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Abstract

Despite the simplicity of the Bernoulli process, developing
good confidence-interval procedures for its parameter—
the probability of success p—is deceptively difficult. The
binary data yield a discrete number of successes from a
discrete number of trials, n. This discreteness results in
actual coverage probabilities that oscillate with the n for
fixed values of p (and with p for fixed n). We suggest ideas
designed to reduce the effect of discreteness on coverage
probability while having minimal effect on properties of
the interval width. The ideas are of four types: ways to
improve the standard-error estimator, ways to improve
choice of the Student-t distribution’s degrees of freedom,
ways to randomly perturb the interval, and ways to com-
bine intervals. After reviewing two confidence-interval
procedures and a family of point estimators for p, we dis-
cuss four specific new procedures. We illustrate improved
performance with Monte Carlo experiments. An example
procedure that performs well is to randomly mix intervals
from E. B. Wilson’s (1927) procedure with intervals from
an adjusted standard interval.

Keywords: Confidence Interval, Bernoulli Parameter,
Monte-Carlo Simulation.

1 Introduction

Consider a Bernoulli process X1, X2, . . . , Xn with param-
eter p. The probability mass function of each Xi has the
form

fX(x) =

⎧⎨⎩
p, x = 1,
1 − p, x = 0,
0, otherwise.

Also Xi and Xj are independent for all i �= j. The confi-
dence interval (CI) procedure for p with confidence level
1 − α is a procedure to determine L∗ and U∗ such that
the following probability statement is satisfied:

P(L∗ ≤ p ≤ U∗) = 1 − α, (1)

where 0 < α < 1. Both L∗ and U∗ are functions
of X1, X2, . . . , Xn; hence, they are random variables.
Once we select a sample of size n (say X1 = x1, X2 =
x2, . . . , Xn = xn), and compute the values of L∗ and U∗

using the sample values, we obtain a confidence interval
(l∗, u∗) for p. Both l∗ and u∗ are real values.

In practice, it is difficult or impossible to find a CI
procedure to satisfy Equation(1) for any given α, n and
p. Our objective is to construct a CI procedure to form
(L, U) for p at a nominal confidence level 1−α such that

(i) its actual coverage probability (CP), P(L ≤ p ≤ U), is
close to the nominal level 1−α, (ii) its expected interval
width, E(U−L), is narrow enough to be informative, and
(iii) its standard deviation of the interval width, Std(U −
L), is small enough to be stable. We aim to meet the three
criteria simultaneously because it is easy to construct a
CI procedure satisfying just one criterion.

We define some notation here. First we make a dis-
tinction between “CI procedure” and “CI”. We use CI
procedure to refer to a procedure to form (L, U) which
is a random interval, and use CI to refer to a real-value
interval (l, u). Let P̂ and p̂ be the general point estimator
(random variable) and the corresponding point estimate
(real number) of p, respectively. To refer to a specific CI
procedure, we sometimes add a subscript to CI, P̂ and
p̂. For example, to refer to a standard CI procedure, we
then use notation CIS, P̂S and p̂S. The notation CP(n, p)
is refer to the coverage probability measured at values n
and p.

The organization of this paper is as follows. In Section
2, we review two CI procedures, and expand upon point
estimators for p. In Section 3, we discuss four types of
ideas for improving CI procedure performance. In Sec-
tion 4, we propose four new procedures. Section 5 is the
summary, conclusions, and future research.

2 Literature Review

We first review the standard CI procedure and show
empirically that a commonly used rule of thumb
“n min{p, 1 − p} > 5” for the standard CI procedure
does not guarantee a good approximation of CP when
n increases or p is close to 0.5. Then, we review Wil-
son’s CI procedure. Finally, we review and expand upon
estimators of p in that we derive the statistical proper-
ties including bias, variance, and mean-squared-error for
Bayesian posterior-mean estimators of p. For a review
of CI procedures of Bernoulli parameter p, see Clopper
and Pearson (1934), Schader and Schmid (1989), Agresti
and Coulli (1998), Henderson and Meyer (2001), Chew
(1971), and Brow, et al. (2001, 2002).

