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Abstract 
 
In the context of a survey, there is often a need to 
know and to quantify the main sources of changes 
observed between two estimates over time. We can 
then explain these changes or identify the outlier units 
having substantial impact on the change. Depending on 
the estimator used, the type of data or the number of 
units, this exercise can become highly complex. 
 
We will describe a method based on partial derivatives 
to find the sources of a change. This method can be 
used in several contexts. Using the estimator formula, 
we consider the independent variables as functions 
over time, calculate the partial derivatives of the 
estimator and approximate the impacts of the units. We 
can then estimate the impact on the change of each 
variable and each unit. The main advantage of this 
simple method is that it can be used to easily and 
accurately identify which, among all the data, have had 
a significant impact. 
  
Key words: Measurement of impact, outlier.  
 

1. Introduction 
 
In the context of a survey, there is often a need to 
know and to quantify the main sources of changes 
observed between two estimates over time, whether in 
a repetitive survey or an historic revision. During 
editing, we can identify outlier units with a significant 
impact on the estimates, while at the analysis stage, we 
can use the results to explain these changes. For 
example, during a panel survey, changes in the lagged 
variables or in the design weights can change an 
estimate, sometimes negligibly, but sometimes 
substantially. Depending on the estimator used, the 
type of data or the number of entries, it can be a highly 
complex task to identify the impact of each variable or 
unit on the final estimate. In the case of manual edits, it 
can be costly for a survey to verify a large number of 
units, which often have very little impact on the 
estimates. In contrast, the accuracy of estimates can 
suffer from the impact of a small number of 
overlooked units. 
 
Some of the outlier detection methods often stated 
include such univariate methods as the sigma-gap, 
interquartile difference or the Hidiroglou-Berthelot 
method (1986), or such multivariate methods as the use 

of graphs or Cook’s and Mahalanobis distances (Cook, 
1977 ; Franklin, 2000). These methods have the 
advantage of being quite simple but they cannot 
directly link an outlier to its impact on estimates. In 
addition, they cannot be used to explain changes 
observed in estimates. 
 
We will describe a method based on the definition of 
partial derivatives to measure the impact of each 
variable of each unit. We will then use these measures 
to identify units for verification purposes and to 
explain the source of a change. Examples using 
common estimators will illustrate the method. Lastly, 
we will describe how impact measurement was applied 
to Statistics Canada’s Survey of Employment, Payroll 
and Hours (SEPH). 
 

1. Measurement of impact 
 

The proposed method involves a transformation built 
from the estimator where all variables used to produce 
an estimate are linked to a real number that represents 
the impact that the change in that variable has on the 
final estimate. Analysis of the distribution of these 
impacts allows for identification of the units for 
verification and identifies the sources of a change 
observed between two estimates.  
 
Let us consider an estimator f based on the m variables: 
 ( )mxxx ,...,, 21=x  
We assume that this estimator is a real function of the 
m real variables, i.e. that f(x) : Rm → R. For example, 
in the case of an estimator using a design weight wk 
and a variable of interest yk available for n units, we 
consider the estimator to be a function of m = 2n real 
variables. 
 
Let us now assume that this estimator can be derived 
on an open domain P⊂ Rm. Let x0∈P be a point on P. 
We can say that the plane T tangent to function f at 

point ( )00
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function f around x0 (Marsden and Tromba, 1988). 
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Now, let A=xA ( )A
m

AA xxx ,...,, 21=  and 

B=xB ( )B
m

BB xxx ,...,, 21=  be two points on P, and let AB 
be the rectangle defined by the points A and B : 
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If AB⊂P, we can conclude that: 
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for any point C=xC∈AB. More specifically, we can 
state that there exists at least one point C0∈AB such 
that the approximation becomes an equality (Rudin, 
1976). In contrast, the exact determination of a specific 
point C0 is complex, but not essential since by taking C 

located in the middle of segment AB , i.e. 
( ) xxx =+= BAC 2

1 , we obtain a point that meets the 

constraint C∈AB and that allows us to calculate the 
impacts with a sufficient precision. Figure 1 shows the 
function f(x)=f(w,y) above the rectangle AB and the 
plane T tangent to the function at point C in the 
simplified case of a function with only two variables. 

 
Figure 1 

Function f(x) and tangent plane 
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This way, we get an approximation formula of the 
difference between two estimates ABf∆  based on a 
sum of m impacts caused by the change in each 
variable used to produce the estimate: 
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By analyzing the distribution of all m impacts 

i
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 and comparing them to ABf∆ , we can 

identify the influential values to be verified, and thus 
identify the source of a change observed in an estimate 
between points A and B. 
 

We can use equation (1) to obtain an approximation of 
the impacts on the relative change 
( ) )(/)()( AfAfBf −  in the estimate : 
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This method is very useful in examining the difference 
between two estimates over time (points A and B) 
using a group of common units. It can also be used to 
compare two estimates produced with the same 
estimator and the same statistical units, but with 
different values (changes in data processing, revised 
design weights, etc.). For example, we could consider 
that the points A and B correspond to data before and 
after imputation. The impacts measured could be used 
to accurately identify the sources of changes in the 
estimates after imputation. 
 

