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Abstract:

Model averaging is a widely used method as it ac-
counts for uncertainties in model selection. However,
its applications in survey estimation are much to be
explored. We investigate a model-averaging (MA)
regression estimator for the population total, for the
case of a nonparametric regression model. Different
ways to obtain this estimator are explored through
simulation studies.
KEY WORDS: Local polynomial regression, cross-
validation, regression estimation.

1. Regression estimator

Regression estimation is often used in survey esti-
mation. It makes use of the auxiliary information
about the population to provide efficient estimation.
Suppose we have l study variables Yj ∈ <l and p
auxiliary variables Xj ∈ <p. Both Yj and Xj are
row vectors. Let Yj denote the jth element of one
of the study variables. Consider the following linear
regression model

Yj = Xjβ + εj ,

where εj ’s are independent random variables with
mean zero and variance σ2

j . We observe the study
variable Yj for j ∈ S, and the auxiliary variables Xj

for j ∈ U . The population U is of size N and the
sample S is of size n. Suppose the quantity of inter-
est is the population total ty =

∑
j∈U Yj . Särndal

et al. (1992) describe a regression estimator for the
population total of the form

t̂reg =
∑
j∈S

Yj − Ŷj

πj
+

∑
j∈U

Ŷj ,

where πj is the inclusion probability for the jth el-
ement in sample S and Ŷj = Xjβ̂S is the predicted
value for Yj where β̂S is defined as

β̂S =

∑
j∈S

XT
j Xj

σ2
j πj

−1 ∑
j∈S

XT
j Yj

σ2
j πj

.
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This form shows that the regression estimator is a
sum of population total of fitted values,

∑
j∈U Ŷj ,

and an adjustment term
∑

j∈S(Yj − Ŷj)/πj .
The efficiency of regression estimator is measured

by its asymptotic variance, since its asymptotic bias
is negligible. Using Taylor linearization, Särndal
et al. (1992) showed that the approximate variance
for t̂reg is

AV (t̂reg) =
∑
j∈U

∑
i∈U

(πji − πjπi)
(Yj −XjB)

πj

· (Yi −XiB)
πi

,

where B is defined as

B =

∑
j∈U

XT
j Xj

σ2
j

−1 ∑
j∈U

XT
j Yj

σ2
j

.

The variance estimator for t̂reg is

V̂ (t̂reg) =
∑
j∈S

∑
i∈S

πji − πjπi

πji

(Yj − Ŷj)
πj

(Yi − Ŷi)
πi

,

where πji is the probability of including both the jth
and the ith element in sample S.

The above discussion deals with a parametric ap-
proach for regression estimation. There are also non-
parametric approaches. Let us consider the follow-
ing model

Yj = m(Xj) + εj ,

where m is a continuous and bounded function and
εj ’s are independent random variables with mean
zero and variance σ2

j . Let m̂j denote the predicted
model function for m(xj) using nonparametric re-
gression. Breidt and Opsomer (2000) proposed a
model-assisted local polynomial regression estimator
of the form

t̂y =
∑
j∈S

Yj − m̂j

πj
+

∑
j∈U

m̂j . (1)
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We will take xj to be univariate from now on. In
that case,

m̂j = eT
1

(
XT

SjWSjXSj +
ν

Nq+1
I
)−1

·XT
SjWSjYS (2)

= wT
SjYS ,

where q is the degrees of local polynomial regression,
e1 is the (q +1)×1 vector having 1 in the first entry
and all other entries 0, and

XSj =


1 (x1 − xj) · · · (x1 − xj)q

...
...

...
...

1 (xn − xj) · · · (xn − xj)q

 ,

WSj = diag
{

K

(
xi − xj

h

)
1

πjh
, i ∈ S

}
,

where h is the bandwidth and K
(

xi−xj

h

)
is the ker-

nel function. On the right hand side of expression
(2), the adjustment term ν

Nq+1 I, where ν > 0, is
used to ensure the estimator m̂j is well defined for
all S ⊂ U .