2.1 The Standard Confidence Interval

The confidence interval that is often found in introduc-
tory textbooks of probability and statistics (for example,
Montgomery and Runger 2002, p.266) is called the stan-
dard confidence interval,

CIS = (p̂S − zα/2σ̂S, p̂S + zα/2σ̂S), (2)
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where

• the estimate of p is

p̂S = k/n, (3)

where k =
∑n

i=1 xi is the number of successes;

• the estimated standard error of the point estimator
of p is

σ̂S =

√
p̂S(1 − p̂S)

n
; and (4)

• zα/2 = Φ−1(1 − α/2) = P(Z ≤ 1 − α/2), where
Z ∼ Standard Normal distribution with mean 0 and
variance 1.

Many introductory text books (for example, Mont-
gomery and Runger 2002, p.119) suggest a rule of thumb
“n min{p, 1 − p} > 5” for CIS to ensure that the actual
coverage probability is a good approximation of the nom-
inal coverage probability. We use three examples to show
that when n min{p, 1 − p} > 5,
• there is no guarantee that the true coverage proba-

bilities are close to the nominal confidence level,

• the larger sample sizes do not guarantee a larger cov-
erage probability, and

• the coverage probabilities are not close to the nomi-
nal confidence level when p is close to 0.5.

Example 1. Table 1 lists the smallest coverage proba-
bility (SCP) when the sample size n is greater than n0,
where �n0 min{p, 1− p}� = 5 (�a� is the smallest integer
that is greater than a or equal to a). The last column
is SCP(n0, p) = min{CP(n, p), n > n0}. For instance,
SCP(n0 = 10, p = 0.5)= min {CP(n, p = 0.5), n > 10} =
0.86, listed in the right-most column and last row. The
values in Table1 show that all SCPs are between 0.86 and
0.90, which are below the nominal confidence level 0.95.

Table 1: The smallest CP for the sample size which is
greater than n0, where “�n0min{p, 1 − p}� = 5”. α =
0.05.

p 0.01 0.1 0.2 0.3 0.4 0.5
n0 500 50 25 17 13 10

SCP(n0, p) 0.87 0.88 0.88 0.89 0.90 0.86

Example 2. Figure1 plots the CPs for p = 0.1. The
sample sizes considered are 50 ≤ n ≤ 150 such that
n min{p, 1 − p} ≥ 5. The numbers shown in Figure
1 are the sample sizes which yield a local maximum
and minimum CPs. The oscillation phenomenon is
clear and this shows that the CPs do not steadily
get closer to the nominal CP as n increases. For

instance, the CP(n = 147, p = 0.1), which is the
bottom and right-most local minimum, is smaller than
CP(n = 63, p = 0.1), which is the top and left-most local
optimum.

CP

n
64

79
93

107
121 134 147

63 78 92 106 120 133 1460.96

0.94

0.91

0.89

0.86
50 70 90 110 130 150

Figure 1: The coverage probabilities of CIS, p = 0.1

Example 3. Figure2 plots the CPs for n = 100. The
probability of success considered are 0.01 ≤ p ≤ 0.5 such
that n min{p, 1− p} ≥ 5. The numerical numbers shown
in Figure2 are values of p which yield a local maximum
and minimum CPs. Again, there is an oscillation and
this suggests that CP does not steadily get closer to the
nominal CP as p increases to 0.5. For instance, the CPs
at p = 0.09, 0.12, 0.17, 0.23, 0.30, 0.40 (which are the local
maximum) are larger than CP(n = 100, p = 0.5), which
is the bottom and right-most local minimum.

CP

p

0.06 0.09 0.12 0.17 0.23 0.30

0.08

0.11 0.16 0.21 0.29 0.39 0.50

0.40
0.96

0.94

0.91

0.89

0.86
0.01 0.1 0.2 0.3 0.4 0.5

Figure 2: The coverage probabilities of CIS, n = 100

The probabilities reported in Table 1 and Figures 1 and
2 and all other tables and figures throughout this paper
are simulation results. In all cases their true value are
within + or - two units of the last digit reported.

More examples regarding the performance of the stan-
dard CI procedure can be found in Henderson and Meyer
(2001) and Brown, et al. (2001, 2002).