2. Application to different estimators 
 
The advantage of the proposed method is that it 
provides a general simple algorithm to measure the 
impact of many types of estimators used in different 
contexts. To explain how it works, we will show how 
the method is applied to a few common estimators. 
 
2.1 Horvitz-Thompson estimator of a total and a 

mean  
 
Let the variable of interest be y. The 
Horvitz-Thompson estimator of total πyt̂  is given by: 
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where the design weight wk is the inverse of the 

probability of selection kπ  of unit k (i.e., 1−= kkw π ). 
Let us assume that this estimator is repeated over two 
cycles (A and B) using the same group of n units, 
namely: 
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We are trying to measure the impact of the units on the 
observed difference: 
 )(ˆ)(ˆ AtBtf yyAB ππ −=∆  

We can consider the estimate πyt̂  as a function of 

m=2n variables. That is, 
 ( )nny yyywwwft ,...,,,,...,,ˆ

2121=π  

The m=2n partial derivatives of the estimator are as 
follows: 
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These partial derivatives evaluated at mid point xC =   
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Considering the m=2n elements of this sum, we can 
measure the impact of the change of each variable of 
each unit used in the estimate. If a substantial change is 
observed between estimates at points A and B, it 
becomes easy to identify the variable and/or the unit 
responsible for this change. Note that in this specific 
case, the selection of point C at the middle of segment 

AB  transforms the approximation into an exact 
equality. 
 
A practical way to analyze the impacts is to place the 
elements of the sum in a two-dimensional table 
(Table 1). The right-hand column shows the total 
impact of unit k on the difference between estimates A 
and B. The bottom row shows the total contribution by 
variable. By comparing change πyt̂∆  and the 

distribution of impacts, it is possible to identify a 
number of influential values, or to identify the source 
of the change noticed between f(A) and f(B). 
 
This way, we get the impact for each variable related 
to unit k ( kk wy ∆  and kk yw ∆ ), the total impact for 

each unit k ( kkkk ywwy ∆+∆ ) and the total impact of 

each variable common to the units (∑ ∆
s kk wy  and 

∑ ∆
s kk yw ). In general, the sum of the impacts is 

close to the difference observed, but in this example, it 
is exactly equal to πyt̂∆ . 

 

Table 1 
Impact of units and variables on the estimate of a total 

using the Horvitz-Thompson estimator 

Unit 
Impact of 

design 
weight 

Impact of 
variable of 

interest 

Total 
impact of 

unit 

1 11 wy ∆  11 yw ∆  
11

11

yw
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∆+

∆
 

2 22 wy ∆  22 yw ∆  
22
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∆
 

… … … … 
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The Horvitz-Thompson estimator πsy~  of the mean is 
given by: 
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The m = 2n partial derivatives of the estimator are: 
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We will illustrate this last result using an example 
based on a fictitious 4-unit sample, presented in 
Table 2. 
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Table 2 
Example of the calculation of impacts 

Design 
weight 

wk 

Variable 
of 

interest 
Impact Unit 

k 
A B A B w y Total 

1 2 1 50 70 -1.2 2.7 1.5 
2 2 4 20 10 -5.7 -2.7 -8.4 
3 3 6 70 60 5.1 -4.1 1.0 
4 4 0 50 50 -1.3 0.0 -1.3 

Total     -3.2 -4.1 -7.3 
 
From the sample in Table 2, we can estimate the mean 
of variable of interest y using the Horvitz-Thompson 
estimator given by formula (3): 
 =)(~ Aysπ 50 

 =)(~ Bysπ 42.73 
The difference observed in the estimate of the mean is: 
42.73 – 50 = -7.27. The last three columns of Table 2 
give impact values measured using formula (4). For 
instance: 

( )
( ) 2.111)21(4.4660
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1
111,

−=−−=
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=

n

k
ksw wwyyIMPACT π  

Note that in this example, ignoring the rounding effect, 
the sum of the impacts exactly equals the difference 
between the two estimates. 
 
By analyzing the impacts, we are able to observe that 
unit k=2 is primarily responsible for the change in the 
estimated mean, due mainly to the change in its design 
weight. 
 
2.2 Classic ratio estimator of a total 
 
Let the variable of interest be y and the auxiliary 
variable be x. The classic ratio estimator (Särndal, 
Swensson and Wretman, 1992) of total yrat̂  is given 

by: 
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known. Estimate yrat̂  is a function of m = 2n +1 

variables, specifically: 
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The impact formula of the classic ratio estimator of 
total yrat̂  is given by: 

 

∑

∑∑∑

=

===

∆−∆+∆

≅∆
n

k
k

n

k
yrak

n

k
xUk

n

k
kxU

yra

x

txtyyt

t

1

111

ˆ

ˆ  

Assuming that the variable xk is known for all units of 
the population, it is possible to measure the impact of 
xk for each unit of the population, rather limiting 
ourselves to the impact of total xUt . This way, we can 
rewrite the classic ratio estimator of the total as: 
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The estimator yrat̂  now becomes a function of m = 3N 

variables, specifically: 
 ( )NNNyra yyxxft ,...,,,...,,,...,ˆ

111 δδ=  

The partial derivatives are: 
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The impact formula of the classic ratio estimator of 
total 2

ˆ
yrat  is then given by: 
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In this case, we can measure the impact of a change 
∆xk in the values of the auxiliary variables for all units 
of the population, a change ∆yk in the values of 
variables of interest for the sampled units, and the 
inclusion of a unit in the sample (represented by ∆δk). 
 