Breidt and Opsomer (2000) showed that the
asymptotic MSE of the local polynomial regression
estimator t̂y is equivalent to the variance of the gen-
eralized difference estimator, which is

Varp(t∗y) =
∑
j∈U

∑
i∈U

(πji − πjπi)
Yj −mj

πj

Yi −mi

πi
,

where

t∗y =
∑
j∈S

Yj −mj

πj
+

∑
j∈U

mj ,

and mj is the local polynomial regression estimator
at point xj , based on the entire finite population,
given by

mj = eT
1

(
XT

UjWUjXUj

)−1
XT

UjWUjYU

= wT
UjYU . (3)

In expression (3), XUj and WUj are defined as fol-
lows:

XUj =


1 (x1 − xj) · · · (x1 − xj)q

...
...

...
...

1 (xN − xj) · · · (xN − xj)q

 ,

WUj = diag
{

K

(
xi − xj

h

)
1
h

, i ∈ U

}
.

Breidt and Opsomer (2000) also showed that the
MSE of t̂y is consistently estimated by

V̂(t̂y) =
∑
j∈S

∑
i∈S

πji − πjπi

πji

Yj − m̂j

πj

Yi − m̂i

πi
. (4)

2. Model averaging

In practical survey estimation problems, especially
large-scale ones, usually multiple response variables
are of interest and many auxiliary variables are avail-
able. In order to get a good regression estimator
in terms of both efficiency and simplicity, a natu-
ral approach is to use model selection procedures.
However, despite the nice theoretical properties, au-
tomated model selection procedures often result in
rather unstable estimators in applications. A small
variation of the data may produce a very different
model. Therefore, if model selection were fully taken
into account, regression estimators based on model
selection might have unnecessarily large variance. In
addition, when there are multiple study variables, it
seems almost impossible to select one model that fits
all the study variables well. We will show this in the
simulation section of this chapter.

An alternative to model selection is model aver-
aging. Intuitively, if two models are very close with
respect to a selection criterion, proper weighting of
the models can be better than choosing only one of
them (an exaggerated 0 − 1 decision). In this way,
we can eliminate the uncertainty of model selection
procedures. Various work has been done in the area
of model mixing, such as Breiman (1996), LeBlanc
and Tibshirani (1996) and Yang (2001). However,
there are few applications in survey estimation.

In this article, we propose a model averaging es-
timator that can be properly applied to survey esti-
mation problems. We focus on the local polynomial
regression estimator t̂y defined in (1) because non-
parametric regression is flexible for a wide range of
models and will not suffer from misspecifying the
true model as much as parametric regression. The
estimator (1) depends on the value of bandwidth
h, so its MSE can be considered as a function of
h. Selecting proper candidates for model averaging
in this case is equivalent to selecting proper values
of bandwidth h. See Opsomer and Miller (2005),
for example, on optimal bandwidth selection. Note
that estimator (1) can also be written in the form of
a weighted sum of Yj ’s, i.e. t̂y =

∑
j∈S w∗

j Yj , so the
weights w∗

j also depends on the value of bandwidth
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h and each set of regression weights correspond to a
different regression model procedure.

Suppose we have a finite collection of regression
procedures to estimate the regression function m.
Let the proposed procedures be δk, k = 1, · · · ,K.
Our goal is to provide a method that can prop-
erly mix the K regression procedures. The result-
ing model averaging estimator should be flexible and
perform well for multiple study variables under a
wide range of regression models. In other words, this
model averaging method should be overall a good
choice for all study variables. In practical survey
problems, several sets of regression weights are often
available, with each set being obtained from a cer-
tain regression procedure. Suppose we have K sets
of regression weights, then for each study variable
Yj , there are K possible regression estimators for ty,
denoted by t̂yk, k = 1, · · · ,K. This model averag-
ing estimator should be appealing due to its flexibil-
ity. It should also significantly reduce the amount
of work needed for estimation because it does not
require a separate estimation procedure for each in-
dividual study variable. All that is needed is to
use this method to average the K sets of regression
weights and apply it to all study variables.

We consider regression procedure δk to be local
polynomial regression with bandwidth hk. The cor-
responding regression estimator t̂yk is

t̂yk =
∑
j∈S

Yj − m̂j,k

πj
+

∑
j∈U

m̂j,k, (5)

where m̂j,k is the regression predictor for model
function m, using procedure δk, and

m̂j,k = eT
1

(
XT

SjWSj,kXSj +
ν

Nq+1
I
)−1

·XT
SjWSj,kYS (6)

= wT
Sj,kYS .