2.2 The Wilson Confidence Interval

E. B. Wilson’s confidence-interval (Wilson, 1927), de-
noted by CIW, has the form

CIW = (p̂W − z2
α/2σ̂W, p̂W + z2

α/2σ̂W), (5)

where

• p̂W =
k + (z2

α/2/2)

n + z2
α/2

and

•
σ̂W =

√
np̂S(1 − p̂S) + (z2

α/2/4)

(n + z2
α2

)2
, (6)
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where p̂S = k/n defined in Equation (3).

The lower and upper bounds in Wilson’s interval are two
roots of p for the following equation

p̂S − p√
p(1−p)

n

= ±zα/2. (7)

Brown, et al. (2001 and 2002) surveys many existing
CI procedures and conclude that Wilson’s CI procedure
works better for small n (say n ≤ 40) than many other CI
procedures and performs as good as other CI procedures
for larger n in terms of the coverage probability.

2.3 Point Estimators of p

In this section, we review, expand upon, and evaluate a
number of point estimators for estimating the Bernoulli
parameter. A generalization of the estimator of the
Bernoulli parameter p used in many well-known CI pro-
cedures has the form

P̂ =
K + r

n + 2r
, (8)

where r ≥ 0. Five examples are well known.

1. The standard CI procedure uses r = 0. The cor-
responding point estimator of p is defined by P̂S =
K/n, already shown in Section 2.1. The K/n is the
maximum likelihood estimator of p.

2. Jeffrey’s CI procedure uses r = 0.5. See Brown et
al.(2001).
The corresponding point estimator of p is defined by

P̂J =
K + 0.5
n + 1

.

3. Laplace estimator uses r = 1. See Chew (1971).
The corresponding point estimator of p is defined by

P̂L =
K + 1
n + 2

. (9)

Laplace estimate is a Bayesian estimate using Uni-
form(0, 1) as the prior distribution.

4. Wilson’s CI procedure (1927) uses r = z2
α/2 /2.

The corresponding point estimator of p is defined by

P̂W =
K + z2

α/2 /2

n + z2
α/2

.

5. Henderson and Meyers’s CI procedure (2001, p. 339)
uses r = 2.
The corresponding point estimator of p is defined by

P̂H =
K + 2
n + 4

.

The parameter r in Equation (8) has a special mean-

ing in Bayesian estimation. If r > 0, P̂ =
K + r

n + 2r
is

shown (for example, in Chew 1971) to be a posterior-
mean Bayesian estimator if the prior probability distri-
bution function for the parameter p has the form

Γ(2r)pr−1(1 − p)r−1

Γ(r)Γ(r)
. (10)

Steinhaus (1957) shows that when P̂S = K/n which cor-
responding to r = 0 is not a posterior-mean Bayesian
estimator (i.e., there does not exist a prior distribution
of p such that the posterior mean reduces to K/n).

We list some statistical properties of P̂ below.

Result 1. The statistical properties of P̂ in terms of the
bias, variance, and mse are

1. bias(P̂ ) =
r(1 − 2p)
n + 2r

,

2. var(P̂ ) =
np(1 − p)
(n + 2r)2

,

3. mse(P̂ ) =
r2 + (n − 4r2)p(1 − p)

(n + 2r)2
, and

4. mse(P̂ ) ≤ mse(P̂S) if and only if

p ∈ [1/2 − w/2, 1/2 + w/2] , (11)

where w =
√

n + r

n + r + nr
.

Consider one example for r = 1 and n = 100, Equation
(11) shows that mse(P̂A) ≤ mse(P̂S) if and only if p ∈
[0.145, 0.854].

3 Four Types of Ideas for Improving
Performance

3.1 Determining Student-t Degrees of Freedom

The coverage probabilities of CIS shown in Table 1, Fig-
ures 1, and 2 are all below the nominal probability 0.95.
One way to improve the coverage probability for CIS is
to replace the zα/2 in Equation (2) by tα/2(υ) because
the value of tα/2(υ) is larger than zα/2 for any value of
υ. The question now is the selection of the value for υ.
A natural thought of a d.f. is to use n − 1. Define

υS = n − 1. (12)

The value of υS defined in Equation (12) does not depend
on the value of p. Because the amplitudes of oscillations
(see examples shown in Figures 1 and 2) depend on both
n and p, a reasonable υS that works for many n and p
should also depend on both n and p. In this section, we
propose a new df, which is called “the adjusted degrees
of freedom”, as a function of both n and p.

