: 
 

-1 1 -1

ˆ ˆ ˆ ˆ( )

ˆ [ ]

RARE ya

R R R R R R R R

T T
−

′= + −

′ ′=

x xB T T

B X V A X X V A Y

RARE a

RARE

    (6) 

 
In (6), ˆ  for ,

R
a k kST a y xλ λ λ= =∑ .  This estimator 

will be approximately unbiased with respect to the 
combination of the working model and the response 
mechanism. 
 

3.  Methods 
 

The primary purpose of this paper is to compare the 
confidence interval coverage for a population total 
computed with the four estimators discussed in the 
previous section and with samples containing varying 
levels of nonresponse.  We briefly describe the set-up 
of the simulation study, conducted in R (R 
Development Core Team 2005), from which our 
results are obtained.  Summary information for the 
simulation study is provided in Table 1. 
 
Three population list frames of size 100,000 were 
generated under the polynomial regression model 

2
1 2 3k k k k kY x x z eβ β β= + + +  with 2 2~ (0, )k ke N xσ  

and ~ (9, 9)kx Gamma .  Note that the variance 
structure is not constant because of the dependence 
on the auxiliary x-variable.  We evaluated the model 
at 2 1σ = .  The model coefficients were (β1, β2) = 

(15,-3) for all the populations; β3 was set to zero for 
Population 1 and to 1.0 for the other frames.   
 
Only populations 2 and 3 incorporated the z-variable 
above with distributions ~ (1, 0.5)kz Gamma  and 

~ (1, 0.25),kz Gamma  respectively.  The existence 
of z, unknown for either sampling or weighting 
phases of the study, serves two purposes for our 
study.  First, the presence of the z in Populations 2 
and 3 dilutes the linear relationship between y and the 
auxiliary variables, a condition that affects the 
efficiency of the regression estimators.  A graph of y 
by x for the three populations shows a linear 
relationship starting in Population 1 which degrades 
to a cloud of points by Population 3 (Figure 1).  
Second, because z is not included in the working 
(superpopulation) model of our estimators, these 
models are underspecified.  Therefore, we can further 
examine the sensitivity of the BLUP and the GREG 
to the condition of the model.  Note, however, that 
our two purposes are confounded so that we can not 
say which condition has the most negative effect on 
our estimates.  The resulting x-y correlations for the 
three populations were 0.9, 0.7, and 0.5, respectively.  
 
Two other auxiliary variables were added to the 
population list frames – a trichotomous variable 
created by dividing the x values into high, medium, 
and low categories by the 33rd and 66th percentiles 
(x.cat3), and a 6-level variable created by dividing 
the x values into the relevant percentiles (x.bin).  
Both variables were instrumental for the weighting 
class adjustments. 
 
From each of the simulated populations, D=1,000 
samples of size 1,200 were selected using two 
methods: simple random sampling without 
replacement (SRS), and probability proportional to 
size systematic sampling with size measure x, PPS(x).  
(Weighted balanced samples of size 2

kx  were 
selected in our study.  However, the results from 
these samples did not differ greatly from those 
reported and are therefore excluded from the 
discussions.)  The SRS selection method was 
implemented for comparisons with prior research 
results.  The PPS method was selected to represent a 
likely single-stage sampling design (more complex 
than a simple random sample) that is used with 
design-based estimation.  We constructed the 
corresponding design weights for the GREG and 
MGREG estimates. 
 
As discussed in section 2.6 of Valliant, et al (2000), 
the designation of a design as ignorable or non-
ignorable is one important aspect in choosing an 
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estimation procedure.  This designation can be 
affected by the level and pattern of nonresponse 
depending on the correlation between response 
propensity and the analysis variable.  Ten response 
rates were incorporated into each simulation sample 
ranging from 15% to 90%.  The three patterns of 
nonresponse were also incorporated into the 
simulation as described below.   
 
MCAR was simulated by selecting a simple random 
subsample of respondents within the dth sample at the 
specified level of response.  A simple random 
subsample of respondents was chosen within x.cat3 
for MAR.  To mimic a non-ignorable nonresponse 
situation, we chose the respondent subsamples 
through a PPS selection with size measure y, PPS(y), 
thereby creating in expectation a correlation between 
nonresponse and the analysis variable. 
 
Five versions of the MGREG were created with 
differing nonresponse adjustments – three weighting 
class adjustments (overall, within x.cat3, and within 
x.bin) and two response propensity weight 
adjustments (raw and cell-mean) using logistic 
regression.  Two types of RARE estimates were 
created using both the raw and cell-mean response 
propensity weights.  By definition, nonresponse 
adjustments were not used for either the BLUP or the 
GREG though the estimates were calculated using 
only the respondents (SR). 
 