Our proposed model averaging (MA) estimator is
of the simple linear form

t̂MA
y =

K∑
k=1

αk t̂yk, (7)

where t̂yk is defined in (5), αk ≥ 0 and
∑K

k=1 αk = 1.
Here αk is the “weight” that is assigned to procedure
δk. We are interested in finding the appropriate αk’s
for the model averaging estimator t̂MA

y . Note that

t̂MA
y =

K∑
k=1

αk t̂yk

=
K∑

k=1

αk

∑
j∈S

Yj − m̂j,k

πj
+

∑
j∈U

m̂j,k


=

∑
j∈S

K∑
k=1

αkYj − αkm̂j,k

πj
+

∑
j∈U

K∑
k=1

αkm̂j,k

=
∑
j∈S

Yj −
∑K

k=1 αkm̂j,k

πj
+

∑
j∈U

K∑
k=1

αkm̂j,k

=
∑
j∈S

Yj − m̂MA
j

πj
+

∑
j∈U

m̂MA
j ,

where

m̂MA
j =

K∑
k=1

αkm̂j,k. (8)

So choosing the proper αk’s for t̂yk is equivalent to
choosing proper αk’s for m̂j,k.

To proceed with model averaging, let us first con-
sider selecting one best model, i.e. the optimal band-
width hopt. As stated in section 1, Breidt and Op-
somer (2000) showed that the MSE of t̂y is consis-
tently estimated by V̂(t̂y), where V̂(t̂y) is defined in
equation (4). It seems tempting to consider that hopt

can be estimated (asymptotically) by the bandwidth
that minimizes V̂(t̂y). However, this is not true. One
can always choose arbitrarily small bandwidth h so
that m̂j is as close to Yj as possible. Therefore, as a
modification, Opsomer and Miller (2005) proposed
a design-based cross-validation (CV) criterion:

V̂CV (hk) =
∑
j∈S

∑
i∈S

πji − πjπi

πji

Yj − m̂
(−)
j,k

πj

·
Yi − m̂

(−)
i,k

πi
. (9)

where m̂
(−)
j,k is the “leave-one-out” estimator for mj

using procedure δk. To obtain this, we replace wSj,k

in equation (6) by a modified vector w′
Sj,k, whose

elements are

w′
Sji,k =


wSji,k

1−wSji,k
if j 6= i

0 if j = i,

where wSji,k denotes the jth element of the vector
wSj,k, and set m̂

(−)
j,k =

∑
j∈S w′

Sji,kYj .
For model averaging purposes, we will consider

the following methods to combine models:

1. Take the average of C estimators that have the
lowest C V̂CV (hk).
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2. Choose the estimator with the lowest V̂CV (hk),
then we also include estimators with V̂CV (hk)
that are within, say, a p% window above the
lowest one. Then we take average of these esti-
mators.

3. LeBlanc and Tibshirani (1996) suggested using

αk =
σ̂−n

k∑K
j=1 σ̂−n

j

for a normal model, where σ̂2
k is the resubsti-

tution estimate of prediction error for model k.
We consider a slightly different model averaging
coefficient, α∗k, where

α∗k =
σ̂−1

k∑K
j=1 σ̂−1

j

,

and σ̂2
k is defined as

σ̂2
k =

1
n

∑
j∈S

(Yj − m̂
(−)
j,k )2.

4. With constraint αk ≥ 0 and
∑K

k=1 αk = 1,
choose αk to minimize the following criteria:

σ̂2 =
∑
j∈S

1
πj

(Yj − m̂MA
j )2, (10)

σ̂2
CV =

∑
j∈S

1
πj

(Yj − m̂
MA(−)
j )2, (11)

V̂(tMA
y ) =

∑
j∈S

∑
i∈S

πji − πjπi

πji

Yj − m̂MA
j

πj

·Yi − m̂MA
i

πi
, (12)

V̂CV (tMA
y ) =

∑
j∈S

∑
i∈S

πji − πjπi

πji

Yj − m̂
MA(−)
j

πj

·Yi − m̂
MA(−)
i

πi
. (13)

The estimators m̂MA
j in the methods co nsidered

in 4 use the MA version defined in (8). Equation
(12) uses a similar idea of minimizing V̂(t̂y) in (4).
Equation (13) borrows the idea of the CV criterion
in (9), except that the minimum is now computed
over the αk instead of over the bandwidth directly.
Equation (10) and (11) are similar to (12) and (13),

respectively, except that they do not fully incorpo-
rate the sampling design. Among equation (10) to
(13), (13) will probably provide the best estimator
for population total t, but it is the most computa-
tional intensive one. So we also investigate (10) to
(12). Equation (10) requires the least amount of
computation, so if it works decently well, we may
choose it over other methods. However, as we have
discussed before, (10) can be minimized by choosing
arbitrarily small bandwidth values. So it will prob-
ably not produce a good estimator. Same reasoning
applies to (12). Equation (11) is an improved version
of (10). But neither (10) or (11) fully incorporate the
design.