Let X1, X2, . . . , Xn ∼ iid Bernoulli (p). The adjusted
degrees of freedom is defined by

υA =
2n

1
p(1−p) − 3 − n−3

n−1

, (13)
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and the corresponding t-value is defined by

t(υA) =
{

t(	υA
), υA ≤ 1
β t(�υA�) + (1 − β) t(	υA
), υA > 1 ,

(14)
where β = 	υA
 − υA , 	υA
 is the small-
est integer greater than or equal to υA, and �υA�
is the largest integer less than or equal to υA.

The reason of
using υA is given in Result 2 and the following expla-
nation.

Result 2. Assuming that X1, X2, . . . , Xn ∼ iid Bernoulli
(p), and Y1, Y2, . . . , Yn1 ∼ iid Normal (μ, σ2). Let σ̂2

X̄
=

S2
X/n and σ̂2

Ȳ
= S2

Y /n1 be the unbiased estimators of the
variance of X̄ and Ȳ , respectively, where S2

X and S2
Y are

sample variance of X and Y , respectively. If the sample
sizes n and n1 satisfies the following equation

n1 = 1 +
2n

1
p(1 − p)

− 3 − n − 3
n − 1

, (15)

then the “coefficients of variation” of σ̂2
X̄

and σ̂2
Ȳ

are
equal. That is,

std(σ̂2
X̄

)
E(σ̂2

X̄
)

=
std(σ̂2

Ȳ
)

E(σ̂2
Ȳ

)
. (16)

Result 2 shows that the sample size n requested for
a Bernoulli distribution is equivalent to the sample size
n1 requested for a normal distribution to ensure that the
same coefficients of variation of the variance of the sample
mean for both distributions. This leads us to use n1 − 1
which is υA defined in Equation (13) as the corresponding
degrees of freedom for a Bernoulli distribution.

Table 2: υS and υA. α = 0.05.

n 2 5 30 50 100 300

υS = n − 1 1 4 29 49 99 299
υA(p = 0.01) 0.04 0.1 0.6 1.0 2.1 6.2
υA(p = 0.1) 0.4 1.3 8.4 14.0 28.0 84.3

t(υS) 12.7 2.8 2.1 2.0 1.98 1.96
t(υA)(p = 0.01) 12.7 12.7 12.7 12.7 4.2 2.4
t(υA)(p = 0.1) 12.7 10.2 2.3 2.2 2.1 2.0

The comparison of υS and υA are listed in Table 2.
The value of υA increases as p increases. When n = 2,
the t(υS) and t(υA) are identical, which is 12.7. For all
cases of n > 2 and p, υS is larger than υA. When n = 5,
the t(υS) = 2.8, while t(υA) is 12.7 and 10.2 for p = 0.01
and p = 0.1, respectively. The difference of t(υS) and
t(υA) becomes smaller when the sample sizes get closer
to 300. For instance, when n = 100, t(υS) = 1.98 and
t(υA)(p = 0.01) = 4.2; and when n = 300, t(υS) = 1.96
and t(υA)(p = 0.01) = 2.4.

3.2 Estimating the Point Estimator’s Standard
Error

A desirable property of an estimator is unbiasedness. In
Result 3 we propose an unbiased estimator V̂(P̂ ) for

var(P̂ ), where P̂ =
K + r

n + 2r
defined in Equation (8).

The proof of Result 3 is straightforward and therefore
is skipped here.

Result 3. Assume that X1, X2, . . . , Xn ∼ iid Bernoulli
(p) with the number of successes K =

∑n
i=1 Xi. Let P̂ =

K + r

n + 2r
. Then,

V̂(P̂ ) =
P̂ (1 − P̂ )

(n − 1) +
r(n + r)

nP̂ (1 − P̂ )

(17)

is an unbiased estimator of V(P̂ ) (i.e., E(V̂(P̂ )) =
V(P̂ ).)