Table 1. Summary of the Simulation Components 
Simulation 
Components 

Component Values 

Sampling Design (2) SRS without replacement; 
PPS systematic sampling 
with size measure x  

Response Rate (10) 15% to 90% 
Pattern of 
Nonresponse (3) 

Missing Completely at 
Random; Missing at Random;
Non-Ignorable Nonresponse 

Nonresponse 
Adjustment (3) 

Weighting class; Propensity 
weighting  (Raw, Cell-Mean)

 
The primary focus of the analyses was to determine 
the confidence interval (CI) coverage rates for the 
four types of predictors under various conditions 
summarized in Table 1.  The bias ratio, ˆ( )BR T , is 
defined as the ratio of the absolute empirical bias of 
the estimated total, ˆ( ) ,Bias T to the root mean 

square error, 1 2
( )1

ˆ ˆ( ) ( )D
d ydRMSE T D T T−

== −∑ , 

where d is one of the D=1,000 samples.  As 

suggested in section 5.2 of Särndal, et al (1992), we 
used an RMSE instead of a standard error due to bias 
exhibited in the simulation results.  This bias ratio 
affects the desired CI coverage rates through             
the formula 1 / 2ˆ(| ( ) | )P Z BR T z α−+ ≤ , where  

ˆ ˆ ˆ[ ( )] ( )Z T E T RMSE T= − .  A negligible bias ratio 
has minimal affect on coverage while a bias ratio 
larger than one can greatly reduce the coverage rates.  
In the simulations, confidence intervals were based 
on pivots defined as ˆ ˆ[ ] ( )T T RMSE T− .  Thus, their 
coverage properties were determined by the 
properties of T̂  alone and not affected by any 
variance estimator.  Additionally, we examined the 
characteristics of the relative empirical bias 
( 1

( )1
ˆ ˆ( ) ( ) /D

d y ydrelbias T D T T T−
== −∑ ) and the 

relative MSE ( 1 2 2
( )1
ˆ( ) /D

d y ydD T T T−
= −∑ ).   

 
4.  Simulation Results 

 

The simulation results are very similar for the SRS 
and PPS sampling designs.  Many of the general 
results are similar across the three populations; 
differences are discussed where appropriate.  Because 
the most notable differences occur across the 
nonresponse patterns, we discuss each condition 
separately.   
 
4.1  Missing Completely At Random (MCAR)  
 

The results for the MCAR pattern of nonresponse 
suggests that specified level of coverage is 
maintained for the four estimators irrespective of the 
response rate and simulation condition (Table 1).  
Negligible bias ratios range from 0.001 to 0.054 with 
larger values for Population 3.   
 
4.2  Missing at Random (MAR) 
 

Empirical results for Population 1 under a MAR 
pattern mimics those discussed under MCAR.  Once 
the linear relationship between y and x (Population 1) 
weakens (Populations 2 and 3), there is a slight 
reduction from a 95% to a 93% coverage rate for the 
GREG, and the raw propensity-adjusted MGREG and 
RARE estimates within x.cat3.  Coverage actually 
increases for MGREG and RARE within x.bin.  The 
RMSEs for all estimators increase from Populations 1 
to 3.   
 
4.3  Non-Ignorable Nonresponse (NINR) 
 

The most notable results in our simulation study exist 
for the NINR condition.  Only the BLUP maintains 
the desired 95% CI coverage rates for all populations 
under consideration.  The coverage rates for the other 
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estimates fall to levels as low as 83.4% (Figure 2).  
The other regression estimators (GREG, MGREG, 
and RARE) consistently have the lowest coverage 
rates for Population 3 followed by Population 2.  The 
minimum and maximum values for the bias ratios 
calculated for the BLUP are provided in Table 2 by 
population.  The bias ratios for the other regression 
estimators are not distinguishable and therefore are 
reported in a single column. 
 
Table 2. Minimum and Maximum Bias Ratios for 

BLUP and Other Regression Estimators by 
Population Across All Response Rates 
 

Populations 
 

BLUP 
Other Regression 

Estimators 
1 (0.001, 0.065) (0.729, 0.932) 
2 (0.001, 0.050) (0.882, 0.971) 
3 (0.001, 0.063) (0.941, 0.981) 

 
Figure 3 shows the various levels of relbias for the 
three populations by response rate.  Note that the 
values for the MGREG and the RARE are not 
differentiable for each population; the MGREG has a 
slightly smaller empirical relbias and is represented 
by the dashed line.  The ˆ( )BLUPrelbias T  fluctuates 
around zero with a maximum value of 0.08% for all 
levels of response.  This is consistent with the 
information provided in Table 2.  The graph of the 
corresponding RMSEs is similar to Figure 3.  Under 
the “best” simulation scenario, the estimated bias for 
the BLUP under all populations and the regression 
estimators under Population 1 appears to be 
negligible across the range of response rates.   
 