In the following sections, we will illustrate the
properties of different model averaging estimators
through a large-scale simulation study.

3. Simulation setup

To evaluate the properties of Model Averaging (MA)
estimators, we generate a single finite population
and draw samples repeatedly from it. Specifically,
we generate N = 2000 values of model variable X
from the uniform distribution on [0, 1], and 2000 val-
ues of error ε from N(0, 1). This set of errors are
used for all populations, up to multiplication by σ.
We examine eight populations of Y :

Yjl = ml(xj) + εj , 1 ≤ i ≤ 2000, 1 ≤ l ≤ 8

where ml(xj) are defined on the third column of Ta-
ble 1. We vary the value of σ to achieve high and low
coefficient of determination, denoted by R2. Specifi-
cally, we let R2 = 0.75 and 0.25, where R2 is defined
as

R2 = 1− SSE

SST
= 1−

∑
j∈U ε2

j∑
j∈U (Yj − ȲU )2

.

We also consider two sampling designs. One
is simple random sampling without replacement
(SRS) and the other is random stratified sampling
(STSRS), that is, we draw an SRS sample within
each stratum. We choose two sample sizes, n = 500
and n = 100. It is easy to see that for SRS design,
each element has equal selection probability, which
is n/N . For STSRS design, we assign a different se-
lection probability to each stratum. Specifically, we
create two equally sized strata in each finite popu-
lation by the values of model variable x. Then from
the first stratum, we draw n/4 points and from the
second stratum, we draw 3n/4 points. So the ratio
of selection probabilities are 1:3 for these two strata.

For model averaging estimation purpose, we ex-
amine five regression procedures. Specifically, we

ASA Section on Survey Research Methods

3341



consider local polynomial regression with five differ-
ent bandwidth values. We choose bandwidth from
0.01 to 0.5, equally spaced on the natural logarithm
scale. These values are h1 = 0.01, h2 = 0.027,
h3 = 0.071, h4 = 0.188, and h5 = 0.5.

The finite population quantities of interest are
tyl =

∑
j∈U Yjl for each l. For each simulation,

B = 10000 samples are drawn from each population.
For each sample, we obtain five different estimators
for t, denoted by {t̂yk}5

k=1, where t̂yk is defined in
(5). Then we consider different methods to com-
pute model averaging estimator t̂MA

y described in
the previous section. The details are listed in Table
2. Note that the last five rows in Table 2 are simply
{t̂yk}5

k=1. We list them here mainly for two reasons.
One is to understand the behavior of each regression
procedure, and the other is to compare them with
other estimators to see if there are advantages to use
model averaging. Loosely speaking, we will call all
13 estimators listed in Table 2 model averaging esti-
mators. The last five rows can be regarded as model
averaging of one regression procedure.

In summary, there are eight mean functions, two
coefficients of determination (R2 = 0.75 and 0.25),
two sampling designs (SRS and STSRS), two sample
sizes (n = 500 and 100), and 13 estimators for each
population total. We report here the results for the
cases with size n = 500 and R2 = 0.75. Further
results are in Li (2006).

Relative Bias (RB) and Mean Squared Error
(MSE) are computed for each estimator. Let
{t̂MA

yr }13
r=1 denote the thirteen estimators listed in

Table 2, then

RBr =
E(t̂MA

yr )− ty

ty
,

and MSEr = E(t̂MA
yr − ty)2.

4. Simulation results

Relative bias tables (not shown here) suggest that
all 13 estimators have very small biases. We choose
to show the relationship among the MESs of 13 es-
timators.

Table 3 and Table 4 report the MSEs of 12 estima-
tors relative to the MSE of method CV minus one
for eight population totals where SRS and STSRS
samples are drawn, respectively, to calculate t̂MA

yr .
Specifically, the values in Table 3 and Table 4 are
calculated as

MSE(12 estimators)
MSE(CV)

− 1

and reported as percentages. Note that this quantity
shows how much higher (positive values) or lower

(negative values) one method is relative to method
CV in terms of MSE. For example, if a value is 50,
it means that the correspond method’s MSE is 50%
higher than that of method CV.