Based on Result 3, the corresponding three unbiased
estimates of V(P̂ ) for r = 0, r = 0.5, and r = 1 are

• p̂S(1 − p̂S)
n − 1

,

• p̂W(1 − p̂W)

(n − 1) +
0.5z2

α/2(n + 0.5zα/2)

np̂W(1 − p̂W)

, and

•
p̂(1 − p̂L)

(n − 1) +
n + 1

np̂L(1 − p̂L)

. (18)

The estimate of P̂S defined in Equation (4) for the stan-
dard CI procedure having a denominator n instead of
n − 1 is not an unbiased estimate of V(P̂S). Also, the
estimate of P̂W defined in Equation (6) for the Wilson’s
CI procedure is not an unbiased estimate of V(P̂W).

3.3 Randomly Perturbing Intervals

As shown earlier, the actual coverage probability for the
standard CI procedure contains oscillations in the sample
size n for fixed Bernoulli parameter p (and in p for fixed
n.) In fact, all existing CI procedures have an oscillation
phenomenon. The amplitude of the oscillation for CP can
be reduced by replacing some constant parameters in a
CI procedure by random variables. For example, let CIR
be a randomly perturbed interval of CIS by replacing the
sample size n in σ̂S, defined in Equation (4) by a random
variable N . That is,

CIR = (p̂S − zα/2σ̂S(N), p̂S + zα/2σ̂S(N)), (19)

where σ̂S(N) =
√

p̂s(1 − p̂s)/N , and the random vari-
able N follows some probability distribution, say, N ∼
discrete uniform(n− d, n + d), where d is some constant.
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3.4 Combining Multiple Intervals

If the oscillation patterns of the coverage probabilities of
two confidence intervals are out of phase, then the ampli-
tude of the oscillation can be reduced by using mixtures
or linear combinations of these two intervals. In this sec-
tion, we define mixtures or linear combinations of finite
multiple intervals. The idea of combining intervals can
be extended to an infinite numbers of intervals.

3.4.1 Mixtures of intervals

Let CIM be a finite mixture of g confidence intervals,

CIM =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
CI1, with probability c1

CI2, with probability c2

...
CIg, with probability cg,

(20)

where c1, c2, . . . , cg are the mixture probabilities and∑g
i=1 ci = 1.
Some mixture CIs are also special cases of randomly

perturbed intervals discussed in Section 3.3. Consider an
example of CIM in Equation (20) by choosing

CIi = (p̂S − zα/2σ̂S(ni), p̂S + zα/2σ̂S(ni)),

where σ̂S(ni) =
√

p̂s(1 − p̂s)
ni

, i = 1, 2, . . . , g. The corre-

sponding mixture interval can be written as the form in
Equation (19), where the random variable N follows a
discrete uniform (n1, n2, . . . , ng).

3.4.2 Linear combinations of multiple intervals

Let CIL = (lL, uL) be a linear combination of g confidence
intervals CIi = (li, ui), i = 1, 2, . . . , g,

(lL, uL) = (
g∑

i=1

cili,

g∑
i=1

ciui), (21)

where c1, c2, . . . , cg are the combination coefficients.

4 Four Example Procedures

4.1 Procedure Definitions

We propose four example CI procedures in this section.
They are called Procedures A, R, M, and L; their corre-
sponding confidence intervals are denoted by CIA, CIR,
CIM, and CIL. Each example procedure utilizes some or
all ideas proposed in Section 3. After we define these
procedures in Section 4.1.1 to 4.1.4, we illustrate their
performance with Monte Carlo experiments in terms of
the three criteria discussed in Section 4.2.

4.1.1 Procedure A: adjusted standard

The adjusted standard CI procedure is defined to be

CIA = (p̂L − t(υA)σ̂A, p̂L + t(υA)σ̂A),

where

• p̂L = (k + 1)/(n + 2), which is Laplace estimator
defined in Equation (9),

• υA =
2n

1
p̂S(1 − p̂S)

− 3 − n − 3
n − 1

, defined in

Equation(13), and

• σ̂A =

√√√√√ p̂L(1 − p̂L)

(n − 1) +
n + 1

np̂L(1 − p̂L)

, defined in Equation

(18).