Because the model variance is contained within the 
column space of the design matrix (or auxiliary 
variables), the estimated total can be expressed as a 
function of the estimator-specific predictions, 

ˆˆ
UT N= X β , where for example ˆ ˆ

BLUPβ = β  (1) for 

B̂LUPT  (Valliant, et al 2000).  Figure 4 plots the 
relbias of the predictions for the GREG and BLUP, 
defined as ˆ[ ( ) ( )] / ( )k M k M kavg y E y E y− , versus 

( )M kE y  for Population 1 where ˆ( )kavg y  
ˆ( ) kavg β ′= x  with ˆ( )kavg y  being the average over 

the 1,000 PPS(x) samples under a 25% response rate.  
The x-axis in Figure 4, ( )M kE y , gives the expected 

values under the true model, 2( ) 15 3M k k kE y x x= − .  
Although the individual prediction relbiases for the 
GREG are small, we see that this apparent negligible 
bias for the regression estimators can accumulate to a 
positive bias that impacts CI coverage.  Expected 
values for the MGREG and RARE are nearly 

identical to the GREG on this scale and are therefore 
excluded. 
 
The theoretical explanation for the high performance 
of the BLUP in comparison to the other regression 
estimators under a NINR response mechanism τ 
follows.  The model expectation conditioned on a 
response mechanism τ in general can be expressed as 

( | )M k k kE y bτ ′= +βx , a function of the true value 
plus a bias term ( kb ) for Rk S∈ .  If the response 
mechanism is correlated with the variable of interest, 
say PPS(y) as in our simulations, then 0kb >  
(strictly) and kb  will increase as kx  increases.  The 
model expectation for the BLUP has the following 
form where ,BLUP kw  is the “BLUP weight” for the 
kth unit: 

1 1 1

1 1 1

,

ˆˆ( | ) ( | )

[ ] ( | )

[ ] ( )
ˆ( )

R

M BLUP R U M BLUP R

U R R R R R M R R

U R R R R R R R

M BLUP k ks

E T s N E s

N E s

N

E T w b

− − −

− − −

′=

′ ′ ′=

′ ′ ′= +

= +∑

X

X X V X X V Y

X X V X X V X

β

β b
 

Similarly for the GREG, we have 

,
ˆ ˆ( | ) ( )

R
M GREG R M GREG k ksE T s E T w b= +∑ .  

 
A comparison of the estimator-specific weights (y-
axis) with the expected values under the true model 
(x-axis) for one PPS(x) Population 1 sample is shown 
in Figure 5.  The GREG weights for observations 
with either relatively low or high x values are higher 
than the corresponding BLUP weights due to the 
weight ratios exceeding the horizontal line at one.  
These observations also correspond with large 
predicted values under the true model.  Therefore, in 
contrast to the BLUP, the GREG estimator assigns a 
relatively high-valued weight to observations with 
extreme predicted values thereby positively 
increasing the bias. 
 

5.  Conclusion and Future Work 
 

An MCAR nonresponse pattern is the primary 
condition under which the confidence interval 
coverage is maintained for the estimators under 
investigation.  The choice of the appropriate 
estimator is secondary.  However, only the non-
BLUP regression estimators (GREG, MGREG, and 
RARE) appear to be sensitive under some MAR and 
all NINR situations.  This suggests that the 
nonresponse adjustments are not eliminating bias.  
Additionally, calibrating to known control totals as in 
the regression estimators does not eliminate bias in 
our  research as  purported  in many  standard  survey  
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Figure 5.  Comparison of True Predictions to 
Ratios of GREG and BLUP Weights for One 

Simulation Sample from Population 1. 
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textbooks.  This problem exists even for estimates 
with small relbias and high correlation between the 
analysis and auxiliary variables (Population 1).  
However, our research suggests that the BLUP is 
robust to the conditions within our simulation. 
 
The generalizability of our findings is limited to 
those conditions under study.  Of note is the 
mechanism we used to incorporate NINR into our 
simulation.  Some readers have suggested that PPS(y) 
is the best condition for the BLUP and that additional 
NINR mechanisms should be included.  Also, 
samples were selected only using two single-stage 
designs; additional work is needed with designs that 
include stratification and multi-stage components 
with disproportionate sampling.  An extension of the 
theory would naturally follow. 
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Figure 2. Confidence Interval Coverage Rates by Estimator Group, Population, and  
Response Rate for Non-Ignorable Nonresponse. 
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*MGREG and RARE estimates include those adjusted by weighting class and response propensity methods. 

 
Figure 3. RelBias by (NINR) Response Rate by Population for GREG, MGREG, and RARE estimates. 

3 0 4 0 5 0 6 0 7 0 8 0 9 0

0
1

2
3

4
5

6
7

R e s p o n s e  R a t e  ( % )

R
el

at
iv

e 
B

ia
s 

(%
)

 
 
Figure 4. Comparison of True and Estimated Predictions for PPS(x) Samples from Population 1 with a 25% 

Response Rate. 
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