If we examine these tables more closely, we can
observe the following facts:

1. In all cases, method MIN{σ̂2
CV } and

MIN{V̂CV } have smaller MSEs than method
MIN{σ̂2} and MIN{V̂}. So it is better to use
leave-one-out CV estimators for mj in terms of
the variability of model averaging estimation.

2. MIN{σ̂2
CV } is slightly better than, or at least as

good as MIN{V̂CV } in terms of MSE.

3. Method CV, CV3, CVp20, MIN{σ̂2
CV } and

MIN{V̂CV } return similar MSEs. However,
method MIN{σ̂2

CV } and MIN{V̂CV } give very
similar MSEs, and are either the smallest
among CV, CV3, CVp20, MIN{σ̂2

CV } and
MIN{V̂CV } or close to the smallest one. We
like the fact that method MIN{σ̂2

CV } and
MIN{V̂CV } are consistently good. Other meth-
ods can be inconsistent. They can either
be the best for a certain population, or the
worst for another. For instance, in Table 3,
among method CV, CV3, CVp20, MIN{σ̂2

CV }
and MIN{V̂CV }, CV is the best for popu-
lation “Normal CDF”, “Exponential”, “Slow
sine” and “Fast sine”, but the worst for pop-
ulation “Bump”.

4. The method Relative Fit behaves well except for
population “Fast sine”. For example, in Table
3 the MSE of method Relative Fit is 75.37%
higher than the MSE of method CV.

5. From the last five rows in Table 3 and Table 4,
we can see that the MSEs of the five regression
procedures vary greatly for each population.
Specifically, a regression procedure can be very
good for a certain population, but very bad for
another. For example, in Table 3, FIXt(0.188)
has the smallest MSE for population “Normal
CDF” (0.38% lower than CV), but for popula-
tion “Fast sine,” it is almost the worst (222.08%
higher than CV), where CV has the smallest
MSE among all 13 estimators.

5. Simulation conclusions

Based on the previous discussion and the results that
are in Li (2006), we draw the following conclusions.
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1. As far as biases are concerned, all 13 estimators
perform very well. It is hard to choose from
them if we only consider their biases.

2. In terms of MSEs, if sample size is large (n =
500), model selection through CV is impor-
tant because it performs as well as the best
available model averaging methods. If sample
size is smaller (n = 100), we consider method
MIN{σ̂2

CV } and MIN{V̂CV } to be the overall
good choices, as they behave well in all cases.
Method CV, CV3 and CVp20 are good, but
they are not as consistent as method MIN{σ̂2

CV }
and MIN{V̂CV } for different cases and different
study variables.

3. We can draw the same conclusions for both
equal selection probability design, SRS, and un-
equal selection probability design, STSRS. The
only difference we can see is that relative biases
and MSEs for SRS are smaller than the corre-
sponding ones for STSRS.

4. If model averaging is carried out in a proper
way, it can eliminate uncertainty of model se-
lection procedures and produce more reliable
estimators. If one is to draw a sample to es-
timate the population total but do not have
prior knowledge about the population model,
we recommend the method MIN{σ̂2

CV } and
MIN{V̂CV } to be the safer bets than other
methods because they give good estimators un-
der all cases.
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Name Abbreviation Expression

(1) Linear LINE 2x

(2) Quadratic QUAD 1 + 2(x− 0.5)2

(3) Bump BUMP 2x + exp(−200(x− 0.5)2)

(4) Jump JUMP

 2x if x ≤ 0.65

0.65 if x > 0.65

(5) Normal CDF NCDF Φ−1(1.5− 2x)

(6) Exponential EXPO exp(−8x)

(7) Slow sine SLOW 2 + sin(2πx)

(8) Fast sine FAST 2 + sin(8πx)

Table 1: List of population functions.

Method Description

CV Choose the estimator that has the lowest V̂CV (hk).

CV3 Take the average of 3 estimators that have the lowest 3 V̂CV (hk).

CVp20 Choose the estimator that has the lowest V̂CV (hk). Also include

estimators having V̂CV (hk) that are ≤ 20% bigger than the lowest one.