2.3 Selection of explanatory variables 
 
The selection of explanatory variables is the choice of 
the analyst, depending on the complexity of the 
estimator and the desired level of details of the 
impacts. 
 
For example, let us consider the case of a weighted 
estimator of the total of the variable y where the 
estimation weight kw′  consists of a design weight wk, 
an adjustment for non-response ak and a calibration 
factor gk ( kkkk gaww =′ ). The impacts can then be 

measured on kw′ , or on wk, ak and gk. Similarly, if the 
variable y itself is obtained by the product or the ratio 
of two lagged variables (yk = y1k y2k or yk = y1k / y2k), it 
is possible to obtain the impact on yk, or on y1k and y2k. 
 
Even though it is natural to consider the units as 
microdata, the method can be used to measure the 
impacts by cluster, stratum, modeling group, domain, 
etc. In the case of a repeated survey with independent 
samples, the method can be used to measure the impact 
of microdata, even though the distribution of the 
impacts would be more dispersed. In this case, if we 
consider microdata analysis unnecessary, it is possible 
to simply measure the impacts at the stratum, domain 
or modeling group level. For example, in the case of 
the Horvitz-Thompson estimator of a total, we could 
use the following forms to measure respectively the 
impacts at the level of the n sampled units, the H strata 
or the D domains: 

 ∑
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3. Impact measurement applied to the Survey of 
Employment, Payrolls and Hours 

 
Statistics Canada’s Survey of Employment, Payrolls 
and Hours (SEPH) is a monthly survey using two 
sources of data: a census of administrative data, and a 
sample survey of establishments called the Business 
Payrolls Survey (BPS). The purpose of SEPH is to 
produce estimates of levels and trends in employment, 
earnings, hours, and other related variables, by 
province and by industry (Godbout, Grondin and 
Lavallée, 2005). 
 
The administrative source consists of payroll deduction 
data provided by the Canada Revenue Agency (CRA). 
Because these data cannot be linked to a specific 
province or industry, they must be aggregated at the 
business level and then disaggregated at the level of 
establishments, which are linked to a single province 
or industry. For each establishment k of universe U  of 
size N≅900,000, we get the number of employees Ek 
and the average monthly earnings per employee xk. 
 
The survey portion consists of a stratified sample s of 
about 11,000 establishments, selected from a list 
frame, which is the Statistics Canada’s Business 
Register (BR). These establishments can be linked to 
the administrative source. Among the variables 
collected for each unit k ∈ s, we find the average 
weekly earnings per employee yk. The design weight 

kw  of the unit k in stratum h is wk=1/pk, where pk is the 
probability of selection of unit k. 
 
The estimator of average weekly earnings for domain d 
included in modeling group g (or corresponding to 
modeling group g) is a simple projection estimator 
based on a linear regression model given by: 
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The estimator projy~  is a function of m = 3N + n 

dimensions: 
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The partial derivatives are: 
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We then define a score for each unit of the population 
by taking the absolute value of the impact, weighted by 
a factor determined by validation rules: 
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The next step is to identify the units to be verified by 
retaining the largest scores by domain, along with all 
scores exceeding a defined threshold. We use the 
impacts by variable to identify the elements we want to 
focus on. 
 
Lastly, for those domains where we observe a change 
outside the defined interval, we compare this change to 
the impacts measured from the microdata to verify the 
main responsible units, correct any errors, and identify 
the source of these major changes. 
 
Note that we did not include the inclusion variable δk 
among the variables of the function f(x) because we 

preferred to calculate dx  using a modified version of 

variable Ek: kk EE =′  if k∈Ud and kE′ =0 otherwise. 

However, it would have been possible to include the δk 
and to measure an impact on the estimate arising from 
this inclusion variable. 
 

4. Conclusion 
 
We have presented a general method for obtaining a 
formula that can be used to measure the impact of all 
variables involved when a change is observed in an 
estimate. This method can be applied to several types 
of estimators in different contexts. The selection of 
explanatory variables and of the level of the units is the 
choice of the analyst. 
 
Once the impacts are determined, it is possible to apply 
various common univariate methods (sigma gap, 
interquartile differences, etc.) to identify the 
influencing units. Similarly, when analyzing the 
estimates, the impacts measured can be used to explain 
the source of the observed changes. 
 
It should however be noted that the formula remains an 
approximation and that the sum of the impacts can be 
different from the observed change, even if, in some 
cases (as with the Horvitz-Thompson estimators of the 
total and the mean), the selection of mid point C = x 
gives a sum of the impacts exactly equal to the 
observed change. The estimator used to produce the 
two estimates must be the same. In addition, the 
function of the estimator must be differentiable, which 
excludes some estimates such as percentiles. 
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