4.1.2 Procedure R: randomly perturbed adjusted stan-
dard

The randomly perturbed adjusted standard CI procedure
is defined to be

CIR = (p̂A − t(υA)σ̂R, p̂A + t(υA)σ̂R)

where

• σ̂R =

√
p̂A(1 − p̂A)

(N − 1) + N+1
Np̂A(1−p̂A)

, where

N ∼ discrete uniform [n − 0.2n, n + 0.2n].

4.1.3 Procedure M: a mixture of W and A

Figure 3 shows that the oscillation patters of CIW and
CIA is out of phase. Define the mixture interval CIM of
CIA and CIW to be

CIM =
{

CIA, with probability 0.5
CIW, with probability 0.5 ,

where CIA and CIW are defined in Sections 2 and 5, re-
spectively.

CP

p

CIW
CIA

0.97

0.96

0.95

0.94

0.93
0.01 0.1 0.2 0.3 0.4 0.5

Figure 3: Oscillation patterns, n = 300

4.1.4 Procedure L: linear combination of W and A

We linearly combine CIW = (lW, uW) and CIA = (lA, uA)
to be CIL = (lL, uL), where

(lL, uL) = (0.5lA + 0.5lW, 0.5uA + 0.5uW). (22)
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4.2 Monte Carlo Results

We adopt three criteria for comparison of different CI pro-
cedures: (i) coverage probability (CP), (ii) the standard-
ized interval width, which is the expected interval width
divided by

√
p(1 − p)/n, and (iii) the estimated standard

deviation of the interval width, which is the estimated de-
viation of the interval width divided by

√
p(1 − p)/n.

4.2.1 Coverage probabilities

In this section, we illustrate the improved performance of
the four example procedures proposed in Section 4 with
simulation experiments. In all illustrations, the nominal
coverage probability is 0.95.

We compare the six Procedures S, W, A, R, M, and L
in terms of the smallest sample size n for which the cover-
age probability stays above 0.92. Let nS, nW, nA, nR, nM,
and nL denote the required samples sizes for Procedures
S, W, A, R, M, and L, respectively, to guarantee 92%
coverage probability. Table 3 shows that the values of nS

are the largest among all required sample sizes for the
six procedures studied here. When p = 0.01, it takes
1503 samples for Procedure S to ensure that the coverage
probability is at least 0.92. The value of nW, shown in
the third row, is 103 when p = 0.01; and is smaller or
equal to 16 when 0.1 ≤ p ≤ 0.5. The required samples
sizes for the proposed Procedures A, R, M, and L are less
than 41 (occured at p = 0.5) to guarantee 92% coverage
probability for all p. The values of nA, nL, nM, and nR

are the same when p = 0.01, 0.1, and 0.2. Procedure R
is the obvious choice of interval for all cases except when
p = 0.5.

Table 3: The smallest n for which the coverage probabil-
ity stays above 0.92 (α = 0.05)

p 0.01 0.10 0.20 0.30 0.40 0.45 0.50

nS 1503 136 80 45 30 35 41
nW 103 6 2 16 7 10 5
nA 2 2 2 16 11 24 41
nR 2 2 2 2 2 2 16
nM 2 2 2 16 2 10 2
nL 2 2 2 16 2 10 14

Figure 4 plots the CP for the six procedures when n =
300 and 0.01 ≤ p ≤ 0.5. Figure 5 plots the CP for the six
Procedures when p = 0.2 and 2 ≤ n ≤ 400. We have the
following observations from both figures:

• Most of the coverage probabilities for Procedure S
are underestimated (i.e., smaller than 0.95).

• The coverage probabilities for all six procedures ex-
cept Procedure S oscillate around the nominal prob-
ability 0.95.

• The proposed Procedures R, M, and L have smaller
amplitudes of oscillation than those for the existing
Procedures S and W.

• Among the six CI procedures, Procedure R has the
smallest amplitudes of oscillation.