Relative Fit Use αk’s as described in method 3. i.e. αk = σ̂−1
k∑K

j=1
σ̂−1

j

MIN{σ̂2} With constraint αk ≥ 0 and
∑

k αk = 1, choose αk to minimize (10).

MIN{σ̂2
CV } With constraint αk ≥ 0 and

∑
k αk = 1, choose αk to minimize (11).

MIN{V̂} With constraint αk ≥ 0 and
∑

k αk = 1, choose αk to minimize (12).

MIN{V̂CV } With constraint αk ≥ 0 and
∑

k αk = 1, choose αk to minimize (13).

FIXt(0.010) Choose the estimator that uses bandwidth h1 = 0.010.

FIXt(0.027) Choose the estimator that uses bandwidth h2 = 0.027.

FIXt(0.071) Choose the estimator that uses bandwidth h3 = 0.071.

FIXt(0.188) Choose the estimator that uses bandwidth h4 = 0.188.

FIXt(0.500) Choose the estimator that uses bandwidth h5 = 0.500.

Table 2: List of methods and corresponding descriptions.
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Averaging Population Functions

Method LINE QUAD BUMP JUMP NCDF EXPO SLOW FAST

CV3 -0.17 -0.28 0.70 -0.84 0.20 0.16 0.43 1.97

CVp20 0.76 0.64 1.00 -0.18 1.15 0.94 1.13 2.18

Relative Fit 0.90 2.24 4.11 4.70 1.34 2.39 4.90 75.37

MIN{σ̂2} 13.74 12.41 10.64 6.68 16.34 12.28 12.74 9.17

MIN{σ̂2
CV } -0.09 -0.33 -0.42 -0.55 0.23 0.08 0.18 0.12

MIN{V̂} 13.74 12.41 10.64 6.68 16.34 12.28 12.74 9.17

MIN{V̂CV } -0.10 -0.31 -0.42 -0.55 0.30 0.13 0.18 0.12

FIXt(0.010) 13.74 12.41 10.64 6.68 16.34 12.28 12.74 9.17

FIXt(0.027) 3.75 2.55 0.94 -0.27 3.73 2.44 2.84 0.01

FIXt(0.071) 0.75 -0.34 -0.45 3.00 0.60 -0.17 -0.08 16.26

FIXt(0.188) -0.04 -0.17 16.95 14.40 -0.38 2.50 3.60 222.08

FIXt(0.500) -0.44 31.35 37.07 55.10 2.10 30.59 58.52 230.60

Table 3: Mean Squared Error (MSE) of 12 model averaging methods relative to method CV minus one (in
percent) for eight populations (R2 = 0.75), Simple Random Sampling (SRS) with sample size n = 500.

Averaging Population Functions

Method LINE QUAD BUMP JUMP NCDF EXPO SLOW FAST

CV3 -0.25 0.01 1.31 -1.78 0.29 -0.46 -0.56 1.66

CVp20 0.63 0.48 1.69 -1.08 1.20 0.09 -0.12 2.25

Relative Fit 2.23 2.68 4.16 -0.36 1.43 2.87 3.51 72.04

MIN{σ̂2} 23.38 21.56 18.61 15.36 12.45 19.85 20.70 13.78

MIN{σ̂2
CV } -0.02 -0.17 -0.34 0.17 0.15 -0.33 -0.50 0.01

MIN{V̂} 23.38 21.56 18.61 15.36 12.45 19.85 20.70 13.78

MIN{V̂CV } 0.09 -0.21 -0.11 -0.97 0.15 -0.10 -0.45 0.13

FIXt(0.010) 23.38 21.56 18.61 15.36 12.45 19.85 20.70 13.78

FIXt(0.027) 7.90 6.34 3.75 2.10 3.33 4.91 5.52 -0.15

FIXt(0.071) 1.31 -0.15 -0.94 -1.39 0.46 -0.99 -0.84 14.87

FIXt(0.188) -0.31 -0.75 14.16 0.88 -0.20 2.20 -0.49 223.28

FIXt(0.500) -0.47 30.51 36.01 20.05 4.78 48.30 47.02 223.37

Table 4: Mean Squared Error (MSE) of 12 model averaging methods relative to method CV minus one (in
percent) for eight populations (R2 = 0.75), Random Stratified Sampling (STSRS) with sample size n = 500.
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