4.2.2 The expected half width

We use the estimated standardized expected half width,
Ê(width)/

√
p(1 − p)/n, instead of Ê(width) as an crite-

rion because the expected half width of CI is proportional
to

√
p(1 − p)/n. Figure 6 shows Ê(width)/

√
p(1 − p)/n

for n = 300 and 0.01 ≤ p ≤ 0.5 and Figure 7 shows
Ê(width)/

√
p(1 − p)/n for p = 0.2 and 2 ≤ n ≤ 400.

Both Figures 6 and 7 show that CIS has shorter expected
half width when p ≤ 0.05 or n ≤ 50. The differences of
the estimated standardized expected half width for the
rest of five procedures are negligible.

Ê(width)/
√

p(1 − p)/n

p

CIM

CIW
CIS
CIA

CIL

CIR

2.4

2.1

1.8

1.5

1.2

0.9

CIS

0.01 0.1 0.2 0.3 0.4 0.5

Figure 6: The estimated standardized interval width,n =
300

Ê(width)/
√

p(1 − p)/n

n

CIM

CIW
CIS
CIA

CIL

CIR

2.4

2.1

1.8

1.5

1.2

0.9

CIS

4 50 100 150 200 250 300 350 400

Figure 7: The estimated standardized interval width, p =
0.2

4.2.3 The standard deviation of the half width

The standardized standard deviation of the half width is
denoted by

ŝtd(width)/
√

p(1 − p)/n

, shown in Figure 8 (n = 300 and 0.01 ≤ p ≤ 0.5) and
9 (p = 0.2 and 2 ≤ n ≤ 400). In Figure 8, we see that
the CIS has a larger standard deviation of the half width
than other CIs when p ≤ 0.05, while the CIR has a larger
standard deviation of the half width than other CIs when
p ≥ 0.05. In Figure 9, we see that the CIS has a larger
standard deviation of the half width than other CIs when
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Figure 4: The coverage probabilities, n = 300
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Figure 5: The coverage probabilities, p = 0.2
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n ≤ 50, while the CIR has a larger standard deviation
of the half width than other CIs when n ≥ 50. The
differences of the estimated standardized deviation of the
half width for CIA, CIW, CIM, and CIL are negligible.
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Figure 8: The standardized standard deviation of the
interval width, n = 300
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Figure 9: The standardized standard deviation of the
interval width, p = 0.2

5 Summary, Conclusions, and Future Research

We address the classic problem of constructing confidence
intervals of the Bernoulli parameter. The goal is to have
the actual coverage probability close to the nominal level
1 − α, a narrow expected interval width, and a small
standard deviation of the interval width.

The standard confidence interval, introduced in most
probability and statistics introductory text books tends
to have much smaller coverage probabilities than the
nominal coverage probability. Many CI procedures such
as Wilson’s interval overcome this under-coverage short-
coming of the standard interval procedure. Such CI pro-
cedures, however, do not overcome the oscillation phe-
nomenon on coverage probability, which is due to the
effect of the discreteness of the Bernoulli data. By reduc-
ing the amplitudes of certain oscillation, the quality of
the coverage probability is improved.

We suggest four ideas: (i) improve the standard-error
estimator, (ii) improve the choice of the Student-t, (iii)
randomly perturb the interval, and (iv) combine inter-
vals. We propose four example Procedures, A, R, M,
and L, to implement the respective ideas. In compar-
ison with two well-known CI procedures, the standard
S and Wilson’s CI procedures, the proposed Procedures
M and L have smaller amplitudes of oscillation of cover-
age probability than Procedures S and W, while having

negligible effects on the standard deviation of the interval
width. Procedure R seems to perform the best among the
four proposed procedures in the sense that it achieves the
nominal coverage probability; and this has the smallest
amplitudes of oscillation among the six CI procedures (at
the price of a small increase in the variance of the interval
width).

Whether Procedures R, L, and M achieve similar re-
sults for other α, p, and n remains to be investigated. All
that can be claimed with certainty is that Procedures R,
L, and M have demonstrably large potential to perform
better than the standard confidence interval and Wilson’s
interval in terms of the three criteria. This study lays the
groundwork for more-general methods of combining con-
fidence intervals.
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